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Background: The CCN family of stromal proteins is involved in the regulation of

many important biological functions. However, the role of dysregulated CCN

proteins in lower-grade glioma (LGG) remain less understand.

Methods: The clinical significance of the CCN proteins was explored based on

RNA-seq profiles from multiple cohorts. A CCNScore was constructed using

LASSO regression analysis. The PanCanAtlas data andMEXPRESS database were

employed to elucidate molecular underpinnings.

Results: The expression of CCN4 was associated with poor prognosis in LGG.

The CCNScore (CCN1 = 0.06, CCN4 = 0.86) showed implication in prognosis

prediction, subtype assessment and therapy selection. The gene mutation

pattern of the high-CCNScore group was similar with glioblastoma,

including EGFR, PTEN, and NF1 mutation frequently. Besides, the high-

CCNScore group was comprised of samples mainly classic-like and

mesenchymal-like, had lower methylation levels, higher stemness, higher

inflammation, higher levels of extracellular matrix remodel and dysfunction

of metabolic pathways. On the other hand, the low-CCNScore group consisted

mainly of IDH-mutation LGG, and was characterized by TP53, CIC, and ATRX

gene mutations, hyper-methylation status, lower stemness, lower proliferation,

immune quietness and low extracellular matrix stiffness.

Conclusion: In summary, these results outlined the role of CCN family in LGG

and provided a potential and promising therapeutic target.
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Introduction

Lower-grade glioma (LGG) accounts for 43.2% of central

nervous system (CNS) glioma. Despite standard treatment, most

patients experience tumor recurrence or progression (Weller

et al., 2021). Recently, immunotherapy is revolutionizing

cancer treatment, but seem meet its Waterloo in the treatment

of glioma (Sampson et al., 2020). The reason for this

phenomenon may be related to the unique tumor

microenvironment (TME) of glioma, including the specific

resident cell type, the extracellular matrix (ECM) composition

and metabolic distinctions (Quail and Joyce, 2017). Therefore,

identification of therapeutic targets from the unique glioma TME

was promising. Distinct from other collagen- and laminin-rich

tissues, the structural ECM of the brain is uniquely composed of

glycoproteins, proteoglycans, and glycosaminoglycans (Winkler

et al., 2020). Stiff ECM lead to increased hypoxia and promotes

aggressiveness of glioma, which in turn aggravate the ECM

stiffness and was associated with the radiotherapy and

immunotherapy tolerance (Chaudhuri et al., 2020). Therefore,

detailed characterizing the structural ECM remodeling and

potential molecular mechanism are warrant.

Stromal cell proteins (SCPs), which are non-structural ECM,

can remodel the tissue by binding to structural ECM. SCPs are

crucial regulators of ECM homeostasis and are frequently found

to be dysregulated in various malignancies (Thakur and Mishra,

2016). Unlike the tumor cells themselves, these SCPs hardly

mutate as the tumor progresses (Valkenburg et al., 2018).

Therefore, targeted therapy against SCPs is attractive. The

CCN family, an important component of the secretory ECM-

related protein family, consists of six family members, Cyr61/

CCN1 (cysteine-rich 61), CTGF/CCN2 (connective tissue

growth factor), Nov/CCN3 (nephroblastoma overexpressed),

and Wnt pathway proteins (WISP1/CCN4, WISP2/CCN5, and

WISP3/CCN6) (Jun and Lau, 2011). The family members share

40%–90% homologous sequences, and the common structure

contains an N-terminal secretory signal peptide and four

functional domains. Based on their multifunctional four-

module structure, the CCN family is involved in vital

activities such as cell proliferation, differentiation, chemotaxis,

adhesion, angiogenesis, and ECM formation, and is inextricably

associated with tumor progression (Perbal, 2004). Additionly, a

recent research has revealed dual roles for WISP1 in maintaining

glioma stem cells (GSCs) as well as tumor-associated

macrophages (Tao et al., 2020). However, the critical roles of

CCN proteins with broad functions in LGG and more possible

mechanisms of CCN proteins in cancer needs further

investigation.

To fill this gap, the clinical implication of the CCN family was

explored, including the relationship with patient prognosis,

pathological classification, histological subtype, molecular

subtype, and clinical response. Next, the CCNScore was

constructed to create a clinically feasible riskscore system in

predicting the prognosis for patients with LGG and to guide the

selection of treatment. Then, the relationship between CCNScore

with the genomic and epigenomic features in LGG and with

tumor malignant phenotypes including stemness, genetic

instability and metabolic disorders etc was explored.

Moreover, the effects of CCNSore on TME, including on

stromal cells, ECM, immune cells, immune molecules,

immune antigen and its presentation and immune escape was

elucidated. Finally, multi-omics assay was employed to overview

the regulation of the CCN family in LGG, including gene

mutations, copy number variations (CNV), DNA

methylations, transcript number, promoter information and

protein interactions. Our study highlighted the role of CCNs

in LGG and provided a promising therapeutic target for LGG.

Materials and methods

Preparation of data

RNA-seq expression profiles and corresponding

demographics were retrieved from TCGA (The Cancer

Genome Atlas, https://portal.gdc.cancer.gov/, and CGGA

Chinese Glioma Genome Atlas, http://www.cgga.org.cn/

database. RNA-seq data of normal cerebral cortex were

obtained from the GTEx database (https://www.gtexportal.

org). Data were screened for origin in Brain - Cortex and

Brain - Frontal Cortex (BA9). Clinical profiles and RNA-seq

data of pan-cancer were obtained from the UCSC Xena database

(http://xena.ucsc.edu/). The remaining clinical profiles,

molecular subtypes, genomic signatures and multi-omics data

of LGG and pan-caner was obtained from PanCanAtlas

Publications (https://gdc.cancer.gov/about-data/publications/

pancanatlas). Cancer-associated promoter genes were

downloaded from the Cistrome Cancer database (http://

cistrome.org/CistromeCancer/). In addition, batch effects of

data from different databases were removed using

“normalizeBetweenArrays” function of the R package “limma”.

For the CCN family, single nucleotide variants (SNV) data

were obtained from the TCGA database, CNV data were

obtained from the UCSC Xena database, and methylation

profile, transcript number and clinical traits were obtained

from the MEXPRESS database (https://mexpress.be/index.

html). The protein-protein interaction (PPI) network was

generated from the STRING database (https://www.string-

db.org).

