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The broad coverage of untargeted metabolomics poses fundamental

challenges for the harmonization of measurements along time, even if they

originate from the very same instrument. Internal isotopic standards can hardly

cover the chemical complexity of study samples. Therefore, they are insufficient

for normalizing data a posteriori as done for targeted metabolomics. Instead, it

is crucial to verify instrument’s performance a priori, that is, before samples are

injected. Here, we propose a system suitability testing platform for time-of-

flight mass spectrometers independent of liquid chromatography. It includes a

chemically defined quality control mixture, a fast acquisition method, software

for extracting ca. 3,000 numerical features from profile data, and a simple web

service for monitoring. We ran a pilot for 21 months and present illustrative

results for anomaly detection or learning causal relationships between the

spectral features and machine settings. Beyond mere detection of anomalies,

our results highlight several future applications such as 1) recommending

instrument retuning strategies to achieve desired values of quality indicators,

2) driving preventive maintenance, and 3) using the obtained, detailed spectral

features for posterior data harmonization.
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Introduction

Reproducibility and replicability of experiments are essential mainstays of the

scientific method (John, 2017). Failure to reproduce measurements, computations, or

results of a previous study is perceived as a lack of rigor and undermines the validity of

study and its claims. Omics technologies are not immune to these challenges (Tarazona

et al., 2020). In fact, issues tend to increase with time and the steadily increasing number of

features that every new technology allows to detect. This exacerbates the problems of

small sample size (IntHout et al., 2015) and overfitting. Mass spectrometry (MS)-based

assays also suffer from the inherent variability of measurements across instruments and

over time. In proteomics, lipidomics, metabolomics, etc., reproducibility of quantitative

experiments is a well-known issue (Benton et al., 2012; Martin et al., 2015; Beger et al.,
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2019). The common workaround to enable quantitation in MS-

based assays is to add a known amount of isotopically labeled

internal standards (IS), and quantify chemically similar

compounds based on relative signals. This approach is limited

by the availability of heavy standards and, therefore, is effective

only in targeted studies or within compound classes.

In absence of heavy standards such as in untargeted

metabolomics or label-free quantification in proteomics, it

remains challenging to ensure reproducibility such that it

would be possible to compare samples from different

experiments. A steadily growing arsenal of normalization

methods allows correcting for differences in feature intensities

across different batches (Chawade et al., 2014; Välikangas et al.,

2018; Fu et al., 2022). However, they only tackle one facet of the

reproducibility challenge. They are, however, ineffective in the

case features could not be detected or matched across batches.

This problem is quite frequent as caused by a multitude of

common issues: drifts in retention times, loss of sensitivity,

differences in tuning, changes in the matrix, contaminations,

etc. Such irreproducible behavior cannot be corrected by

posterior data processing. This has led to the development of

approaches for testing LC-MS instrument performance a priori.

Samples are injected only after the test is passed. Testing relies on

three pillars: standard quality control (QC) samples, a standard

acquisition method, and software to discover deviations

(Broadhurst et al., 2018; Dogu et al., 2019; Kuhring et al.,

2020) from expectations (Dogu et al., 2017; Kuhring et al.,

2020). The importance of QC-based monitoring in

metabolomics has been known for >15 years (Gika et al.,

2007). However, little progress has been made in the past

decade. The effort toward reproducible untargeted

metabolomics is currently spearheaded by the metabolomics

quality assurance and quality control consortium (mQACC

(Beger and au, 2020; Evans et al., 2021)). A recent survey

revealed that expert metabolomics labs employ procedures for

system suitability testing (Evans et al., 2021) but the examples of

literature discussing specific details or presenting solutions are

very scarce (Broadhurst et al., 2018).

Here we propose means for systematic quality control

(QC) and monitoring of instrument performance and

properties for high-resolution mass spectrometry, focusing

on a time-of-flight (TOF) instrument. We have been using

TOF-MS productively for more than 10 years and analyzed

more than 1 million samples by untargeted metabolomics. On

occasions, we had to reanalyze entire batches of samples

because of major problems and biases that passed

unnoticed during instrument tuning. Hence, this work

originated from the need to verify system suitability before

injecting precious samples, and to monitor performance drifts

that might require user intervention. Our system includes a

chemically defined QC sample, a short acquisition method,

software for extracting detailed spectral information from

profile data, and a simple visualization service for end users.

