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Water at the protein surface is an active biological molecule that plays a critical

role in many functional processes. Using NMR-restrained MD simulations, we

here addressed how protein hydration is tuned at high biological temperatures

by analysing homologous acylphosphatase enzymes (AcP) possessing similar

structure and dynamics under very different thermal conditions. We found that

the hyperthermophilic Sso AcP at 80°C interacts with a lower number of

structured waters in the first hydration shell than its human homologous mt

AcP at 37°C. Overall, the structural and dynamical properties of waters at the

surface of the two enzymes resulted similar in the first hydration shell, including

solvent molecules residing in the active site. By contrast the dynamical content

of water molecules in the second hydration shell was found to diverge, with

higher mobility observed in Sso AcP at 80°C. Taken together the results

delineate the subtle differences in the hydration properties of mt AcP and

Sso AcP, and indicate that the concept of corresponding states with equivalent

dynamics in homologous mesophilic and hyperthermophylic proteins should

be extended to the first hydration shell.
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Introduction

As proteins evolve in aqueous environment, the protein-water interaction is one of the

driving factors in the selection of native sequences able to fold and be functional under

physiological conditions (Bianco and Franzese, 2015). Through the characterization of

protein structures, it has now become evident that water is not simply the solvent of life

but can also be an active component of proteins (Ball, 2017). Numerous studies have

clarified the biological role of waters, including the stabilization of protein structures (De

Simone et al., 2008), the modulation of protein-protein interactions (Vitagliano et al.,

2011) or protein-ligand affinity (Qu et al., 2019), enzymatic catalysis (Pocker, 2000) and

proton transport (Umena et al., 2011).

The hydration shells are also crucial modulators of the structural fluctuations of

proteins, as indeed experimental and theoretical studies have shown that the dynamical
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behavior of proteins and of the surrounding waters are coupled

(Tournier et al., 2003; Frauenfelder et al., 2006; Bianco et al.,

2012; Bellissent-Funel et al., 2016; Rahaman et al., 2017). It was

indeed proposed that protein dynamics require a fully connected

hydrogen-bonded network of water molecules, activating the

collective dynamics in a two-dimensional percolation transition

(Oleinikova et al., 2005; Smolin et al., 2005; Mazza et al., 2011). In

this context, an intriguing question is how proteins from

hyperthermophilic organisms are able to attain physiological

structural dynamics that are similar to those of their

mesophilic homologues (Zavodszky et al., 1998; Radestock

and Gohlke, 2011; Fields et al., 2015; Stirnemann and

Sterpone, 2017) despite the remarkable differences in the

translational-rotational kinetic properties of bulk waters at the

respective physiological temperatures (Sterpone et al., 2010;

Chakraborty et al., 2015; Rahaman et al., 2015; Krah et al.,

2020). Hyperthermophilic proteins indeed can remain folded

and active under conditions that often approach the water boiling

temperature, posing the question on what are their hydration

properties and how these contribute to achieve protein structural

dynamics that are equivalent to those of mesophilic homologous.

In order to investigate the nature of protein hydration at high

temperatures, we here used MD simulations restrained with

experimental NMR chemical shifts (CS) to sample the

nanosecond dynamics of two proteins from mesophilic and

hyperthermophilic organisms, namely the human muscle

acylphosphatase (mt AcP) and its homologue from Sulfolobus

solfataricus (Sso AcP). The simulations were run in explicit

solvent and were restrained using experimental CS measured

respectively at 37°C and 80°C formt AcP and Sso AcP. The results

showed that, despite the significant difference in the native

temperatures, the extension of the first and second hydration

shells from the protein surfaces overlap in the two proteins,

however, in Sso AcP at 80°C the water population of the first

hydration shell was significantly reduced. Moreover, while the

translational dynamics in the first hydration shells of the two

proteins were found to be comparable, the mobility of waters in

the second hydration shell was significantly higher in Sso AcP at

80°C. Overall, these results describe how the coupling between

protein dynamics and hydration is tuned at very different

biological temperatures in AcP enzymes.