Multi-omics analysis

The expression of CCN family genes was compared between

207 normal cerebral cortex tissues and 529 TCGA-LGG samples

and 590 CGGA-LGG samples using the R package “limma”.
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Differences in gene mutation types and frequencies were

summarized and exhibited using the R package “maftools”.

Gene location, amplification and deletion, and corresponding

frequencies plots were exhibited in the circle plot. Cor-

value >0.2 and p-value <0.001 were set as the cutoff of screen

candidate cancer promoter genes and the Sankey diagram was

drawn using the “ggalluvial” package.

Construction of CCNScore

We constructed a riskscore model based on the CCN family

with the “LASSO” regressionmethod. The 10-fold cross-validation

was used to verify the accuracy of the model. After 1000 iterations,

we calculated the riskscore, also known as CCNScore, quantify the

prognostic impact of differentially expressed CCN family

genes. CCNScore was calculated by the following equation:

CCNScore � n
i � 1

Coef(CCNsi)* exp (CCNsi), where Coef

refers regression coefficient (lambda min) and exp indicates
gene expression. When constructing the CCNScore, 70% of the
TCGA samples were randomly selected as the train set and the
remaining 30% as the test set. In addition, data from CGGA were
not involved in the construction of the CCNScore and were
therefore used as external validation set.

Survival and clinical traits correlation
analysis

The optimal cutoff values of CCNScore were calculated using

the “surv_cutpoint” function of the “survminer” package for

sample stratification. Overall survival (OS), progression-free

interval (PFI), disease-specific survival (DSS) and disease-free

interval (DFI) were used as outcome indicators, respectively. The

R packages “survial” and “survminer”were employed for survival

analysis. In addition, univariate and multivariate cox regression

analysis were employed to determine the independent predictive

significance. The “timeROC” package was used to plot ROC

curves for their prognostic accuracy analysis, and the “rms”

package was used to construct a nomogram.

Functional enrichment and single-sample
gene-set enrichment analysis

The “clusterProfiler” package was used to perform enrichment

analysis based on gene ontology (GO) and KEGG terms. Terms

with FDR q values <0.05 were considered significant. The single

sample gene set enrichment analysis (ssGSEA) analysis was

performed using the R package “GSVA”, and 29 immune

signatures were used to detect immune phenotypes, including

cell types, functions and pathways (Charoentong et al., 2017). To

discover the underlying mechanisms in different subgroups,

typical biological processes were quantified by ssGSEA. We

introduced ten oncogenic pathway gene sets, tumor

microenvironment core pathway gene sets, metabolic pathway

gene sets, DDR gene sets, extracellular matrix structural

component sets, immunogenic death, and EMT gene sets into

our analysis, as shown in Supplementary Table S1.

Acquisition of epigenetic data and
stemness indices

Pan-cancer methylation subtype (Hoadley et al., 2018) and

pan-glioma methylation subtype (Ceccarelli et al., 2016) were

obtained from previous studies. Glioma stem cell markers were

obtained from published single cell-seq files (Suva and Tirosh,

2020). The TCGA team used the “OCLR” algorithm to quantify

the stemness of the tumor samples and obtained two stemness

indices, in which the mRNA expression-based stemness index

(mRNAsi) reflects the gene expression characteristics of stem

cells and the methylated DNA-based stemness index (mDNAsi)

reflects the epigenetic characteristics of stem cells. Epigenetic

regulation-based mRNAsi and mDNAsi (EREG-mRNAsi and

EREG-mDNAsi) were obtained by reconstructing the gene

regulatory network from methylation and transcriptome data

using the “ELMER” package and using the identified features as

input to the “OCLR” (Malta et al., 2018).

DNA damage signature

DNA damage-related signatures were collected from

Genomic Data Commons-panimmune, as shown in

Supplementary Table S1. In this study, tumor purity,

leukocyte fraction (LF), cancer cell ploidy, loss of

heterozygosity (LOH), and CNV burden were introduced to

quantify DNA damage. The homologous recombination defect

(HRD) score contained a composite score and a component score

(Knijnenburg et al., 2018). Copy number variants and mutations

were integrated to quantify intra-tumor heterogeneity (ITH)

according to clonality by the “ABSOLUTE” algorithm. The

aneuploidy score was formulated as the sum of the deleted or

amplified chromosome arms (Taylor et al., 2018). The

enrichment level of DNA damage-related signatures in each

sample was finally evaluated by the ssGSEA analysis.

Analysis of tumor microenvironment

Information on pan-cancer immunophenotype, immune

molecules including stimulatory factors, inhibitory factors,

HLA, immune checkpoint and antigenic peptide load were

obtained from previous study (Thorsson et al., 2018).
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FIGURE 1
Article flowchart.
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FIGURE 2
Expression and clinical value of the CCN family in LGG. (A) Heatmap of differential expression analysis of CCN family between normal cortex
(n= 207) and TCGA-LGG cohort (n = 529). (B–G) Kaplan-Meier survival analysis was performed using the optimal cutoff value to distinguish the CCN
genes between high and low subgroups in the TCGA-LGG cohort. (H–M) Correlation heatmap of CCN family expression versus clinical traits in the
TCGA-LGG cohort using the MEXPRESS database. Each column in the graph represents a sample, while each row represents a variable. OS,
overall survival. For all experiments, mean rank, *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 3
Creation and validation of CCNScore. (A,B) LASSO regression was performed, calculating the minimum criteria. (C–F) Overall survival analysis
was performed of all TCGA-LGG set (C) and two robust clusters -TCGA train set (D) and TCGA test set (E), as well as CGGA-LGG cohort (F) to validate
CCNScore. (G–I) Survival analysis was performed using CCNscore, with DFI (G), PFI (H) and DSS (I) as endpoint in the TCGA-LGG cohort. (J,K)
Stratified survival analysis was performed according to radiotherapy (J), chemotherapy (K) and CCNscore. (L) Risk curve of CCNscore
was plotted using the TCGA-LGG cohort. (M,N) ROC curves indicated the risk prediction ability of CCNScore at 1, 3, 5, and 6.5 years in the TCGA-
LGG cohort (M) and CGGA-LGG cohort (N). (O,P) ROC curves showed the accuracy of CCNscore vs. other clinical traits to predict prognosis at 1 and

(Continued )
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ESTIMATE is a new gene expression signature-based algorithm

that analyzes the infiltration fraction of immune and stromal cells

based on the RNA-seq expression profile. In addition, the

“CIBERSORT” algorithm deconvolve the infiltration of

22 immune cells in the tumor microenvironment. We used

the “xcell” package to calculate the content of stromal cells in

tumor samples. The TISCH (http://tisch.comp-genomics.org/

home/) database was employed to analyze the origin of

CCN4 at single-cell resolution.