Results

We set out to implement a system suitability testing platform

capable of quick, quantitative and comprehensive characterization of

the state of a high-resolution ESI-TOF-MS instrument (Agilent

6550 iFunnel Q-TOF). On purpose, we omitted chromatography

from testing. This decision was motivated by several practical

reasons. Chromatography and detection are separated processes,

and we frequently switch liquid chromatography systems depending

on the type of separation needed (e.g., reversed phase, HILIC, ion-

pairing). Chromatographic performance can be evaluated by means

of retention time stability, height equivalent to a theoretical plate

(HETP), peak tailing, etc., with samples that vary for the different

methods. Here, we wanted to define a MS system suitability that is

independent of a specific chromatographic setup and thereforemore

generally applicable. It was tailored to capturemore information that

relates to ionization, ion transmission and detection. We focused on

negative mode ionization, which is predominant for metabolome

profiling and less prone to adduct formation. The platform is

composed of three core elements: a chemically defined quality

control mix, an acquisition method, and a processing engine that

extracts quantitative information from measured spectra to do

analytics and reporting through a web service.

Quality control mix

The first element is a chemically defined quality control (QC)

sample. This should include analytes that allow testing the system, be

stable over long periods, and ready to inject. For the purpose of

testing an ESI-MS system, the QC analytes should span over the full

mass range of interest (m/z 100 to 800 for us), be diverse in chemical

properties (e.g., polarity, pKa), and in propensity of analytes to build

adducts or fragment during ionization. Following these principles,

we opted for a mix of nine compounds. We emphasize that there is

likely ample room to further optimize the composition of the QC

mix. In the current composition, it has been in use for almost 2 years

with satisfactory results and, therefore, we have not tested different

mixes. For each compound, the concentration was adjusted to

obtain an intense monoisotopic peak. Typically, the nine analytes

also produced 27 isotopic peaks, 1 adduct, and 9 fragments, for a

total of 37 expected spectral peaks (Supplementary Table S1).

During processing, the expected peaks are analyzed individually

to quantify peak and ionization properties. Any additional peak that

is detectable but not part of the expected set is considered

background. All background peaks are treated as a collective to

quantify purity and dirt of the system.

Acquisition method

The acquisition method was designed to collect critical data in

possibly short time. For the aforementioned reasons, we omitted a
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chromatographic separation and used an instrumentmethod similar

to flow injection analysis with a solvent flow of 150 μL/min. In

principle, we were interested in capturing three types of scans: 1) full

spectra for the chemical (solvent) background, 2) full spectra for the

QC mix, and 3) full spectra in the absence of ionization. The latter

was included to potentially assess background noise of the detector.

It was obtained by stopping the liquid flow to the source and

recording residual ion counts. The final profile is shown in Figure 1.

The chemical background is acquired first to fully reflect the

equilibrated LC-MS system and to avoid being affected by any

tail of the QC mix peak. Given the absence of a column between

autosampler and ionization chamber, the injection program was

modified to introduce a temporal delay of about 25 s between the

start of MS acquisition and the injection of the QC mix. After the

sample has cleared from the ionization chamber (about 80 s), the

flow is stopped to acquire detector background. Finally, the flow is

ramped again. Throughout the period of 2 min, theMS acquires full

scan profile data in negative ionization mode at a frequency of

4 GHz.

Feature extraction

Upon acquisition, raw profile data is analyzed to extract

quantitative information that describes spectral properties in

much depth. Not knowing in advance which properties of a

spectrum drift or shift over time, we designed a very inclusive

analysis that extracts 2,850 quantitative features for each QC

sample injected. Ultimately, this information is obtained from

a detailed analysis of five scans. The largest fraction of features

is extracted from the chronogram peak related to the QC mix.

The exact scan number is determined dynamically by picking

the scan with the highest total ion current, and the analysis is

extended to the two following scans to obtain an average value

and a measure of deviation for each feature. For each of the

37 expected peaks of the QC mix, we collect intensity, absolute

mass accuracy, factual ppm, multiple widths, area under peak

tails, symmetry, goodness-of-fit with a Gaussian, number of

subsequent peaks and their intensity ratios (Supplementary

Figure S1).