Materials and methods

NMR spectra assignment ofmt AcP at 37°C

The assignment of NMRCS ofmt AcPwas performed at 37°C

in 30 mMMOPS buffer at pH 7.0 (Fusco et al., 2022). The protein

net charge under these conditions is +4.9. NMR samples were

prepared by diluting lyophilised protein into 500 μl of 10%

deuterated solution up to a protein concentration of 200 μM.

Assignments of the NMR resonances of the backbone atoms of

mt AcP were adapted from our previous work (Fusco et al., 2012)

by measuring a series of 3D NMR spectra under the present

experimental conditions. All NMR data were processed and

analysed using TopSpin (Bruker BioSpin), NMRPipe and

Sparky software packages.

NMR spectra assignment of Sso AcP
at 80°C

The assignment of NMR CS of Sso AcP at 80°C was

performed in 30 mM MES buffer and pH 6.5, which mimics

the physiological conditions of the protein. At this pH the net

charge of the protein is expected to be −0.5. NMR resonance

assignments of Sso AcP at 80°C were performed using a

combination of 3D spectra (HNCA, CBCAcoNH, HNCACB,

HNCO, HNcaCO, and HNHA) in conjunction with the

assignment performed at 25°C (BMRB, entry code: 6398)

(Corazza et al., 2006). It is worth noting that in our study, the

truncated form of Sso AcP was employed (ΔN11), to include only
the ferrodoxin-like domain as in mt AcP.

Chemical shifts-restrained MD
simulations

In this study, we employed CS to restrain MD simulations

using our previously developed method NapShift (https://github.

com/vrettasm/NapShift), which is based on artificial neuronal

networks to model CS from structure and enable derivatives to

apply experimental restraints in MD simulations (Qi et al., 2022).

The CS restraints of NapShift are based on experimental CS of six

protein atoms (Cα, Cβ, C’, N, HN, and Hα) and act on dihedral

angles of the main chain (φ, ψ) and of the side chains (χ1, χ2) (Qi
et al., 2022). NapShift restraints were implemented in the

GROMACS package for MD simulations (Páll et al., 2020)

and imposed by adding an experimentally driven energy term

to the standard force field (Eq. 1),

VTotal � VFF + VCS (1)

where the experimental term was modelled as a harmonic

potential based on the calculated CS value (Eq. 2).

VCS � K∑Nres

i
∑6

j
(δij exp − δcalcij )

2
(2)

The harmonic restraints were applied as flat-bottom

potentials where the restraining force is zero when the

difference between experimental and calculated CS values falls

within the experimental error of the measurement.

Initial 10 ns equilibration simulations were performed

starting from the NMR structures of mt AcP (Motamedi-Shad

et al., 2012) and Sso AcP (Corazza et al., 2006), respectively at

310 K and 353 K by using the CHARMM36 force field (Huang
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andMacKerell, 2013) and TIP3P explicit water model (Jorgensen

et al., 1983) and increasing the weight K of the restraint energy

with respect to the empirical force field from zero up to a

maximum value of 300 kJ•mol−1•ppm−2. The weight K was

subsequently maintained constant during the equilibrium

simulations. The incidence of the restraining forces at

equilibrium was estimated in average to be 5% of the overall

forces applied on backbone atoms. EquilibriumMD were run for

100 ns in the NPT ensemble by weak-coupling of the pressure

and temperature with external baths. Temperature coupling was

performed with the V-rescale method (Bussi et al., 2007) using a

coupling constant of 0.1 ps and reference temperatures of 310 K

for mt AcP and 353 K for Sso AcP. The pressure of 1 atm was

coupled using the Berendsen method (Berendsen et al., 1984),

with a compressibility value of 4.5 × 10−5 bar−1. Electrostatic

interactions were treated using the particle mesh Ewald method

(Darden et al., 1993). The integration step for the simulations was

2 fs and the restraints were applied at each integration step. All

MD simulations were carried out using periodic boundary

conditions and adopting LINCS as a constraint algorithm.