Immune escape

The association between the CCNScore and LGG

immune damage and invasion was analyzed through the Tumor

Immune Dysfunction and Exclusion (TIDE) (http://tide.dfci.

harvard.edu/). TIDE predicts the efficacy of immune checkpoint

inhibitors through a comprehensive analysis of several tumor

expression profiles and can determine the presence of cancer-

associated fibroblast (CAF) and myeloid-derived suppressor cell

(MDSC) inhibiting T cell infiltration in immune-cold tumors.

Statistics

All statistics were performed using R software (version 4.0.2).

Wilcoxon test and Kruskal-Wallistest were employed to compare

continuous variables between groups. Chi-square test and fisher’s

exact test were used to compare composition ratios. Pearson

correlation test was performed for co-expression analysis and

correlation analysis. Survival curves were plotted using the

Kaplan-Meier (K-M) analysis and log-rank test was used to

detect survival differences. Among the results calculated by all

statistical methods above, p < 0.05 was considered statistically

significant. Fisher’s exact test was used to calculate and identify

driver genes for the High- and Low-CCNScore subgroups, and

p < 0.05 was considered significant.

Results

Validation of the value of CCN proteins in
lower-grade glioma

A brief pipeline was represented as Figure 1. First, to

identify the dysregulation of CCN in LGG, a differential

analysis was conducted. Except CCN6, the expression of

CCNs were significantly different between tumor and

normal. CCN2 and CCN4 were highly expressed in tumor,

and CCN1, 3, 5 were increased in the normal sample. These

findings were validated by the CGGA-LGG cohort

(Supplementary Figure S1A), indicating the dysregulation

of CCNs in LGG. Then, the prognostic significance of CCN

proteins was explored. Using the optimal cut-off value,

significant survival differences was found in all genes

except CCN3, where increased expression of CCN1, CCN2,

and CCN4 predicted shorter survival, and increased

expression of CCN5 and CCN6 predicted longer (Figures

2B–G, Supplementary Figure S1B–G). The relevance

between CCN genes with clinical characteristics was also

explored. Almost all CCN proteins were associated with

pathological grade and first treatment response

(Figure 2H–M). Notably, CCN4 was correlated with almost

all clinical traits with prognostic impact. In addition, we found

significant differences in the distribution of almost all CCN

genes in supervised DNA methyaltion subtype, IDH/codel

subtype and IDH/codel/TERTp subtype in TCGA database as

well as in IDH/codel subtype, transcriptome subtype, primary

and recurrent subtype of CGGA database, with similar

distribution patterns for CCN1, CCN2, and CCN4. The

expressions of CCN1, CCN2, and CCN4 were significantly

increased in the IDH-wt group. In the IDH, 1p19q combined

with TERT promoter subtype, we found that the expression of

CCN4 was the highest in the TERTp-mut group, while

CCN1 and CCN3 were mainly higher in the all negative

group. This indicated that CCN4 was closely related to

IDHwt and TERT promoter, which affected the prognosis

of glioma. In supervised DNA methyaltion subtype, we

found that CCN1, CCN2, and CCN4 were more highly

expressed in classic-like and mesenchymal-like groups

with poor prognosis than other groups. However, the

expression of CCN1, CCN2, and CCN4 in codel group and

G-CIMP-high group was significantly decreased. In addition,

through CGGA data analysis, we found that CCN1, 2, 3,

and 4 were all enhanced in relapsed glioma. CCN6 is the

opposite. (Supplementary Figure S1H–M). In addition,

CCN4 was an independent prognostic risk factor in

univariate, multivariate cox analysis (Supplementary Figure

S1N–R). In summary, these results suggested that CCN

family genes were dysregulated in LGG and were associated

with malignant clinical phenotypes and poor prognosis,

especially CCN4.

FIGURE 3 (Continued)
3-year in the TCGA-LGG cohort. (Q–S) Nomogram based on CCNscore, age, gender and WHO grade (Q). ROC indicates the ability of
CCNscore to predict prognosis (R) and the corrected plot indicates the accuracy of predictive ability (S). OS, Overall survival. DFI, disease free interval.
PFI, progression free interval. DSS, disease-specific survival. **p < 0.01, ***p < 0.001.
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FIGURE 4
Relationship between CCNScore and clinical traits. (A) Correlation heatmap of CCNScore versus clinical traits in the TCGA-LGG cohort.
(B) Correlation heatmap of CCNScore versus clinical traits in the CGGA-LGG cohort. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 5
Relationship between CCNScore and the development of LGG. (A,B) Bubble plot shows the driver genes of Low-CCNScore (A) and High-
CCNScore (B) groups. (C) Forest plot shows the differential mutation patterns in the Low-CCNScore and High-CCNScore groups. (D,E) Pan-cancer
methylation subtypes (D) and Pan-glioma methylation subtypes (E) of Low-CCNScore and High-CCNScore groups. (F–H) Differences in stemness
index (F), markers of glioma stem cells (G), and EMT versus MET phenotype (H) between Low-CCNScore and High-CCNScore groups. (I–M)
Differences in DNA damage repair pathways (I), copy number variation burden (J), aneuploidy (K), loss of heterozygosity (L) and intratumor
heterogeneity (M) between Low-CCNScore and High-CCNScore groups. (N)Differences in themetabolic levels of sevenmajor substances between

(Continued )
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Construction and validation of CCNScore

LASSO regression analysis of CCNs was performed on the

basis of the TCGA-LGG cohort to constructed a CCNScore. As a

result, CCN1 and CCN4 were identified and their coefficients

were calculated (CCN1 = 0.06, CCN4 = 0.86), characterizing

CCNs in the most concise pattern (Figures 3A,B). Samples were

classified into high-CCNScore subgroup and low-CCNScore

subgroup based on the best cut-off score. Survival analysis

showed that the high-CCNScore subgroup had worse overall

survival (OS) (Figures 3C–F). Meanwhile, as LGG patients

usually relapse, we also used disease-free interval (DFI),

progression-free interval (PFI) and disease-specific survival

(DSS) as clinical endpoints, and similar results were observed

the high-CCNScore subgroup predicted a poor outcome (Figures

3G–I). Despite, our results showed the in the low-CCNScore

subgroup, samples without radiotherapy had better outcome

than those received radiotherapy (Figures 3J,K), suggesting

that taking the CCNScore into account may further benefit

patients. The risk-curve also indicated that significantly more

patients died in the high-CCNScore subgroup (Figure 3L).

