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Extracellular vesicles (EV) are vesicular vesicles with phospholipid bilayer, which

are present in biological fluids and extracellular microenvironment. Extracellular

vesicles serve as pivotal mediators in intercellular communication by delivering

lipids, proteins, and RNAs to the recipient cells. Different from extracellular

vesicles derived from biofluids and that originate from cell culture, the tissue

derived extracellular vesicles (Ti-EVs) send us more enriched and accurate

information of tissue microenvironment. Notably, tissue derived extracellular

vesicles directly participate in the crosstalk between numerous cell types within

microenvironment. Current research mainly focused on the extracellular

vesicles present in biological fluids and cell culture supernatant, yet the

studies on tissue derived extracellular vesicles are increasing due to the

tissue derived extracellular vesicles are promising agents to reflect the

occurrence and development of human diseases more accurately. In this

review, we aimed to clarify the characteristics of tissue derived extracellular

vesicles, specify the isolation methods and the roles of tissue derived

extracellular vesicles in various diseases, including tumors. Moreover, we

summarized the advances and challenges of tissue derived extracellular

vesicles research.
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1 Introduction

Extracellular vesicles (EVs) are nano lipid bilayer-delimited particles released by a

variety of cells (Yanez-Mo et al., 2015). Microvesicles (MVs), exosomes, and apoptotic

bodies are the three major subtypes of EVs, which are characterized mainly based on their

size, biological properties, and production process (Crescitelli et al., 2013; Shao et al.,

2018). In brief, MVs are released by cellular membrane budding with 100–1,000 nm in

size, while exosomes (30–150 nm) are formed by the fusion of multivesicular bodies

(MVBs) and cell membrane, and apoptotic bodies are delivered during the process of cell

apoptosis with a diameter of 500–2000 nm (Raposo and Stoorvogel, 2013; DeLeo and

Ikezu, 2018; Gurunathan et al., 2019). However, the three EV subtypes are difficult to

distinguish thoroughly because of the overlap in size (Marar et al., 2021). Therefore, they

are frequently classified as small, medium, and large EVs according to their size. All lipid-
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bilayer particles released by cells will be referred to as “EVs” in

this review in accordance with the International Society for

Extracellular Vesicles (ISEV) nomenclature, with size

designations where necessary (Thery et al., 2018).

Before being released, EVs can package multiple lipids,

nucleic acids and proteins. Owing to the stable lipid

membrane of EVs, these cargoes are prevented from

degradation (Andaloussi et al., 2013; Gupta et al., 2021).

When EVs are delivered into the extracellular environment,

they can directly bind to the surface of recipient cells and

subsequently initiate intracellular signaling pathways or

deliver their cargoes to the recipient cells through endocytosis

(Valadi et al., 2007; Raposo and Stoorvogel, 2013; Mulcahy et al.,

2014; Xiao et al., 2014). As a result, by acting as messengers in

cell-to-cell communication, EVs play a critical role in various

physiological and pathological processes, as well as the morbidity

and development of numerous diseases (Mateescu et al., 2017;

Hill, 2019; Raposo and Stahl, 2019; Russell et al., 2019; Urabe

et al., 2020). For example, the EVs produced by tumor cells

encourage the invasion and metastasis of ovarian cancer by

delivering miR-106a-5p to recipient cells to target KLF6

(Zheng et al., 2022). Exosomal miR-146a-5p and miR-155-5p

communicate with cancer-associated fibroblasts to promote

CXCL12/CXCR7-induced metastasis of colorectal cancer

(Wang et al., 2022). In wound healing, several studies proved

that EVs derived from mesenchymal stromal cells (MSCs) are

conducive to assist wound closure (Zhang et al., 2015; Ha et al.,

2016). Furthermore, Sun et al. (Sun et al., 2022) found EVs are

key mediators during the early hypoxia-induced damage

signaling transduction from endothelial cells to

cardiomyocytes in acute myocardial infarction (AMI).