FIGURE 1
Total ion chromatogram of the acquisition method (A). Representative spectrum for QC mix scans (B).
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For each expected isotopologue, fragment, or adduct, we also

measure the height relative to the deprotonated, monoisotopic

peak, as well as the difference to the theoretical relative

abundance. This allows diagnosing deviations from linear

response, excessive in-source fragmentation, or increased salt

contaminations, respectively. For each of the above features, we

record the mean value and the standard deviation from three

consecutive scans. Overall, the numeric features derived from the

QC mix peaks are 1720.

To capture baseline properties, level and type of dirt, instead

of focusing on a predefined list of m/z features, we segmented the

mass axis in windows of 50 amu. For each window, we recorded

number of peaks, intensity sum, intensity percentiles with all

expected ions excluded, intensities of 10 most abundant peaks, as

well as their intensity percentiles. This resulted in 720 more

features, so the total of features coming from the QCmix is 2,440.

Two other scans are analyzed to gain additional information

about the system. The chemical background is characterized in a

single scan before the QC mix peak, i.e., scan number 18 in our

LC-MS setup. Similar to the QC mix scans, we extract

140 features related to two reference compounds that are co-

sprayed and used as lock masses for intra-scan mass calibration

(HOT and HEX in Supplementary Table S1). 180 more features

come from the windows of 100 amu, making a total of

320 background-related features. Finally, pure detector signal

is characterized in a late scan in absence of ionization. We collect

90 more features from the windows of 200 amu for a grand total

of 2,850 for each injected QC sample.

Feature extraction was implemented in Python. In our

environment, it is triggered automatically by the appearance

of a QC acquisition file in a predefined location. The results

are stored in a SQL database that constitutes the access point for

all downstream analyses. Starting from raw MS profile data, our

extracts all features and updates the corresponding logs and

databases within 20 s. Including measurement, data logistics and

web service rendering time, the full process takes less than 5 min.

In the following, we showcase and discuss the immediate and

long-term benefits of using the SST platform.

Instrument monitoring

A primary goal of the aforementioned procedure is to verify

system suitability before proceeding with data acquisition. For

this purpose, we implemented a monitoring system to visualize

and compare current and historical data. It consists of a web

service that pulls data in real-time from the database with

extracted QC features and reports key information on a

dashboard. For obvious reasons, including all 2,850 features

would have been problematic and inefficient. To favor

visualization of accessible information over an overflow of

data, we defined 16 quality indicators that report aspects of

analytical relevance such as resolution, mass accuracy, accuracy

of isotopic ratios, adduct formation, signal intensity, signal-to-

noise, levels of dirt and detector noise. These indicators

(Supplementary Table S2) were calculated from the

2,850 primary features and are presented for users on the

dashboard.

Visualization was designed to inform on two types of

patterns. First, we were interested in capturing particularly

abnormal values of any of the quality indicators. Therefore,

we integrated plots that visualize the distribution of quality

indicator values in the past and the latest to be evaluated. To

facilitate the analysis, the system also performs automatic outlier

detection by the isolation forest algorithm (Liu et al., 2008). The

latter is based on an ensemble of decision trees, followed by a

correction routine specific to the type of the indicator. In real-

time, each QC sample is scored automatically by counting the

number of outliers across the 16 quality indicators. As a rule of

thumb, if more than 4 values are classified as outliers, the QC

sample flagged with bad quality.

The second type of pattern that we wanted to highlight is

temporal trends. We hypothesized that factors such as detector

aging or dirt accumulation could result in a subtle but continuous

decay of instrument performance. Such drifts are slow and,

therefore, they would not be recognized by outlier detection.

We integrated a trend detection that uses linear models with

empirical thresholds for R2 and slope coefficients. Three

temporal intervals are considered (2 weeks, 1 month, and

2 months) and reported on the dashboard (Supplementary

Figure S2).

To assess the technical reproducibility of feature extraction,

we analyzed 191 QC samples acquired on the same day without

any modification of instrument parameters, i.e., tuning. The

median intra-day coefficient of variation across the 2,850 QC

features was 27%, but with strong differences between the types

of QC features. For example, noisier features were associated to

the lock masses included in the buffer. Other noisy features

described the tails of DC mix ions (i.e., ringing and baseline

artefacts). For the 16 quality indicators, the median variation

coefficient was 4%. This indicates that the setup is robust enough

to capture shifts of about 10% or more.

The system has been operating in a pilot period of 21 months.