Moreover, we did ROC analysis to evaluate the predictive

accuracy of the CCNScore. In predicting 1-, 3-, 5-, and 6.5-

year survival, CCNScore consistently showed a AUC >0.65
(Figure 3M,N), which performed better than other clinical

traits (Figure 3O,P). Finally, a prognostic model was

constructed based on the corresponding indictors, with the

AUC values reached 0.857,0.857, and 0.787 in predicting 1-,

3-, and 5-year survival (Figure 3Q,S).

Relationship between CCNScore and
multiple clinical traits

We analyzed the relationship between the CCNScore and

multiple clinical traits of LGG. The results showed that

all except gender were correlated with the CCNScore,

and the higher the CCNScore, the more concentrated the

distribution of malignant phenotypes and the less

sensitive to treatment, as validated by CGGA (Figures

4A,B). Moreover, we analyzed the relationship between

CCNScore and LGG molecular phenotypes and found

that the high-CCNScore group significant concentrated in

IDHwt, Classic-like, mesenchymal-like, IDH1mut/

TERTmut, MGMT promoter unmethylated, gain chr7and

loss chr 10, gain chr 19/20, TERT telomere maintenance,

TERT promoter mutant subgroup, as well as NF1mut,

PTENmut and EGFRmut subgroup, showing a GBM-like

molecular signature. Together, these results indicated

that the high-CCNScore subgroup was associated with

malignant phenotypes of LGG.

Genomic and epigenetic phenotype of
CCNScore-based subgroups

The genomic alterations underline CCNScore-based group

was explored. Both groups had IDH mutations as

putative tumor initiating factors, but the secondary driver

diversed (Figures 5A,B). Interestingly, the gene mutation

pattern of the two subgroups was different, with genes

mutations of EGFR, PTEN, and NF1 enriched in the high-

CCNScore group, and IDH1, CIC, TP53 and ATRX in the low-

CCNScore group (Figure 5C). Similar results were obtained

from waterfall plots (Supplementary Figure S2A,B).

Thereafter, the association between CCNScore and

significant mutant genes were identified, almost identical to

the above results (Supplementary Figure S2C–J). In summary,

the highCCNScore subgroup had a GBM-like mutation

pattern.

Epigenomic dysregulation is also an important factor

driving cancer development and progression. We found

that the Low-CCNScore group mainly contained Type 1,

while the High-CCNScore group mainly contained Type

16 of the pan-cancer methylation subtype (Figure 5D).

Previous studies have shown that Type 1 was characterized

by ATRX, TP53, and IDH1 mutations, and Type 16 contained

mainly EGFR-driven LGG with PTEN mutation, in line with

the above genomic results (Hoadley et al., 2018). Next, we

found the Low-CCNScore subgroup was significantly enriched

in the LGm2 and LGm3 groups, while the high-CCNScore

subgroup had significantly higher numbers in the LGm4,

LGm5, and LGm6 groups (Figure 5E). Previous studies

have shown that the LGm1/LGm2/LGm3 groups were

driven by IDH mutation and showed genome-wide hyper-

methylation, while the LGm4/LGm5/LGm6 groups were IDH

wild type (Ceccarelli et al., 2016). In summary, our results

showed that the low-CCNScore subgroup was characterized by

high methylation level, and the high-CCNScore group was the

opposite.

FIGURE 5 (Continued)
the Low-CCNScore and High-CCNScore groups. (O) Differences in 10 oncogenic pathways between Low-CCNScore and High-CCNScore
groups. BER, Base excision repair. NER, nucleotide excision repair. DR, direct damage reversal/repair. MMR, mismatch repair. HR, Homology-
dependent recombination. NHEJ, non-homologous end joining. FA, Fanconi anemia. TLS, translation DNA synthesis. DS, damage sensor. For all
experiments, mean rank, *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 6
Relationship between CCNScore and TME of LGG. (A) Differences in extracellular matrix components of TME in Low-CCNScore and High-
CCNScore groups. (B,C) Differences in CAF (B) and normal stromal cells (C) of TME in Low-CCNScore and High-CCNScore groups. (D) Differences
in leukocyte fraction of TME between Low-CCNScore and High-CCNScore groups. (E) The proportion of Low-CCNScore and High-CCNScore
among pan-cancer immune subtypes. (F) Differences in tumor-infiltrated immune cells of TME between Low-CCNScore and High-CCNScore
groups. (G,H) Differences in MDSC (G) and CD8 (H) in TME between Low-CCNScore and High-CCNScore groups. (I–K) Differences in tumor

(Continued )
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CCNScore is associated with stemness,
genetic instability and metabolism
dysregulation of lower-grade glioma

Stemness is crucial to tumor progression. In terms of

stemness indices, CCNScore positively correlated with

mDNAsi and EREG-mDNAsi, and negatively correlated with

mRNAsi, possibly because of LGG-specific IDH1 mutations

leading to hypermethylation (Figure 5F, Supplementary Figure

S2K). In terms of GSCs markers, the high-CCNScore subgroup

had increased expression of PROM1, CD44, EGFR, and

POU3F2, and decreased expression of OLIG2, SOX2, CD24,

ID1, PDGFRA, and L1CAM (Figure 5G, Supplementary Figure

S2L). Different markers were associated with different GSCs

types, with CD24 being highest in neural progenitor cells

(NPC)-like cells, CD133 in oligodendrocyte-progenitor cells

(OPC)-like cells, EGFR in astrocytes (AC)-like cells and

CD44 in mesenchymal state (MES)-like cells, and NES

showed a clear preference for AC-like cells (Suva and Tirosh,

2020). Therefore, our results suggested that OPC-like, AC-like

and MES-like cells were mainly present in the high-CCNScore

subgroup, whereas NPC-like malignant cells were predominant

in the low-CCNScore group. Finally, for the EMT and MET

processes linked to stemness, our results showed that both EMT

andMET processes were enhanced in the high-CCNScore group,

especially MET (Figure 5H), indicating that these cells can switch

between a quiescent, dormant state and a migratory,

mesenchymal-like state.