EVs widely exist in almost all types of body fluids, including

blood, urine, cerebrospinal fluid (CSF), saliva and tears. Thus

they are appropriate biomarkers for the early diagnosis and

prognosis in clinical application due to these body fluids are

relatively easily to collect (Keller et al., 2011; Lasser et al., 2011;

Muraoka et al., 2020a; Fringuello et al., 2021; Yu et al., 2021; Liu

et al., 2022). As reported, the circulating miR-135a-3p in serum

EVs has been characterized as a possible biological marker of

non-alcoholic fatty liver disease (Jiang et al., 2021a). In

Parkinson’s disease (PD), serum EVs-derived miRNAs (miR-

374a-5p, miR-374b-5p, miR-199a-3p, miR-28-5p, miR-22-5p

and miR-151a-5p) are promising biomarkers for PD

progression and early diagnosis (He et al., 2021). Recently, a

database (exoRBase 2.0) has been established to display the atlas

of mRNAs and non-coding RNAs in EVs from human biological

fluids, which will be beneficial for discovering novel circulating

biomarkers to augment the diagnosis and therapy of human

diseases (Lai et al., 2022).

Nowadays, researches on EVs have expanded from cells and

body fluids to the characterization of EVs from the extracellular

spaces within tissues (Perez-Gonzalez et al., 2012; Vella et al.,

2017; Li et al., 2021). Increasing evidence have shown the EVs

isolated from tissues possess more abundant biological

information and are more accurately to reflect the alteration

of tissue microenvironment compared to those derived from cells

and biological fluids (Asai et al., 2015; Jang et al., 2019). These

studies mainly focused on the tissue derived EVs (Ti-EVs)

extracted from whole tissues (Perez-Gonzalez et al., 2012;

Silverman et al., 2019; Lasser et al., 2021), or short-term

culture of tissue explants, such as ex vivo tumors (Mincheva-

Nilsson et al., 2016; Lunavat et al., 2017). In this review, we aimed

to make a summary of the studies on Ti-EVs in recent years to

provide a better understanding of the characteristics and

potential values of EVs derived from tissues.

2 Perspective of EVs derived from
tissues

In the past decade, a variety of studies about EVs isolated

from in vitro cell culture systems and body fluids have been

reported (Nielsen et al., 2017; Breglio et al., 2020; Penas-

Martinez et al., 2021). However, the in vitro cell culture

environment is a relatively unitary system and cannot fully

simulate the complex intrinsic microenvironment. Besides,

the process of long-term cell cultivation can change the cell

characteristics, and subsequently influence the EVs released

from cell lines (Allen et al., 2016; Crescitelli et al., 2020). More

important, the cell lines may not be accurately authentic to the

tissues of origin. By employing gene profiling and

transcriptome analysis in human glioma cell lines, Allen

et al. (Allen et al., 2016) found the DNA profile of a

commonly used glioma cell line U87MG was distinct from

that of the original cells. On the contrary, it might be a cell line

of uncertain origin. Through the analysis of more than

40 ovarian cancer cell lines, it was shown that high-grade

serous ovarian cancer sample tissues and commonly utilized

ovarian cancer cell lines had significantly different molecular

profiles, indicating that cell lines are not completely consistent

with tissues (Domcke et al., 2013). Besides, although the EVs

isolated from biological fluids contain a great deal of

information, they are a very mixed collection from

multifarious cells and organs (De Wever and Hendrix,

2019; Huang and Xu, 2021). Therefore, the abundant

information is confused and it is also difficult to determine

the origin of these fluids derived-EVs.