During this period, at least one QC sample has been analyzed on

110 days constituting a total of 153 measurements. Among those,

37 QC samples featured four or more outlier values and were

flagged as of bad quality. Based on automated outlier detection,

fragmentation_305 was found to be most out-of-order QC

indicator (in 31% of QC samples, Supplementary Table S3),

followed by isotopic_presence (28%) and baseline_25_150 (25%).

The most stable indicators were average_accuracy (only 8% of

bad quality), resolution_700 (6%) and baseline_50_650 (5%).

During the same pilot period, a total of 40 trends were

automatically detected for the QC indicators within 2-month

windows. For instance, an increasing chemical_dirt trend was

detected between October and December 2019 (R2 = 0.7071, n =
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16) and a decreasing resolution_700 trend was detected between

October and December 2020 (R2 = 0.6873, n = 14). Other

examples of trend detection are given on Supplementary

Figure S3.

Upon detection of a bad quality QC sample, the user was

prompted to take corrective actions to restore normal range.

Thus far, corrective actions were suggested based on expert

knowledge and the kind of outlier. For example, in the case of

a loss of, e.g., resolution, mass accuracy, or ion transmission, the

system was retuned focusing on the relevant section of the optics

or opting for a general system tune in more extreme cases. In the

case of increases of, e.g., chemical background signals, the

primary response was to purge the system, replace buffers, or

clean the source and front optics. In the case of a drop in signal or

FIGURE 2
Hierarchical clustering of z-scored QC features with annotations by m/z, scan and feature types. See descriptions of feature types in
Supplementary Tables S4, S5.
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signal-to-noise, we evaluated whether sensitivity of the detector

(i.e., the voltage of the multichannel plate detector, or the amp

gain) had to be readjusted. These recommendations were

adopted by users to prevent the injection of samples before

normal operation was verified.

Analysis of QC features

We designed the feature extraction to be very inclusive and

capture possibly granular information on spectral properties and,

in turn, instrument characteristics. This resulted in a long vector

with 2,850 numerical values. By design, several of the features are

likely correlated because they reflect similar aspects of the same

peak, report the same property of different peaks of the QC mix,

or simply relate to neighboring regions of the mass range. We

therefore wondered about the actual information content: is there

a benefit in collecting very detailed information or could one

describe instrument state with much fewer features? To address

this question, we analyzed the full matrix of values obtained in

the initial 21 months of operations. We performed a principal

component analysis (PCA) of the feature matrix and calculated a

cumulative portion of total variance explained.We found that the

first 10 components explained only about 52% of total variance.

To capture 95%, 100 components were necessary. This highlights

a substantial heterogeneity of the dataset. Rather than surfing

through many principal components, we performed a

hierarchical clustering to understand whether the list of QC

features could be compressed without tangible losses in

information (Figure 2). In line with the PCA, numerous

subtrees with peculiar patterns over the measured QC samples

emerged. To verify what kind of QC features correlated in these

subtrees, we sought for enrichments in either the m/z range of the

feature, its type, or the scan the feature was extracted from

(encoded in the colors on the left of Figure 2).

Tightest clustering was found for features linked to spectral

background (labeled with “background” in Figure 2), pointing to

some redundancy. These are the values that are not related to the

chemicals spiked in the QC mix. They dominated the upper part

of the clustered heatmap. Background features of similar type but

different mass range were frequently adjacent. Background

features extracted from the solvent and from the QC mix

FIGURE 3
The decreasing resolution_700 trend (A) and the corresponding correlations with the instruments settings: quadrupole vacuum (B) and ion
focus (C). Pearson correlation coefficients and Bonferroni adjusted p-values are given.
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scans co-clustered frequently. Retrospectively, this was expected

because apart from the regions populated by QC mix ions, the

two scans are expected to be identical. In such cases, a single

feature measured in a QC mix scan seems sufficient to

recapitulate the principal drifts and shifts observed across

scans and the mass range. In contrast, the features derived

from ions deriving from the chemicals spiked in the QC mix

were more heterogeneous (lower part of Figure 2). Albeit many

features of similar type were close in the tree (e.g., symmetry,

isotopic properties, mass accuracy, etc.), their distance was

generally higher than observed for background features. This

seems to reflect the fact that peak features tend to vary across the

mass range, possibly because of differences in intensity or in the

spectral neighborhood. The only exception was the peak width,

which correlated well across the whole mass range.

To further investigate feature redundancy, we did a cross-

correlation analysis between all 2,417 continuous QC features.