Hydration analysis

Water density function around the protein surface was

calculated using the positions of the oxygen atoms (De

Simone et al., 2006). Each frame of the MD simulation was

superimposed onto a reference structure by using the Cα atoms

of the protein. The Cartesian coordinates of the water oxygen

atoms were then used to calculate the water population in a

discrete 3D grid of 0.5 Å of step size, by applying boundary

conditions. Water density in each node of the 3D grid was

normalised on the bulk density value, which was estimated in

a shell extending from 8.0 to 10.0 Å from the protein surface.

The dynamics of the water in theMDHS was calculated using

a time autocorrelation function (Eq. 3) to estimate the residence

time in the MDHS.

P(τ) � ∑
τ
δ(W(t),W(t + τ)) (3)

where the delta function δ(W(t),W(t + τ)) assigns one if the same

water occupies the hydration site at times t and t + τ. The
resulting time-autocorrelation functions were fitted using a single

exponential model to provide the residence time.

Results

In order to generate new understanding of the protein-water

interaction in native conditions, we compared the hydration

properties of two homologous folded enzymes whose

physiological temperatures differ of 43°C. In particular, we

chose two acylphosphatases sharing limited sequence identity

(25%) but possessing the same ferrodoxin-like fold topology

(Stefani et al., 1997), the same pattern of secondary structure

elements (5 β-strands and 2 α-helices in βαββαββ arrangement),

and solving the same hydrolase function via the catalytic residues

Arg 23 and Asn 41. The significant structural similarity of the two

enzymes is also reflected in similar radii of gyration (12.8 Å for

mt AcP and 12.1 Å for Sso AcP) and solvent accessible surface

area (61.9 nm2 for mt AcP and 59.1 nm2 for Sso AcP). Having

evolved in very different environments, however, the melting

temperatures of the two AcP are considerably different (56°C for

mt AcP and 100°C for Sso AcP) (Corazza et al., 2006), thus

enabling the hyperthermophilic Sso AcP to be folded and

functional at 80°C, a temperature where mt AcP is partially

unfolded and mostly inactive. Overall, these characteristics

make mt AcP and Sso AcP ideal homologous systems to

elucidate the differences in the native protein hydration at

different temperatures. As water equilibrates in the picosecond

timescale, we here generated MD trajectories of 100 ns for each

system to provide robust statistics about the structure and

dynamics of the hydration shells. Moreover, the availability of

experimental CS enabled to perform accurate simulations of the

two proteins at the physiological temperatures, as in our study CS

restraints improve the accuracy of protein force fields, which are

not parameterised to reproduce protein dynamics at high

temperatures.

The CS-restrained MD trajectories ofmt AcP at 37°C and Sso

AcP at 80°C showed a significant agreement with experimental

chemical shifts (Supplementary Figures S1, S2), as calculated

using the SPARTA+ program (Shen and Bax, 2010), which is

different from the NapShift method employed for the CS

restraints in our MD samplings (Qi et al., 2022). The

backbone dynamics of the two proteins in the trajectories

showed similar patterns of rigid and dynamical regions, with

the strongest fluctuations found in the loops connecting

secondary structure elements (S1-H1, S2-S3 and H2-S4) as

probed by root mean square fluctuations (RMSF, Figures

1A,B; Supplementary Figures S3A,B). The restrained MD

samplings were also found to be in significant agreement with

experimental order parameters S2 from 15N relaxation NMR

(Fusco et al., 2022), which are sensitive probes of nanosecond

dynamics in proteins (Figures 1C,D). Overall, the structures of

the two proteins remained within Cα-RMSD values of 0.2 nm

from the starting conformations, suggesting no significant

rearrangements of the main chain in the simulations

(Supplementary Figures S3C,D).