Compared with the cell culture and body fluids derived EVs,

the Ti-EVs can carry more original information, and reflect the

intercellular communication more truly (Table 1) (Camino

et al., 2020). In addition, the source of Ti-EVs is more clear,

so they are easier to track. For instance, Ti-EVs can be directly

visualized in the interstitial space of a melanoma metastatic

tissues under the electron microscopy, suggesting these Ti-EVs

might originate from the metastatic foci (Jang et al., 2019). By

using the immuno-TEM (Transmission Electron Microscopy),
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several nanosized (30–100 nm in diameter) EVs which were

characterized by the round shape, are observed clearly in the

cytoplasm of human benign prostatic hyperplasia (BPH) cells

and prostate cancer cells in the tumor microenvironment (Park

et al., 2016). Owing to the above reasons, to isolate EVs from

different types of tissues (such as brain, heart, lung, and

kidney), and explore their roles in multiple cellular process

has gained more and more attention (Figure 1) (Li et al., 2021;

Chang et al., 2022).

3 Methods for extracting Ti-EVs

Currently, EVs studies are limited by the shortage of EVs

isolation and purification methods (Ramirez et al., 2018; Royo

et al., 2020). Up to date, several methods of EVs isolation and

purification are commonly used, including differential

centrifugation (DC) (Tauro et al., 2013; Pospichalova et al.,

2015), ultracentrifugation (UC) (Gardiner et al., 2016), density

gradients centrifugation (DGC) (Jeppesen et al., 2019),

microfluidic devices (Liga et al., 2015; Konoshenko et al.,

2018), size exclusion chromatography (SEC), synthetic

polymer–based precipitation (Van Deun et al., 2014), and

membrane filtration(UF) (Grant et al., 2011). Even though,

they all have limitations, because the size and physicochemical

properties of EVs always overlap with lipoproteins, chyle

particles and so on. There is still a lack of methods focusing

on the separation of tissue derived EVs (Cianciaruso et al., 2019;

Huang et al., 2020). Furthermore, how to isolate EVs from tissues

but not damage the cell membranes so that to maintain the native

shape and function of Ti-EVs during the process of extraction is

one of the grand challenges (Thery et al., 2018). Several published

methods for isolating EVs from tissues usually involve

homogenization and filtration, which can mix the extracellular

environment with intracellular vesicles as well as other nanosized

particles (Perez-Gonzalez et al., 2012; Gallart-Palau et al., 2016).

In order to dissociate the tissues without disrupting cell, and

improve the purity of Ti-EVs isolation, the method of combining

the high-speed centrifugation, discontinuous sucrose gradient

ultracentrifugation, filtration, and following with

ultracentrifugation is recommended (Muraoka et al., 2020b;

Crescitelli et al., 2021; Ruan et al., 2021). Another possible

approach is utilizing collagenase (e.g. type I and III) to

dissociate cells from human and animal tissues before

centrifugation. This method is applicable for the tissues that

are sensitive to damage, such as brain tissues, primary and

TABLE 1 Characteristics of Ti-EVs.

Sources Whole tissues (diverse tumor tissues, brain, heart, e.g.) Crescitelli et al. (2020); Gallart-Palau et al. (2016); Muraoka et al. (2020c); Ge et al. (2019)

Tissue explants (ex vivo tumors, e.g.) Mincheva-Nilsson et al. (2016); Lunavat et al. (2017)

Other tissues (such as adipose and plaque, e.g.) Packer (2018); Zhang et al. (2017)

Advantages Carry more abundant biological information

Reflect the alteration of tissue microenvironment more accurately Asai et al. (2015); Jang et al. (2019)

Contain more original information than cell lines and body fluids

More traceable Jang et al. (2019); Park et al. (2016)

Application Reliable biomarkers for tumor diagnosis and prognosis Himbert et al. (2020); Huang et al. (2017); Liang et al. (2021)

Promising regulator of neurodegenerative disorder Guo et al. (2016); Arai et al. (2006)

Potential treatment for cardiac diseases Hausenloy and Yellon (2013)

FIGURE 1
Sources of tissue derived extracellular vesicles (Ti-EVs). Ti-
EVs have been isolated from brain, heart, liver, lung, kidney and
intestine tissues, as well as adipose tissue and platelet.
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metastatic tumor tissues (Vella et al., 2017; Crescitelli et al.,