Loss of DNA damage repair (DDR) function leading to

genetic instability and a risk of carcinogenesis. Our results

showed that mismatch repair (MMR), Fanconi anemia (FA),

Homology-dependent recombination (HR) processes and

diminished nucleotide excision repair (NER) and non-

homologous end joining (NHEJ) processes were enhanced in

the high-CCNScore subgroup, in line with the results of the

correlation heatmap (Figure 5I, Supplementary Figure S2N). Loss

of specific DDR pathways in cancer often leads to stable DNA

damage phenotypes. We found that intra-tumor heterogeneity

(ITH) was lower in the high-CCNScore subgroup, while loss of

heterozygosity (LOH), CNV and aneuploidy were all

significantly higher (Figure 5J–M, Supplementary Figure S2N).

It was shown that specific CNVs and LOH were associated with

poor prognosis in LGG (Knijnenburg et al., 2018). Therefore, our

results suggested that the high-CCNScore was associated with

genetic instability and led to poor prognosis of LGG patients

through a specific genetic damage pattern.

We analyzed seven important metabolic processes and found

that energy metabolism was down-regulated in High-CCNScore

group, and the rest were almost up-regulated (Figure 5N,

Supplementary Figure S2O). Previous studies showed that

poor prognosis of LGG was significantly associated with

upregulation of carbohydrate, nucleotide, vitamin and cofactor

metabolism, which fits with increased demand for glucose uptake

and nucleotide synthesis. While downregulation of energy

metabolism was associated with poor prognosis of LGG (Peng

et al., 2018). Evidently, CCNScore was involved in a variety of

LGG metabolic disorders that affect the prognosis of LGG. In

addition, we found that High-CCNScore was positively

associated with HIPPO, cell cycle, WNT, and TP53 pathways

and negative correlated with MYC, NRF2 pathways by analyzing

10 typical tumor pathways (Figure 5O, Supplementary Figure

S2P). In summary, we found that CCNScore, representing the

CCN family, played a very important role in the development

of LGG.

CCNScore was associated with stromal
and immune components in tumor
microenvironment

ECM stiffness is closely related to the tumor malignancy, and

as a regulatory protein of ECM, the effects of CCNScore on ECM

was evaluated. Our results showed that all ECM-associated

components were significantly elevated in the high-CCNScore

group (Figure 6A). ECM is mainly derived from stromal cells, so

we estimated the content of cancer-associated stromal cells

(CAFs) and several stromal cells in TME. The results showed

that CAFs were significantly increased in the high-CCN4 group

(Figure 6B, Supplementary Figure S3A), and in addition, we

found that vascular-associated stromal cells were also

significantly elevated in the high-CCNScore subgroup,

especially endothelial cells (Figure 6C). In summary, these

results suggested that CCN genes were associated with CAF

and endothelial cells, which induce ECM remodeling.

To understand the effect of the CCN family on the immune

microenvironment of LGG, we analyzed the association between

the CCNScore and immune characteristics. As a result, the

leukocyte fraction (LF) was significantly higher in the high-

FIGURE 6 (Continued)
mutational burden and microsatellite instability (I), SNV neoantigen count (J) and antigenic peptide-major histocompatibility complex (K) of
Low-CCNScore and High-CCNScore groups. (L) Differences in four immunogenic deaths in TME of Low-CCNScore and High-CCNScore groups.
(M) Differences in the expression of major histocompatibility complexes between Low-CCNScore and High-CCNScore groups. (N) Differences in
the expression of immune checkpoints in TME between Low-CCNScore and High-CCNScore groups. (O–Q) Differences in immune escape
(O), immune dysfunction (P), and immune exclusion (Q) between Low-CCNScore and High-CCNScore groups. CAF, cancer-associated fibroblasts.
MDSC, myeloid-derived suppressor cell. For all experiments, mean rank, *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 7
A landscape of multi-omics changes of the CCN family in LGG. (A–F)Overview of methylation, transcripts and mutations of the CCN family in
the TCGA-LGG cohort. Each row shows the DNA methylation data for a single probe on the Infinium microarray, the darkened line indicates
promoter methylation. The gene together with its transcripts, as well as any CpG islands and all the individual CpG dinucleotides are shown on the
left, and the r value indicates the correlation between gene methylation and expression. r: Pearson correlation coefficient. (G) Waterfall plot
showing CCN family mutations in 506 LGG patients from the TCGA-LGG cohort. The upper bar graph shows the tumor mutation burden for each
patient. The number on the right indicates the mutation frequency of the CCNs gene, and the bar on the right shows the patient number for each

(Continued )
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CCNScore group than the Low-CCNScore group, demonstrating

that high-CCNScore had increased immune infiltration

(Figure 6D). The proportion of pan-cancer

immunophenotypes in the high-CCNScore group versus the

low-CCNScore group were explored, and we found that the

Low-CCNScore group clustered mainly in the C5 phenotype,

while the High-CCNScore group aggregated significantly in the

C4 phenotype (Figure 6E). Previous studies have shown that

C4 was lymphocyte-depleted, exhibiting prominent

macrophages with suppressed TH1 cells, and C5 was

immune-quiet that had the best prognosis among these

subtypes, showing the lowest lymphocytes and the highest

macrophages with M2 predominance (Thorsson et al., 2018).

These results indicated that the immune activation was stronger

in the high-CCNScore group, which was associated with poor

prognosis of LGG.

Secondly, we used multiple analysis software to investigate

the relationship between CCNScore and immune infiltration.

Overall, the High-CCNScore group was characterized by a

significant decrease in monocytes and myeloid-derived

suppressor cell (MDSC), and an increase in macrophages,

CD8+T cells, and myeloid dendritic cells (Figures 6F–H,

Supplementary Figure S3A,B).

Thirdly, neoantigens is a powerful activator of anti-tumor

immunity. Therefore, we analyzed tumor mutational burden

(TMB), single nucleotide variants (SNV) neoantigens,

including insertional deletion mutations (indel), silent and

non-silent mutations, major histocompatibility complex-

related genes (MHC), MHC-binding SNV-derived peptides

(pMHC) and immunogenic death including autophagy,

necroptosis, ferroptosis and pyroptosis. As a result, the high-

CCNScore had strong antigenicity and enhanced antigen

presentation (Figure 6I–M).