Using these simulations, we analysed the structure and

dynamics of water molecules around the two AcP enzymes

at the respective physiological temperatures. As the structure

and relaxation properties of bulk water are considerably

different at 37°C and at 80°C, our study aimed at addressing

the fundamental question of what is the protein-water interface

at these temperatures in systems that have very similar structure

and attain consistent backbone dynamics across multiple

Frontiers in Molecular Biosciences frontiersin.org03

Fusco et al. 10.3389/fmolb.2022.1037445

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1037445


timescales (Fusco et al., 2022). As first, we calculated the water

radial distribution function G(r) for the two enzymes. G(r) was

averaged across the MD trajectories and calculated from the

position of water molecules residing in a virtual cylinder

positioned in the centre of mass of the protein and oriented

in all possible combinations of the Eulerian angles α and β

(using a step size of 20°, Figure 2A). The analysis indicates that,

while the first and second hydration shells in the two proteins

have essentially the same distance from the protein surface

[G(r) maxima at 1.9 Å and 2.6 Å, Figure 2B], the population of

the first peak is substantially depleted in Sso AcP at 80°C

compared to mt AcP at 37°C. To obtain a more detailed

analysis the structural properties of waters surrounding the

proteins, we calculated the three-dimensional water density

map, providing the position of the MD hydration sites (MDHS)

that represent stably bound waters on the protein surface

(Figures 2C,D). MDHS were assigned as the local maxima in

the water density function in a radius of 0.14 nm, following the

restriction to possess a minimum density of 2.0 times the value

of the bulk water. We observed 60 and 35 MDHS in the first

hydration shell of mt AcP at 37°C and Sso AcP at 80°C, thereby

confirming the lower population of stably structured waters in

the first hydration shell of the hyperthermophilic protein as

observed in the G(r). Upon inspection of the residues in direct

contact with the oxygen atoms of the waters, we found that the

two enzymes have similar amounts of hyper-hydrated residues

exposing charged side chains on the protein surface, however,

the mesophilic mt AcP features a higher abundance of polar

residues, particularly serine and threonine amino acids, in

contact with the solvent (Supplementary Figure S4). This

difference is reflected in the average number of waters

surrounding the residues, respectively resulting in 0.53 and

0.43 formt AcP at 37°C and Sso AcP at 80°C. When analysing the

second hydration shell, however, the difference between the

number of MDHS in mt AcP at 37°C and Sso AcP at 80°C was

largely reduced (76 and 60MDHS, respectively), in line with the

similarity in the population of the second peak of the G(r) of the

two proteins.

We then characterised the dynamical behaviour of waters at

the protein surface by calculating the water residence time in

the MDHS. The data indicated that the translational dynamics

of waters residing in the first hydration shell is similar in the two

proteins, with average values of 62.5 ps and 78.5 ps for mt AcP

at 37°C and Sso AcP at 80°C, respectively (Figure 3). When

analysing the dynamics of hydrogen-bonds established between

the proteins and the surrounding waters, however, we found a

longer lifetime in mt AcP than in Sso AcP (137.9 ps vs. 58.7 ps,

Supplementary Figure S5). In addition, by closely inspecting the

properties of waters in the first hydration shell, we also observed

two MDHS in proximity of the phosphate binding loop that are

FIGURE 1
Nanosecond structural dynamics of mt AcP at 37°C and Sso AcP at 80°C. (A,B) root mean square fluctuations (RMSF) in the CS-restrained MD
simulations of mt AcP at 37°C (A) and Sso AcP at 80°C (B) plotted onto the protein structures. Color code range from low (blue) to high (red) RMSF
values. The corresponding RMSF graph is shown in Supplementary Figure S3. (C,D)Order parameters S2 values ofmt AcP at 37°C (C) and Sso AcP at
80°C (D) calculated from the CS-restrained MD (black) and NMR data (red) from 15N relaxation measurements Fusco et al. (2022).
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conserved in both proteins (Figure 4). These MDHS correspond

to bound waters found also in the crystal structures of Sso AcP

and acylphosphatases from other organisms (Supplementary

Figure S6). In both proteins, the water residence times in these

hydration sites were found to be significantly longer than the

average residence time of MDHS in the first hydration shell.