2020). Figure 2 illustrates a promising universal method applied

for extracting Ti-EVs from diverse tissues (Crescitelli et al.,

2021). Besides, extraction of EVs from fresh tissues rather

than frozen tissues are more conducive to the purification of

Ti-EVs (Crescitelli et al., 2020). This may be because the freezing

process will cause damage to cells, resulting in cell rupture and

overflow of contents. Although some strategies for separating Ti-

EVs have been developed, researchers need to make appropriate

adjustments to the separation method based on the type of tissue

FIGURE 2
The promising universal method applied for extracting Ti-EVs from a variety of tissues. At first, fresh tissues are sliced into slices and
subsequently dissociated gently for 15–45 min at 37°C. Afterwards, a 70 μm pore-sized filter is used to remove tissue pieces. Centrifugation at a
speed of 300–10,000 g at 4°C is conducted to remove apoptotic bodies, remaining cells and debris and the supernatant pass through a 0.22 μm
filter to collect large EVs. Next, the filtrate is ultracentrifugated at a speed of 100,000–150,000 g at 4°C (>1 h) to collect small EVs. Finally, the
isolated Ti-EVs are resuspended with PBS and can be stored at −80°C for a long time.

TABLE 2 The role of Ti-EVs in diverse tumor tissues.

Tumors Value of Ti-EVs Key factors Potential application

Melanoma Jang et al. (2019) Abundant mitochondrial membrane protein MT-CO2, COX6c Predictor for the occurrence of
melanoma

Clear cell renal carcinoma Cianciaruso
et al. (2019)

Tumor-specific EVs CD147, CA9, CD70 Potential biomarker

Colorectal cancer Himbert et al, (2020) Associated with inflammation and lipid metabolism STING, TLRs, COX1,
TBXAS1

Modulating tumor immune
microenvironment

Gastric cancer Zhang et al. (2018) Inducing autophagy and NF-κB pathway HMGB1, TLR4 Reshaping tumor microenvironment

Pancreatic ductal adenocarcinoma Liang
et al. (2021)

Maintaining the hepatic fibrosis microenvironment, and
the liver metastasis

CD44v6, C1QBP Predictor for the prognosis and liver
metastasis

Urothelial bladder cancer Eldh et al.
(2021)

Associated with the cancer metabolic pathways PGK1, ALDOA, GSTP1 Potential biomarker
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samples because of the complexity and specificity of different

tissues.

4 Ti-EVs in human diseases

4.1 Ti-EVs in tumors

In human cancers, significant progress has been made in

the study of cell culture and bio-fluid derived EVs (Becker

et al., 2016; Weng et al., 2021; Namee and O’Driscoll, 2018;

Vaidyanathan et al., 2018). Despite that, increasing evidence

has revealed the critical roles of Ti-EVs in multiple tumors

(Table 2) (Cianciaruso et al., 2019; Himbert et al., 2020). For

example, after collecting 426 human samples, including tissue

explants, plasma, and other bodily fluids, the proteomic

profile of EVs was conducted to develop improved biopsy

method for the detection of cancers. Interestingly, the

comparison of Ti-EVs identified proteins that distinguish

tumors from normal tissues with a sensitivity of 90% and a

specificity of 94%, suggesting that Ti-EVs are reliable

biomarkers for the examination of cancer and

determination of cancer type (Hoshino et al., 2020).

Malignant melanoma is the most aggressive and life-

threatening skin cancer which originates from melanocytes

(Cheng et al., 2021). In melanoma, EVs isolated from tumor

tissues were found different from the classical cell line-derived

EVs. These Ti-EVs have more abundant mitochondrial

membrane proteins, and can be applied as potential

predictors for the occurrence of melanoma (Jang et al.,

2019). Zhang et al. (2018) demonstrated that tumor tissue-

derived EVs from gastric cancer could induce higher

expression of autophagy related genes ATG7 and BECN1,

as well as the activation of NF-κB signaling pathway in

neutrophils than EVs derived from non-cancerous tissues.