The resulting Pearson correlation coefficients were <0.5 in 95%

of the pairs. Only for 0.4%, the correlation was strong (|r| > 0.9).

As expected, these cases were related either to the features of the

same type or to “synonymic” features of the same m/z window.

These results confirm that QC features describe many spectral

properties, not likely to be fungible. It is further supported by a

simple visual analysis of the differences between injections,

i.e., the columns on the heatmap shown in Figure 2. Many

vertical stripes emerge, which indicate sets of features with

values at the far ends of the measured range. Importantly, the

extreme values are not aligned vertically over a large fraction of

features but tend to vary across samples. This heterogeneity

indicates that fine-grained shifts are present in the data, even

though they might have not been captured by the 16 quality

indicators that were adopted for instrument monitoring. It

remains to be tested if such drifts had a tangible effect on the

measurement of studies that were acquired on the same day. This

analysis would require expanding the outlier detection

introduced for system monitoring to all measurable features.

Whenever an extreme deviation was reported, a set of test

samples ought to be run to evaluate the practical consequences.

Association analysis between instrument
settings and QC features

We were wondering whether any of the aberrant behaviors

detected during the pilot phase were associated to drifts in

setpoints or readbacks of the instrument. Therefore, we studied

the relationship between measured quality indicators (or QC

features) and actual instrument settings, which include both

tunable and non-tunable values. Tunable values affect ion optics

and detection and are adjusted during instrument tuning or

calibration according to the procedures that are implemented in

the control software. Non-tunable values consist of readbacks of

parameters such as pressures, currents, pump speeds, noise, and are

collected for diagnostic purposes. In many cases, they are stored with

each run or in the tuning reports. The number and type of accessible

instrument settings varies across vendors and type of instruments. For

the QTOF instrument described here, about ten non-tunable values

and fifty tunable values were extracted for each QC run and stored.

TABLE 1 Statistical comparison of the machine tunes. Machine tunes significantly different between signal-to-noise groups are shown on the left.
Machine tunes significantly different between signal-to-background groups are shown on the right. In both cases, three statistical tests were
applied for each comparison (Kolmogorov-Smirnov, Mann-Whitney U, Kruskall), followed by FDR correction for multiple testing. The biggest
significant p-value is reported. Sign of linear relationship is shown, where the medians of two distributions were different.

Signal-to-noise Signal-to-background

Setting Sign p-value Setting Sign p-value

Acc_Focus — 0.0118 Amp_Offset 0.0044

Amp_Offset <0.0001 InstrumentFW + 0.0414

Bot_Slit + 0.0229 Length_of_Transients 0.0443

Cell_Entr + 0.0433 Lens_2 0.0414

Cell_Exit 0.0206 Lens_2_RF_Ph 0.0255

InstrumentFW + 0.0001 MCP 0.0034

Lens_2 0.0007 Oct_1_RF_Vpp_1 0.0003

Lens_2_RF_Ph 0.0007 Puller_Offset 0.0044

MCP + 0.0001 TOF_Vac — 0.0091

Mirror_Mid + 0.0156 Top_Slit + 0.0044

Oct_1_RF_Vpp_1 <0.0001
Puller_Offset 0.0001

TOF_Vac — 0.0003

Top_Slit + <0.0001
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FIGURE 4
A reduced DAG reflecting the causal relationships between the instrument settings (in blue) and theQC indicators (in red). A significance level of
0.15 was used as the threshold for conditional independence testing.
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The connection between instrument performance and

instrument settings can be analyzed by different approaches.

For example, a significant decay in resolution (at m/z 700) over

the period of 2 months was once identified by the

aforementioned trend detection (Figure 3).

To find potential causes of this loss in performance, we

sought for correlations with instrument settings during the

same period. Significant associations were found for two

parameters: the non-tunable pressure reading in the first

quadrupole and the ion focus strength (Figure 3). This

suggests that the transient drop in resolution might be caused

by an increased spread of trajectories or velocities of ions in the

section preceding the TOF pulser.

An alternative approach is to seek for parameters that are

associated with top performance. We illustrate this for the signal-

to-noise, which reflects instrument sensitivity. In this case, we split

all QC samples into groups of high (top 20th percentile) and low

signal-to-noise. We then sought for instrument settings that were

different between the two groups. The procedure was repeated for

another quality indicator, the signal-to-background (Table 1). For

both indicators, we found significant associations. Several expected

associations were found. For instance, better vacuum (lower value of

TOF_Vac) was linked to higher signal-to-noise and signal-to-

background. Increased multichannel plate voltage (MCP), or

instrument firmware (InstrumentFW) improved both indicators.