In addition, for immune molecules, we found that most of

the immuno-stimulatory genes were significantly increased in

the high-CCNScore group. Interestingly, the immuno-

suppressive genes, immune checkpoints and various

immune-related pathways were also almost all higher in the

high-CCNScore group (Figure 6N, Supplementary Figure

S3C–E). It has been suggested that enhanced

immunosuppression may be a compensatory response to

enhanced immune activation, so tumors with high

inflammatory response are enriched in pro- and anti-

inflammatory factors (Doucette et al., 2013). Taken

together, these results suggested that there was an increased

inflammation in the high-CCNScore group.

Finally, since tumor cells can evade recognition and immune

attack through immune editing, we analyzed the overall process

of immune escape, immune dysfunction and immune exclusion

by TIDE database. We found that the low-CCNScore group had

higher immune response, while the high-CCNScore group had

higher immune dysfunction and immune escape (Figure 6O,Q).

We found that the high-CCNScore group scored higher in T cell

dysfunction and TIDE, indicating an impaired immune activity

and high immune escape.

A multi-omics overview and functions of
the CCN family in lower-grade glioma

To exhibit the CCN family in multi-omics scale, we first

investigated gene mutations. The CCN family genes were rarely

mutated in LGG (1.2% altered) (Figure 7G). We also explored the

copy number variants, and found that CCN1, CCN3, and

CCN4 mainly showed amplification, and CCN2 and

CCN6 mainly showed deletion (Figures 7H,I). At the epigenetic

level, the methylation at several locations of CCN1, CCN2, and

CCN4were negatively correlatedwith expression (Figures 7A–F). At

the transcriptional level, we found significant differences in CCNs

associated cancer transcription factors in LGG versus normal brain

tissue, with most being decreased, but HOXB7, the promoter of

CCN4, was significantly increased 4.4-fold more than normal brain

tissue (Figure 7J, Supplementary Table S2), demonstrating that

promoter changes were an important part involved in the

dysregulation of CCN genes expression. At the post-

transcriptional level, we showed the number of CCN family

transcripts (Figures 7A–F). Finally, at the protein level, we found

CCNproteins showed a general antagonisticmanner (Figures 7K,L).

In addition, to find the function and pathway of CCN

proteins, we analyzed their upstream and downstream

(Supplementary Figure S4A). Single-cell RNA-seq analysis

showed that CCN4 was mainly associated with AC-like, MES-

like cells and endothelial cell. Next, we showed proteins that

interact with CCN genes (Supplementary Figure S4B). Multiple

integrins that act as CCN proteins receptors were upregulated in

LGG (Supplementary Table S3) and positively correlated with

CCN proteins (Supplementary Figure S4C). Moreover, the CCN

proteins were associated with hypoxia, ROS production, mTOR,

extracellular matrix organization, EMT, angiogenesis, autophagy

and apoptosis by analyzing hallmarks of tumor, GO and KEGG

(Supplementary Figure S5A–C). The above results demonstrated

that CCN proteins lead to multiple malignant phenotypes closely

FIGURE 7 (Continued)
mutation type. (H) Circle diagram showing the copy number variation and location of CCNs genes on 23 chromosomes using the TCGA-LGG
cohort. Red dots on the outer ring indicate amplification and blue dots on the inner ring indicate deletion. (I)CNV frequency plot of the CCN family in
the TCGA-LGG cohort. (J) Sankey diagrams represent tumor-associated promoters of CCNs genes. (K)Correlation analysis of protein interactions of
the CCN family. (L) Line diagram showing protein interactions between the CCN family. *p < 0.05, **p < 0.01, ***p < 0.001.
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associated with tumor progression through binding to different

integrins in LGG. Taken together, these results suggested that the

expression pattern of the CCN family was mainly regulated by

CNV, methylation levels and promoter changes, and regulated

LGG progression through multiple malignant pathways.

Discussion

First, we verified the differential expression and the prognostic

significance of CCN proteins in LGG. Second, The CCNScore

based on the CCN family was first established in this paper andwas

crucial for prognosis prediction, subtype evaluation, and treatment

selection. Next, we analyzed and characterized the genomic,

epigenetic profiles and tumor microenvironment characteristics,

etc. Of patients in High-CCNScore and Low-CCNScore groups,

and confirmed that the High-CCNScore group had a GBM-like

genetic pattern, associated with high stemness, high genomic

instability, high inflammation, high ECM phenotype, metabolic

disorders and poor prognosis. Finally, we outlined the multi-omics

variation as well as pathways and functions of the CCN family. Our

comprehensive analysis of the CCN family demonstrated the

important role of the stromal regulatory proteins in LGG and

provided a new perspective for improving the treatment of LGG.

CCN proteins are a subset of ECM and play an important

regulatory role. They are highly conserved and their

dysregulation occurs mostly when inflammation or tissue

damage becomes chronic, which is also a risk factor for

cancer development (Perbal, 2004). It has been shown that

CCN1, CCN2, and CCN4 all contribute to glioma progression

(Yin et al., 2010; Gaudreau et al., 2019; Uneda et al., 2021), in

agreement with our findings. A riskscore model we constructed

based on the CCN family for the first time in LGG has important

clinical applications. First, based on the CCNScore we created a

prognostic score system that can predict patient survival over

time by combining age, gender and pathological grade. Second,

the classification of glioma has evolved from simple

histomorphology to a combination of histomorphology and

molecular biology, and because of the heterogeneity of cells

within glioma, combined with the fact that the morphology of

different types of gliomas can overlap with each other (Sottoriva

et al., 2013; Wang et al., 2017), so a more accurate classification is

needed to reflect the biological characteristics of gliomas. As

shown in our results, CCNScores can better distinguish patients

with long-term survival of LGG from those with high-grade

glioma features that are likely to deteriorate rapidly than other

indicators. Finally, CCNScore is important to guide the choice of

therapy for different patients, for patients with low scores, better

benefits will be obtained without opting for radiotherapy.