Furthermore, neutrophils treated with EVs isolated from

gastric cancer tissues promoted the migration of gastric

cancer cells more effectively. Pancreatic ductal

adenocarcinoma (PDAC) is a malignant type of pancreatic

cancer (Siegel et al., 2021). Because of the insufficient

understanding about the occurrence of liver metastasis in

PDAC, the options for the therapeutic treatment of PDAC

liver metastasis are very limited (Garrido-Laguna and

Hidalgo, 2015; Huang et al., 2017). Nevertheless, the EVs

derived from PDAC have been confirmed to mediate the

crosstalk between the primary PDAC cells and hepatic

satellite cells (HSCs). PDAC-EVs carrying CD44v6/C1QBP

are essential for maintaining the hepatic fibrosis

microenvironment and the liver metastasis of PDAC,

indicating that EVs-CD44v6/C1QBP are potential

biomarker for the prediction of the prognosis and liver

metastasis of PDAC patients (Liang et al., 2021). Muscle-

invasive urothelial bladder cancer (UBC) is a malignancy

characterized by poor prognosis and high morbidity

(Chamie et al., 2013). In order to explore new appropriate

biomarkers for the occurrence and development of UBC, the

Ti-EVs were extracted from UBC tumor tissues and matched

distant tissues for further proteomics analysis. The results

showed that 69 most abundant proteins profiled in tissue-

derived EVs, regardless of the sites close to or away from the

original tumor, were closely associated with the cancer

metabolic pathways and poor prognosis (Eldh et al., 2021).

These findings confirm the release of malignant EVs in UBC

even though the pathologically undetectable tumor type, thus

emphasizing the necessity of early radical cystectomy for UBC

patients. At present, suitable diagnostic biomarkers for clear

cell renal carcinoma (ccRCC) are still inadequate (Wang et al.,

2018). To identify appropriate tumor-specific exosomal

markers in ccRCC, the expression of CD147 (a pan-cancer-

specific protein), CD70 and CA9 (the well characterized

proteins in ccRCC) (Jilaveanu et al., 2012; Li et al., 2017;

Baniak et al., 2020; Peng et al., 2020) in EVs were examined.

Highly expressed CA9, CD70, and CD147 were found in Ti-

EVs from tumor tissues compared to that in normal tissues.

Therefore, CA9, CD70, and CD147 might function as

potential biomarkers for the identification of tumor-specific

EVs in ccRCC (Himbert et al., 2020).

Tumor metastasis is a very challenging problem. Recent

evidence suggests that there is a complex communication

mechanism between primary tumors and metastases,

whereas primary tumors can influence the

microenvironment of distant organs to induce metastasis

(Kaplan et al., 2005; Hara et al., 2017; Ji et al., 2020). The

microenvironment modified by primary tumors is referred as

the metastatic niche which is characterized by vascular

permeability, extracellular matrix remodeling, bone

marrow-derived cells recruitment, angiogenesis, and

immunosuppression (Dong et al., 2021; Garcia-Silva et al.,

2021). EVs secreted by primary tumors are pivotal mediators

during the formation of metastatic niche by delivering agents

with tumor characteristics to the recipient cells in distant

organs (Li et al., 2019a; Lee et al., 2019; Mashouri et al., 2019).

For example, the EVs derived from ovarian primary tumor

directly promote circulating tumor cells homing,

colonization, and outgrowth within the metastatic niche

but inhibit the antitumor immune response of host

mircoenvironmentt (Feng et al., 2019). In salivary adenoid

cystic carcinoma, primary tumor derived EVs activate lung

fibroblast and induce the formation of lung metastatic niche

which subsequently accelerate the lung metastasis (Kong et al.,

2019). Moreover, it was found that EVs derived from highly

metastatic murine breast cancer were primarily absorbed by

the lungs of mice, and the T-cell proliferation and NK cell

cytotoxicity were inhibited obviously. This may explain why

the microenvironment in distant organs are always

immunosuppressive (Wen et al., 2016; Patel et al., 2018). In
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summary, the Ti-EVs derived from tumors are tightly

involved in the progress and metastasis of cancers, and

they are potential targets for developing new diagnostic and

therapeutic methods for tumors.