We also found less intuitive associations, like the voltage of several

lenses of the ion optics before the TOF section (e.g., Top_Slit,

Bottom_Slit, Lens_2, Oct_1_RF_Vpp_1, etc.) which are likely to

overall improve ion transmission.

All identified associations may indicate what settings

determine properties of measured spectra but were analyzed

in isolation and for selected examples. In reality, settings and

indicators are partly interdependent. For example, adjusting a

voltage to increase sensitivity might negatively affect resolution.

To go beyond individual correlations and statistical tests, we

attempted to learn causal relationships between the tunable

instrument settings and the observed quality indicators.

Specifically, we attempted to learn the underlying structure

from all available data using the PC (Kalisch et al., 2012;

Kalisch et al., 2020) algorithm (named after Peter and Clark

(Spirtes et al., 1993)) and conditional independence testing. The

result is a directed acyclic graph that condenses statistical

dependence between instrument settings and performance

indicators (Figure 4). The results reveal that, for example, the

spontaneous fragmentation of fluconazole (fragmentation_305)

was associated to voltages in the section that precedes the

collision cell (Lens_2, Lens_2_RF_Ph, Oct_1_RD_Vpp_1,

Cell_Entr). Resolution (both at m/z 200 and 700) seems

governed by the bottom slicer voltage. This is coherent with

the function of the slicer, which flattens the ion beam before it is

pulsed orthogonally in the flight tube. Suboptimal slicer settings

increase differences in the length of the flight path which would

result in different flight times even for ions of identical m/z.

Thereby, it would worsen peak resolution. Instead, most settings

related to the electrospray ionization process (aggregated on the

right part of Figure 4) affect parameters related to signal intensity

such as signal-to-baseline, isotopic accuracy, mass accuracy.

With more data, it could be possible to build a reliable

statistical model to also infer which settings should be

adjusted to achieve or maintain a certain property of the

measurement.

Conclusion

We present the concept of a system suitability testing

platform for monitoring the status of a high-resolution QTOF

mass spectrometer. The setup consists of a QC mixture, an

acquisition method, software to extract a detailed ensemble of

quantitative features describing spectral properties, and a simple

R Shiny front-end for real-time visualization. We operated the

testing platform in a pilot lasting for 21 months and including

153 individual measurements of the QC mixture. We

demonstrated instrument monitoring by a small set of quality

indicators (16 in our case) and the implementation of routines for

trend and outlier detection. The platform, therefore, helps users

in evaluating in depth the instrument readiness to measure

biological samples. In most cases, unsatisfactory results could

be effectively addressed by cleaning the ion optics or a thorough

tuning/calibration of the instrument.

The presented setup offers ample room for further

improvements. In particular, the long-term stability of the QC

mixture should be verified. The feature set could also be

optimized. The feature extraction is generic and easily

transferrable to TOF instruments from other vendors.

Adaptation to high-resolution instruments that use a Fourier

Transform to reconstruct spectra would require more work.

Features related to peak symmetry, detector ringing, baseline

shifts, etc. are irrelevant. In contrast, it would be important to

include features that can capture artifacts of FT spectra:

harmonic peaks, coalescence, etc.

Further, we illustrated how collection of instrument setpoints

and readbacks allows to derive the causal relationships between

instrument settings and instrument performance measured with the

QCmixture. This highlights additional, potential applications of the

testing platform. First, we envisage that the system could

recommend instrument settings to maintain or attain a particular

value of a quality indicator. Second, it could assist in timing

preventive maintenance. We speculate that continuous QC data

collection coupled with predictive models would be able to indicate

when to replace wearable parts, clean specific parts of the ion path, or

maybe even anticipate major failures such as a pump breakdown.

Thus far, the testing platform has been conceived to operate

with data pertaining to a single instrument. Future work will

explore the possibility of using the detailed information provided

by the QC mix to harmonize data collected either on the same
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instrument but at different time points, or on different

instruments of the same type. The canonical approach to

normalize across batches or instruments is to include internal

standards, or standard reference materials. This approach,

however, works only for compounds that are present in the

standard material and fails to capture non-linear effects. We

hypothesize that capturing detailed information on, e.g., baseline,

ion transmission, fragmentation, etc. might help to harmonize

data before normalization by standards can be applied.