Cancer is thought to result from uncontrolled cellular behavior

caused by genetic mutations, so identifying the mutations that

drive cancer development and progression is the basis for

elucidating the biological characteristics of cancer (Martinez-

Jimenez et al., 2020). It has been shown that LGG patients with

IDH mutations accompanying 1p19q deletions have features of

oligodendrogliomas, 62% have CIC mutations, and 96% will carry

TERT promoter mutations. Patients with IDH-mut without 1p19q

deletion almost always have TP53 mutations (94%) with ATRX

(86%) inactivation and are rarely accompanied by TERT

mutations (Bettegowda et al., 2011; Liu et al., 2012; Yip et al.,

2012; Cancer Genome Atlas Research et al., 2015). While IDH

wild-type LGG closely resembles glioblastoma (GBM) in both

molecular signatures and clinical behavior, often including PTEN,

EGFR and NF1 mutations (Verhaak et al., 2010; Brennan et al.,

2013). Consistent with our results, at the genomic level, the Low-

CCNScore group can be described as a merger of two LGGs with

IDH-mut, while the High-CCNScore group can be described by a

GBM-like mutation pattern, and also has a poor GBM-like

prognosis. In addition, previous studies have shown that IDH

mutations are accompanied by hyper-methylation, while patients

with IDH-mut without 1p19q deletion partially exhibit hypo-

methylation and are associated with a poorer prognosis (Mur

et al., 2013). Moreover, IDH-wt gliomas also correspond to three

methylation clusters, including classical-like, mesenchymal-like,

and pilocytic astrocytoma-like (PA-like) subtypes. Among them,

the PA-like subtype, which has almost no mutations in EGFR,

CDKN2A/B and PTEN (Ceccarelli et al., 2016).We concluded that

the High-CCNScore group mainly included the classic-like and

mesenchyma-like IDH-wt LGG with low methylation levels, while

the Low-CCNScore group mainly included codel and the

G-CIMP-high subtype, with a better prognosis.

GSCs are an important factor contributing to glioma

progression and recurrence, and we first investigated the

stemness index, which represents the degree of stemness.

Previous studies have shown that mDNAsi is positively

correlated with advanced pathological grade of gliomas and that

mDNAsi is mainly driven by hypo-methylation levels and

mesenchymal subtypes. In addition, mDNAsi is elevated in

mutations in NF1 and EGFR, but negatively correlated with

IDH1, TP53, CIC, and ATRX mutations (Malta et al., 2018).

Consistent with our findings, we suggest that the Low-CCNScore

group resembles a non-stem phenotype with hyper-methylated

characteristics. While the High-CCNScore group resembles

G-CIMP-low tumors and exhibits a greater proliferative

capacity and has stem cell-like genomic signatures (Ceccarelli

et al., 2016). In addition, Weiwei Tao et al. (2020) showed that

CCN4 has the role of maintaining tumor stem cells to further

confirm our view. Secondly, we further investigated the types of

CCNs-associated GSCs, and since proliferation in IDH-mut

gliomas is mainly restricted to NPC-like cells, this means it

may limit the speed of tumor growth. AC-like cells appear to

have the potential to reduce tumorigenesis, whereas MES-like,

NPC-like andOPC-like cells are associated with glioma recurrence

and aggressiveness (Suva and Tirosh, 2020). Therefore, we suggest

that the Low-CCNScore group has GSC restriction, while the

High-CCNScore group has GSC multiplicity, and that the
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induction of AC-like state may have therapeutic implications

for glioma (Suva et al., 2014). Furthermore, the EMT process

is inextricably linked to tumor stemness, and our results

showed that CCN proteins consistently correlated closely with

EMT and MET. Therefore, we speculate that CCN proteins may

enhance LGG stemness by enhancing the EMT andMET pathway.

Studies have shown that the composition of TME in brain

tumors can be influenced by the molecular characteristics (Wang

et al., 2017). First, we found that the Low-CCNScore group was

mainly concentrated in the C5 subtype. It has been shown that

80% of IDHmutations are enriched in C5 (Thorsson et al., 2018),

while IDH mutations can lead to a decrease in tumor-associated

immune cells and better prognosis by reducing leukocyte

chemotaxis (Venteicher et al., 2017), which is consistent with

the Low-CCNScore group. Second, both chromosome 1p

deletion (including TNFRS9 and VTCN1) and 19q deletion

(including TGFB1) were associated with lower LF, which is

consistent with the role of TGF-β in immune cell recruitment

(Batlle and Massague, 2019), all of which indicate a molecular

profile consistency of TME characteristics in the Low-CCNScore

group. Our results showed a significant increase in macrophages

in the High-CCNScore group, and previous studies have shown

that 30% of immune cells in brain tumors are macrophages

(Graeber et al., 2002), and the number of TAMs is inversely

correlated with tumor survival and positively correlated with

tumor grade (Hambardzumyan et al., 2016). Moreover,

deficiency of NF-1 in IDH-wt gliomas leads to increased

macrophage recruitment and is seen most frequently in the

mesenchymal subtype (Wang et al., 2017). TAMs include

tissue-resident microglia as well as bone marrow-derived

macrophages (BMDMs) (Bowman et al., 2016). And BMDMs

play a major role in supporting the growth of tumor-initiating

cells (Chen et al., 2017). Our results showed that the increase in

macrophages was accompanied by a significant decrease in

monocytes in the High-CCNScore group, so we suggested that

the CCNs-associated TAMs were mainly composed of BMDMs.

In addition to macrophages, we also found an increase in

myeloid-derived dendritic cells and CD8 cells in the High-

CCNScore group. The increase in CD8T cells was not related

to any molecular subtype but to the hyper-mutated phenotype

(Wang et al., 2017), as these tumors may produce more

neoantigens that can be recognized by T cells, in agreement

with our results.

In addition to the composition of immune cells, the structure of

the brain extracellular matrix (ECM) seems to help distinguish the

characteristics of LGG and HGG. The structure and composition of

the brain ECM is unique compared to other organs and tissues,

containing mainly heparin sulfate proteoglycan (HSPG) and

hyaluronic acid (HA) (Perus and Walsh, 2019). Studies have

shown that there is a significant increase in HSPG production in

glioma and the dense ECM leads to hypoxia and tumor

aggressiveness (Wade et al., 2013; Lemjabbar-Alaoui et al., 2015).

A recent study showed that ECM stiffness correlates with increased

glioma grade, while IDH-mut glioma exhibit reduced

aggressiveness associated with reduced ECM stiffness and

mechanical signaling, and in addition, IDH-mut glioma can

mediate decreased tenascin-C and HA levels through down-

regulation of HIF-1α (Miroshnikova et al., 2016), suggesting that

differences in ECM composition in glioma are partially regulated by

IDH mutational status. Since the ECM scaffolds the tissue and

regulates cell structure and inflammation, ECMdifferences between

IDH-mut and IDH-wtmay in part be the basis for the differences in

the landscape between TME of LGG and HGG, and consequently

influence the evolution of the disease. Furthermore, recent studies

have shown that as ECM proteins, CCNs can be tethered to other

ECM proteins, including decorin, fibronectin, vitronectin and

perlecan, and can act as a local scaffold that coordinates the

interaction of specific bioactive molecules, ECM proteins and

target cells leading to extracellular matrix remodeling (Jun and

Lau, 2011). Consistent with our study that high CCNScore is

associated with significantly elevated stromal proteins, and the

high ECM phenotype contributes to a variety of biological

processes and glioma progression.