4.2 Ti-EVs in other diseases

4.2.1 Ti-EVs in neurodegenerative disorders
Neurodegenerative disorders are a group of central nervous

system (CNS) diseases related to brain function degeneration,

including Alzheimer’s Disease (AD), Parkinson’s Disease (PD),

Amyotrophic Lateral Sclerosis (ALS) and Huntington’s Disease

(Gao et al., 2021). Alzheimer’s disease (AD) is the most common

neurodegenerative disorder, which is characterized by the

amyloid plaques and the intracellular accumulation of

neurofibrillary tangles (NFTs) in brain tissue (Goedert et al.,

1988; Duyckaerts et al., 2009). The role of EVs in AD has

been widely studied, however, the EVs from brain tissues have

not been well explored (Hill, 2019; Nogueras-Ortiz et al., 2020).

Tau and Aβ oligomers are the most AD related pathogenic

proteins which have also been detected in brain tissue derived

EVs (BDEVs), indicating that BDEVs might participate in the AD

pathogenesis (Guo et al., 2016; DeLeo and Ikezu, 2018). With the

deepening of research, a quantitative proteomic analysis of the

BDEVs isolated from AD patients and control ones was

conducted. The proteomic analysis elucidated that ANXA5,

GPM6A, VGF, and ACTZ could distinguish AD EVs from

controls with high accuracy, thus providing novel biomarkers

for AD (Muraoka et al., 2020c). Moreover, by isolating BDEVs

from the frontal cortex of AD patients and control subjects, Cheng

et al. (2020) found that BDEVs derived from AD patients contain

more disease-associated miRNAs. Although there are few studies

about the interplay of RNAs in BDEVs, the above findings will be

beneficial for clarifying the early pathological changes of AD.

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative

disease caused by the deposition of ubiquitinated and

aggregated proteins in lewy body-like hyaline, or skein-like

inclusions in the upper and lower motor neurons cytoplasm

(Taylor et al., 2002; Arai et al., 2006). In order to explore the

potential roles of Ti-EVs in ALS, the motor cortex derived EVs

(MCEVs) were isolated from the brain tissues of ALS patients and

neurological controls to perform proteomic analysis. As the result

of proteomic analysis shown, 16 proteins (including several stress

granule dynamics related proteins, such as STAU1 and DHX30)

were found to be differentially expressed in ALS MCEVs

compared to that of controls, suggesting that these MCEVs are

promising targets for treating ALS. Moreover, the finding of these

proteins in MCEVs reveals that ALS related stress particles might

be tightly involved in the package of MCEVs thereby highlighting

the indispensability of EVs in the pathogenesis of ALS (Vassileff

et al., 2020). Parkinson’s Disease (PD) is an important member of

neurodegeneration, and some studies have elucidated the role of

EVs in PD (Leggio et al., 2021; Huang et al., 2022). However, the

research on brain derived EVs in PD is still insufficient, and more

in-depth research is necessary. In addition, further studies are

needed to detect these brain tissue-EVs relevant proteins and

RNAs in EVs from CSF and blood, so as to evaluate their potential

value as diagnostic markers.

4.2.2 Ti-EVs in cardiac disease
In acute myocardial infarction (AMI), the reperfusion can

induce irreversible myocardial injury, which is also known as

myocardial ischemia-reperfusion (IR) injury (Hausenloy and

Yellon, 2013). To date, the underlying mechanism of IR injury

remains unclear. As reported, the cardiac IR induced EVs could

accelerate IR injury. A novel IR-EVs-miR-155-5p-

M1 polarization pathway was found in heart tissue during the

progression of IR, shedding lights on the therapeutic potential of

cardiac Ti-EVs for the treatment of IR injury (Ge et al., 2021). By

establishing mice IRmodel, Zhou et al. extracted Ti-EVs from the

IR heart tissues, and illustrated a specific profile of circRNAs in

Ti-EVs, providing evidences about the role of Ti-EVs in the

development of cardiac IR (Ge et al., 2019). When the acute

myocardial infarction occurs, a number of inflammatory cells

will be rapidly recruited to the ischemic areas, leading to the

massive release of cytokines, soluble chemokines, and growth

factors (Silvestre et al., 2013). By comparing the Ti-EVs isolated

from the heart tissues of coronary artery ligation and sham mice.