Methods

Instrument details

All analyses were done on an Agilent 6550 Q-TOF

instrument, operated in negative ionization and 4 GHz High-

Resolution mode because it matches the configuration that we

use in routine flow injection and LC-MS analysis. The mobile

phase was 60% isopropanol in water (v/v) supplemented with

homotaurine (Sigma-Aldrich, Germany) and Hexakis (1H, 1H,

3H-tetrafluoropropoxy) phosphazine (Agilent) as reference

masses for m/z axis calibration. The solvent flow was 150 μL/

min. All compounds included in the QCmixture (Supplementary

Table S1) were purchased from Sigma-Aldrich (Germany) at the

highest purity available. The injection volume was 1 μl.

Anomaly detection and quality control

We implemented two types of anomaly detection: 1) based on

descriptive statistics, and 2) based on machine learning. Both

approaches require some reference (or training) data to apply

algorithms and determine whether a new quality indicator is

likely to be an outlier or not. Each of the 16 quality indicators of

the new run is evaluated individually, and the total number of non-

outliers serves as the QC run score. Two different types of anomaly

detection suggest different usage scenarios of themonitoring system.

The statistical approach assumes that the instrument preserves

its properties within the period of the study. If the instrument

performance remains the same with only little oscillations,

appropriately, any quality indicator does as well. Thus, measuring

quality indicators repeatedly over time makes it possible to derive

confidence intervals for the expected mean, or the ranges that are

considered as “good” or “bad” for each indicator. In this approach,

we use quantiles to compute such ranges, as soon as enough data is

generated and stored in the database.We set 60measurements of the

QC sample to be enough to classify further values of quality

indicators as “good” or “bad,” i.e., within the expected interval or

not. This number, however, is only empirical and remains a

configurable parameter in the platform.

This approach may not be optimal for longitudinal studies,

because it does not adapt to the changes in the instrument state over

time. Intervals derived for the first N measurements will be applied

to the data forever. Possible effects of instrument aging and

hardware replacements will be ignored. To potentially account

for them and to make the system adaptable, we implemented

another approach based on machine learning. Isolation Forest, an

unsupervised method for outlier detection, is used to re-evaluate all

the entries in the database as soon as a new QC measurement is

acquired. This way, the platform adapts to the gradual temporal

drifts in quality indicators, while still being capable of detecting

anomalies. Because of that, only N = 20 measurements are set as a

minimum number of entries to apply the method.

Both methods’ predictions are corrected for the type of the

quality indicator. For instance, low mass accuracy values are not

treated as outliers, since a small difference between expected and

measured m/z value for an ion is desired. Big signal-to-noise

ratios are not treated as outliers, since high signal-to-noise ratio is

preferable, in general. For other cases, adjustments are made on

top of the aforementioned methods to compensate for artifacts

caused by little data available (i.e., when the total number of QC

samples in the database is still small).

In our experience, both methods to detect anomalies have

shown similar results, when applied to the data systematically

acquired within 21 months. However, in multi-day acquisitions,

we see Isolation Forest to be preferable due to its adaptability and

relative robustness. Isolation Forest is, therefore, a default

method in the platform.

Web service

We used R Shiny framework to implement a web service

providing users with graphical representation of the data and

analytics (Supplementary Figure S2). The layout contains three

tabs: summary, trends and table components. The summary tab

allows users to select a QC run by date and to see how the

corresponding quality indicators are aligned against the full

dataset. Score of the selected run and the distributions for each

metric are displayed. The trends tab depicts temporal progression for

the selected indicator, marking overall run qualities. This allows to see

and analyze each metric’s behavior retrospectively. Linear trends are

computed and visualized as well, which helps detecting gradual loss of

sensitivity, gain of dirt in the system, etc. Finally, the table tab explicitly

shows the values of the quality indicators from the database. Values

classified as “good” or “bad” are colored in green and red, respectively.

Availability

The source code of the SST platform core (raw signal

processing, feature extraction and engineering) is available at

https://github.com/zamboni-lab/SST-platform-core. The QC

database and the Shiny app of the web service are available at

https://github.com/zamboni-lab/SST-platform-shiny.
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