Metabolic reprogramming is considered one of the hallmarks

of cancer (Hanahan and Weinberg, 2011; Kaymak et al., 2021).

Glioma is a metabolically affected disease due to IDH mutation

(Dang et al., 2009), and LGG shows the broadest survival

correlation with metabolic disorders compared to other

tumors (Vander Heiden and DeBerardinis, 2017).

Furthermore, metabolic activities are intrinsically linked to

cancer marker pathways, such as carbohydrate metabolism

positively correlated with angiogenesis, EMT and

inflammation upregulation (Peng et al., 2018). Previous

studies have shown a general increase in mTORC1 signaling

for all metabolic subtypes except energy metabolism (Hay, 2016),

and our results suggest a significant positive correlation between

CCNs and mTORC1 signaling. Surprisingly, recent studies have

shown that in a mouse glioma model, mTOR activity is restricted

to the few cell layers closest to the perfused vessels, and that

cancer cells within this perivascular layer are characterized by

intense anabolic metabolism, and perivascular cancer cells

exhibited enhanced tumorigenicity, migratory and

invasiveness, as well as unexpectedly specific chemo- and

radio-therapy resistance, all in a mTOR-dependent manner.

This mTOR-mediated compartmentalized metabolism directly

influences the acquisition of multiple aggressive tumor hallmarks

(Kumar et al., 2019). The relevance of stromal cell proteins to

metabolism has been rarely investigated before, and in this

paper, we demonstrated for the first time the relevance and

importance of CCNs to tumor metabolic disorders, which helps

further expand the understanding of the biological function of

CCNs and provides another promising therapeutic target

for LGG.

There are still some limitations in this study. First, we used

the functional class scoring (FCS) approach to quantify

phenotypes and pathways, but FCS analyzes each pathway
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independently, and since the same gene may be involved in

multiple pathways, it may lead to significant enrichment of

individual pathways due to overlapping genes. In addition,

treating each gene as an individual ignores the biological

properties of genes and the complex interactions between

genes. Secondly, it is the protein, that is, the basic unit that

performs the function, and our studies are at the transcriptome

level, so the impact of post-transcriptional modifications, and

post-translational modifications need to be further explored.

Finally, our study mainly demonstrates correlations, which

need to be combined with basic experiments to

verify upstream and downstream and direct interaction

relationships.

Conclusion

In this paper, we validated the clinical value of the CCN

family in LGG and constructed the first CCN family-based

riskscore system to guide clinical application. In

addition, we explored the biological functions of CCNs

in LGG, and we found that CCNs were also

closely associated with gene mutations, high-inflammation,

high-ECM, high-stemness, metabolic abnormalities and

immune escape in LGG, in addition to malignant

phenotypes such as tumor proliferation and invasion, and

has important and specific research value in LGG.
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SUPPLEMENTARY FIGURE S1
Validation of the clinical significance of the CCN family. (A) Heatmap of
differential expression analysis of CCN family between normal cortex
(n=207) and CGGA-LGG cohort (n=590). (B–G) Kaplan-Meier survival
analysis was performed using the optimal cutoff value to distinguish the
CCN genes between high and low subgroups in the CGGA-LGG cohort.
(H–J) Box plots showed the expression of CCN family genes in glioma
DNA Methylation subtypes (H), IDH/codel subtypes (I) and IDH/codel/
TERTp subtypes (J) in the TCGA-LGG cohort. (K–M) Box plots showed
the expression of CCN family genes in IDH/codel subtype (K),
transcriptome subtype (L), and primary or recurrence subtype (M) in the
CGGA-LGG cohort. (N–O) Forest plots showed univariate cox analysis
(N) and multivariate cox analysis (O) of the CCN family in the CGGA-
LGG cohort. (P–Q) Forest plots showed univariate cox analysis (P) and
multivariate cox analysis (Q) of the CCN family in the TCGA-LGG cohort.
(R) ROC curves indicated the prognostic risk prediction of CCN4 at 1, 3,
and 5 years in the TCGA-LGG cohort. *p < 0.05, **p < 0.01, and
***p < 0.001.

SUPPLEMENTARY FIGURE S2
Correlation between CCN family and the development of LGG. (A,B)
Somatic mutation waterfall plots were created based on high-
CCNScore group (A) and low-CCNScore group (B). (C–J) Column
charts show the proportion of patients with mutant type and wild type of
important genes in the Low-CCNScore and High-CCNScore
group. (K–P) The correlation heatmap showed the correlation between
CCN family genes and CCNscore with stemness signature (K), GSCs
markers (L), DNA damage repair pathway (M), genomic change profile
(N), substance metabolism (O) and oncogene pathways (P). *p < 0.05,
**p < 0.01, and ***p < 0.001.
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SUPPLEMENTARY FIGURE S3

Role of the CCN family in the TME of LGG. (A) Correlation of
CCNScore expression with tumor-infiltrated immune cells and
stromal cells was analyzed in each software using multiple
databases. (B) Correlation heatmap showed the association of CCN
family and CCNscore with the immune cells calculated by
CIBERSORT. (C–E) Differences in expression of immune-
stimulatory genes (C) and immune-suppressive genes (D) and
tumor microenvironment-related pathways (E) between Low-
CCNScore and High-CCNScore groups. *p < 0.05, **p < 0.01, and
***p < 0.001.

SUPPLEMENTARY FIGURE S4
Receptors and Interacting Proteins of CCN family. (A) Single cell sequencing
analysis of correlation between CCN4 and immune stromal cells and
malignant cells. (B) Protein-protein interaction networks of CCN family
genes were constructed using the STRING database. (C) Correlation of CCN
family and CCNscore with integrins. *p < 0.05, **p < 0.01, and ***p < 0.001.

SUPPLEMENTARY FIGURE S5
Functions of CCN family. (A) Correlation of CCN family and CCNscore with
tumor hallmarks. (B,C) KEGG (B) and GO (C) analysis of the CCNScore high
and low subgroups indicated the main functions and pathways of CCN
family. Thebarplotwasorder by q value. *p<0.05, **p<0.01, and ***p<0.001.
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