It was found that AMI increased the release of cardiac EVs which

were immediately absorbed by infiltrating monocytes and then to

modulate the local inflammatory responses (Loyer et al., 2018).

These findings indicated that the local Ti-EVs formation in the

infarcted heart are closely related to the inflammation after

myocardial infarction.

5 Other origins of Ti-EVs

5.1 Adipose tissue

Adipose tissue (AT) has been regarded as an endocrine

organ, which can secrete adipokines, such as proinflammatory

cytokines, anti-inflammatory cytokines and metabolism

regulatory cytokines (Cui et al., 2017; Packer, 2018; Wei et al.,

2020). Adipose tissue can release EVs and these EVs are

considered to be the main source of circulating EVs (Wei

et al., 2020). In adipose tissue-secreted EVs (AT-EVs),

abundant miRNAs have been detected, suggesting that AT-

EVs may convey intercellular information and signals

(Thomou et al., 2017; Lee et al., 2021). As reported before, the

obese mice could release enriched AT-EVs (derived from

perivascular adipose tissues, PVAT) which packed miR-221-

3p. The receipt of these EVs in lean mice aroused the

response of inflammation in PVAT and vascular phenotypic

switching in abdominal aorta, highlighting the importance of
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AT-EVs in cellular crosstalk to participate obesity-associated

inflammation (Li et al., 2019b). Adipose tissue-derived stem

cells (ADSCs) can internalize the EVs derived from adipose

tissues and induced adipogenesis. Mechanically, AT-EVs

reduced the expression of adipogenesis related protein

WISP2 in ADSCs by transferring miR-450a-5p to them

(Zhang et al., 2017). Brown adipose tissue (BAT) is a major

kind of adipose tissue. Interestingly, the sEVs secreted by BAT

are involved in exercise cardioprotection via delivering the

cardioprotective miRNAs into the heart. This result showed

the BAT-sEVs are critical mediator in the interaction between

BAT and cardiomyocyte (Zhao et al., 2022). Besides, AT-EVs

obtained from gestational diabetes mellitus (GDM) and normal

glucose tolerant (NGT) have been confirmed to have differently

expressed proteins, which may contribute to fetal overgrowth in

GDM (Jayabalan et al., 2019).

5.2 Plaque

The stability and severity of the plaque is closely related to the

crosstalk between itself and the microenvironment. Electron

microscopic analysis of ultrathin sections has verified the

presence of EVs in human atherosclerotic plaque, indicating

that lesional smooth muscle cells (SMCs) and endothelial cells

within the plaque are able to release EVs into the extracellular

space. This finding provides a novel aspect of intercellular

communication in plaque environment (Perrotta and Aquila,

2016). In another study about metabolic syndrome (MetS), EVs

isolated from the atherosclerotic plaques of mouse and human

both contained abundant Rap1, which is crucial for the

inflammatory response of vascular (Metrich et al., 2010).

Researchers investigated the excessive production of Ti-EVs

enriched in Rap1 could promote the development of

atherosclerosis in MetS by inducing the remodel and

inflammation of vascular (Perdomo et al., 2020). Nicotine is

the cigarette smoke’s main component which could directly

stimulate plaque cell migration and proliferation as well as the

communication of cytokines between macrophages and VSMCs

via EVs, thus accelerating atherogenesis (Liu et al., 2017; Ren

et al., 2018). Furthermore, nicotine could facilitate atherosclerotic

lesion progression and cause plaque derived EVs to remain in

vivo, which might mediate the migration and proliferation of

VSMC (Zhu et al., 2019).