More specifically, a first water establishing direct hydrogen-

bonds with the backbone amides of the phosphate binding loop

was found to have residence times of 311.5 and 346.9 in mt AcP

and Sso AcP, respectively. A second water, which directly

interacts with Asn 21 and is known to participate to the

catalytic mechanism of the AcP (Stefani et al., 1997), was

found to have residence times of 4,297.5 ps and 277.9 ps in

mt AcP and Sso AcP, respectively. While the latter residence

times are different, they are both significantly higher than the

average values of the first hydration shells of the two proteins.

These data indicate that the hyperthermophilic AcP maintains

structured waters in the catalytic site with long residence times

in analogy to its mesophilic homologue. Thus, despite the

considerable difference in the properties of the bulk water at

37°C and 80°C, structured waters in catalytic pockets behave in a

similar manner.

Finally, when analysing the second hydration shells of the

two proteins, we found that residence times in the

hyperthermophilic system are significantly shorter than

those of the mesophilic homologue, with average values of

17.9 ps and 51.6 ps for mt AcP at 37°C and Sso AcP at 80°C,

respectively. Taken together these data indicate that the

dynamical properties of waters in the first hydration shells

of mt AcP and Sso AcP are similar, and begin to diverge in the

second hydration shell, where faster dynamics were observed

in Sso AcP at 80°C.

FIGURE 2
Structural properties of waters in the hydration shells of mt AcP and Sso AcP. (A) Schematic representation of the water radial distribution
function G(r) calculation. A cylinder of 4 Å diameter was oriented by scanning the two Eulerian angles, α and β, with a step size of 20°. For each water
molecule in the cylinder, the distance from the protein surface was used to calculate the G(r). The function was averaged across the values of α and β,
and the simulation frames. (B)G(r) ofmt AcP (orange) and Sso AcP (green). (C,D)Water density maps ofmt AcP at 37°C (C) and Sso AcP at 80°C
(D) contoured by cyan surfaces enclosing regions with a value of water density 2.0 times higher than the bulk average density. The density maps
provide the location of the MDHS around the protein surface, which are defined as local maxima of the function in a radius of 0.14 nm, following the
restriction to possess a minimum density of 2.0 times the value of the bulk water. In SsoAcP, large surfaces lacking MDHS were observed. One of
these regions is highlighted using dotted yellow lines as an example.
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Discussion

Understanding the behaviour of water molecules at the

protein surface is of paramount importance for elucidating

fundamental mechanisms in biochemistry. In addition to

playing a primary role for the hydrophobic effect (Niether

et al., 2018), a major driving factor for protein folding, waters

can participate explicitly or implicitly to the biological

function of proteins (Ball, 2008). Tightly bound waters

adopting stable three-dimensional positions in the protein

structure have been associated with a variety of functional

roles, such as the stabilization of the collagen triple helix (De

Simone et al., 2008), catalytic reactions, the mediation of

ligand binding (Tame et al., 1994) and the determination of

ligand selectivity and specificity (Qu et al., 2019). A more

enigmatic role is played by mobile waters, which can influence

protein function in an indirect manner. Highly dynamical and

poorly structured waters can indeed drive protein-protein

interactions by defining dewetting-prone surfaces that

reduce the cost of generating dry interfaces upon formation

of macromolecular complexes (Vitagliano et al., 2011) or

during protein aggregation into amyloids (Colombo et al.,

2008). The dynamics of waters at the protein surface is also

directly connected with structural fluctuations of the

backbone and side chain atoms of proteins. Numerous

studies have indeed indicated the presence of a coupling

between protein dynamics and hydration shell dynamics,

suggesting that the dynamical behaviour of the hydration

shell is a reservoir of fluctuations that favour

conformational transitions in proteins (Ball, 2017). This

coupling has also been observed in allosteric

conformational transitions (Buchli et al., 2013), whereas

emerging theories suggest that protein dynamics are indeed

“slaved” by the hydration shell in small systems and by the

bulk solvent in large systems (Frauenfelder et al., 2009).