5.3 Cochlea

In the inner ear, cochlea is a vital organ that responsible for

the auditory signal transduction. Cochlea develops during the

period of embryonic day 9 to postnatal day 21 (Wright et al.,

2003; Burns et al., 2012). Both the detection of sound waves and

the transmission of sound information to the brain are relied on

cochlear hair cells (HCs) (LeMasurier and Gillespie, 2005). In

spite of the widely research about EVs in cancer and some other

diseases, there are few studies to reveal the role of EVs in cochlea.

Lately, (Jiang et al. (2022) has isolated cochlear tissue-derived

EVs from mice of different ages to analyze and characterize the

protein and miRNA contents of EVs. More than five hundred

miRNAs and five thousand proteins have been detected in the

EVs derived from cochlear. Among them, about two hundred

miRNAs and three thousand proteins are expressed differentially

at different periods, which are probably involved in the

maturation of HCs. These findings authenticated that EVs are

present in the cochlea tissues and important for the development

of auditory system. Meanwhile, these EVs-miRNAs and proteins

are promising novel targets for studying the mechanism of

cochlear development.

6 Conclusion and future directions

Compared with EVs isolated from cell culture supernatant

and body fluids, Ti-EVs may play a more crucial role in

different sorts of diseases. Due to Ti-EVs are located in the

tissue microenvironment, they have abundant cell crosstalk

information and can authentically reflect the

intercommunication between cells within tissue

microenvironment. Moreover, the contents of Ti-EVs are

relative pure because of its single tissue source. Based on

these advantages, Ti-EVs have attracted increasing attention

and have been studied a lot in basic research and clinical

applications. Although some progress has been achieved, there

are still some challenges and limitations needed to overcome.

Firstly, Ti-EVs isolated by existing methods are often

contaminated by EVs released from other broken cells.

Therefore, it is urgent to develop optimal techniques to

isolate and purify Ti-EVs. Furthermore, the tissue

microenvironment contains diverse cell types, to elucidate

the accurate original cell type of Ti-EVs will provide deep

understanding for the intercellular communication within

microenvironment. To further investigate the chemical,

physical, and biological characteristics of Ti-EVs may help

us distinguish Ti-EVs from “impurities”. Secondly, some

researches have demonstrated the potential of Ti-EVs to be

diagnostic biomarkers, however, the isolation methods are too

complex to apply in clinical practices and the exploration of

Ti-EVs in the pathophysiological process of various diseases

are still in the initial stage. How to balance the purity and

convenience of Ti-EVs extraction is a major challenge in the

future. Thirdly, considering the spatiotemporal specificity of

tissue development, to illustrate the spatiotemporal profiles of

Ti-EVs in all kinds of tissues will help us understand the

development process deeply.

Although the widely clinical application of EVs is still

difficult because of the problems in EVs preparation,
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transmission, targeting and retention, some achievements

have been made. A variety of studies have shown diverse

biomaterials for delivering EVs efficiently, including

implantable scaffolds (Jiang et al., 2021b), injectable

hydrogels (Wong et al., 2020), and chemical crosslinking

(Heirani-Tabasi et al., 2021). Modifying EVs to meet

different needs is another strategy. These engineered EVs

can carry cell targeted ligands and a high level of

specific agents, which are expected to improve their

therapeutic effects, especially in multiple tumors (Zhan

et al., 2020; Zhao et al., 2020; Wong et al., 2021). In

addition, to insert imaging molecules in engineered EVs is

an appropriate method for determining the metabolism and

distribution of EVs in vivo (Luan et al., 2017; Liang et al.,

2021).

Without a doubt, a deeper comprehension of Ti-EVs biology

and the development of standardized techniques for Ti-EVs

quantification, extraction and storage, molecular

characterization, and potency assays will greatly advance the

prospects of Ti-EVs-based diagnostic and therapeutic

applications in the future. Challenges do exist at present, but

with the improvement of technology and development of

research, these difficulties will eventually be overcome. The

clinical application of Ti-EVs will gradually come true.
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