In this context, a fascinating question arises as to how

protein dynamics and hydration dynamics are coupled in

systems evolutionary optimised to work at very high

biological temperatures. In particular, a fundamental

debate is how waters at the interface of hyperthermophilic

proteins behave at high temperatures while these proteins

maintain similar structure and dynamics of their mesophilic

homologues despite the bulk solvent possesses considerably

high kinetic energy. We here aimed at answering this

question by using MD simulations to sample the hydration

properties of two homologous acylphosphatase enzymes

adopting very similar structures and solving the same

function at very different temperatures. Using extensive

NMR analyses, we previously showed that the backbone

dynamics of mt AcP at 37°C and Sso AcP at 80°C are

similar across a range of timescales (Fusco et al., 2022).

We now used CS-restrained data to overcome possible

biases in protein force fields, as these are not specifically

parameterised to reproduce protein dynamics at high

temperatures. The trajectories enabled to analyse the

structure and dynamics of the hydration shells of the AcP

enzymes at 37°C and 80°C, showing no major differences in

the positions of the first and second hydration shells with

respect to the protein surfaces. The population of the first

hydration shell in Sso AcP, however, was found to be nearly

half of that observed in mt AcP, a finding that is in line with a

reduced number of MDHS in the first hydration shell of the

hyperthermophilic protein. These results indicate that Sso

AcP at 80°C retains a small number of structured waters in the

first hydration shell compared to mt AcP at 37°C, while the

residence time of these waters result similar in the two

systems, including functional MDHS in the active site.

When analysing the second hydration shell, the peak

height in the G(r) as well as the amount of MDHS were

observed to be more similar in the two proteins, however,

water dynamics were found to be significantly faster in Sso

AcP at 80°C than in mt AcP at 37°C, thus reflecting the higher

kinetic energy expected at these temperatures.

Taken together, our data identified some similar traits in

the structural properties of waters residing in the first

hydration shell of mt AcP and Sso AcP, and highlighted

major differences in the dynamical behaviour of waters

FIGURE 3
Dynamic properties of waters in the MDHS of mt AcP and Sso
AcP. Water residence time in each MDHS was calculated using the
autocorrelation function and a single exponential decay fitting
model. The MDHS were classified as those belonging to the
first or second hydration shell. Scatter plots of the residence times
are reported for the two classes of MDHS for mt AcP at 37°C and
Sso AcP at 80°C. In the first hydration shell, the average residence
times were calculated by excluding superstructured MDHS
(residence times higher than 1.0 ns), resulting in 62.5 (±72.2) ps
and 78.5 (±99.7) ps for mt AcP at 37°C and Sso AcP at 80°C,
respectively. In the second hydration shell, average residence
times were 51.6 (±72.2) ps and 17.9 (±12.1) ps for mt AcP at 37°C
and Sso AcP at 80°C.
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residing in regions further away from the protein surface.

These latter waters likely are more influenced by the

properties of the bulk, which induce faster relaxation in the

second hydration shell of Sso AcP at 80°C. Thus, the concept of

“corresponding states”, which indicates that homologous

proteins from hypertermophilic and mesophilic organisms

adopt similar structural dynamics at the respective

physiological temperatures (Radestock and Gohlke, 2011;

Fields et al., 2015), should be extended to the first

hydration layer, which in our study was found to be the

most similar region in the protein-water interface of mt

AcP and Sso AcP.
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FIGURE 4
Structured waters in the active site ofmt AcP and Sso AcP. Two conserved MDHS were found in close contact with the phosphate binding loop
in bothmt AcP and Sso AcP. Water densitymap is shown as blue contour lines with the two conservedMDHSmarkedwith black dots in the centre.mt
AcP (top) and Sso AcP (bottom) are rendered as green and orange ribbons, respectively, with the phosphate binding loop rendered in yellow for both
systems. Autocorrelation functions of the waters in two MDHS are shown in the panels on the right (green and orange lines formt AcP and Sso
AcP, respectively). The resulting residence times are 311.5 ps (mt AcP) and 346.9 ps (Sso AcP) for the water in direct contact with the phosphate
binding loop (top panel) and 4,297.5 ps (mt AcP) and 277.9 ps (Sso AcP) for the water interacting with Asn 21 (bottom panel) and participating to the
catalytic mechanism Stefani et al. (1997).
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