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Noncommunicable diseases (NCDs), such as diabetes and related neurological
disorders, are considered to not be directly transmissible from one person to
another. However, NCDs may be transmissible in vivo through extracellular
vesicles (EVs). A long-term high-fat diet (HFD) can induce a series of health
issues like hyperlipidemia, type 2 diabetes mellitus (T2DM), and diabetic
peripheral neuropathy (DPN) due to insulin resistance. Multiple molecular
signaling changes can stimulate insulin resistance, especially blocking insulin
signaling by increased insulin resistance inducer (phosphorylation of negative
regulatory sites of insulin receptor substrate (IRS) proteins) and decreased
tyrosine phosphorylation of insulin receptor substrate (phosphorylation of positive
regulatory sites of IRS), thus leading to reduced phosphorylation of AKT enzymes.
Current efforts to treat T2DM and prevent its complications mainly focus on
improving insulin sensitivity, enhancing insulin secretion, or supplementing
exogenous insulin based on a common assumption that insulin resistance is
noncommunicable. However, insulin resistance is transmissible within multiple
tissues or organs throughout the body. Exploring the regulatory roles of EVs in
developing insulin resistance may provide novel and effective preventive and
therapeutic strategies.
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Introduction

The balance between energy consumption and intake is crucial to human health. Excessive
energy intake can result in multiple metabolic diseases, including type 2 diabetes mellitus
(T2DM) (Anderson et al., 2003), due to high-level blood glucose, deficient insulin secretion, and
insulin resistance. Insulin resistance also can be induced by multiple factors, such as heredity,
aging, and inflammation. The progression from insulin resistance to T2DM may take decades.
Current treatments of insulin resistance or T2DM focus on promoting insulin sensitivity,
improving islet β-cell function to enhance insulin secretion, or supplementing exogenous
insulin. It is generally recognized that obesity can develop into T2DM with a long-term process
of chronic excessive energy intake–obesity–insulin resistance–T2DM (Weyer et al., 1999;
Leitner et al., 2017). The transmission of insulin resistance is also involved and critical in
the development course of T2DM (Wang et al., 2017; Ying et al., 2017). Long-term
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hyperglycemia can induce chronic debilitating complications due to
the toxicity of high-level glucose (Van den Berghe, 2004). Therefore,
maintaining blood glucose levels is crucial to health. Usually, obesity is
a common inducer of early T2DM, resulting from high caloric
consumption and an irregular diet. Binge eating disorder is
characterized by repeated gluttony, leading to a high incidence of
chronic hyperglycemia among early diabetic patients (Allison et al.,
2007; Abbott et al., 2018). To protect the body from glucose toxicity,
the pancreas can produce a large amount of insulin to reduce blood
glucose levels. A vicious cycle resulting from binge eating can lead to
hyperinsulinemia and high serum insulin levels can cause a sense of
hunger, thereby promoting the generation and accumulation of
adipose tissue. During this process, insulin resistance gradually
develops, as initially reflected in impaired glucose tolerance, then
relative insulin deficiency, and eventually fasting hyperglycemia
(Weyer et al., 1999). However, the exact mechanism for
transmitting insulin resistance from tissues and organs to the
whole body is still unclear. Recent evidence suggests that the
factors for suppressing insulin signaling can be transmitted
between cells via extracellular vesicles (EVs), thereby changing the
definition of insulin resistance from a noncommunicable preclinical
health condition to a transmissible pathological status (Dibaba et al.,
2017; Ying et al., 2017).

EVs are particles delimited by a lipid bilayer and naturally
released by cells (Théry et al., 2018). EVs can be classified into two
major categories: microvesicles and exosomes. Microvesicles are
formed by the budding of the plasma membrane, with particle sizes
ranging from 50 nm to 1,000 nm. Exosomes are released from
multivesicular endosomes (MVEs) after fusion with the plasma
membrane. Functional studies of EVs have been spurred by their
ability to transport various types of biomolecules, such as RNA,
proteins, and DNA, to their recipient cells (Kapogiannis et al.,
2015). Due to the similar biochemical properties and the
overlapping size, it is often difficult to distinguish the functions
of EVs (Kowal et al., 2016; Jeppesen et al., 2019). Currently, there is
a lack of purification methods for the quantitative separation of
various EV subclasses, making the assignment of functional
properties to specific EV subtypes challenging. Therefore, there
are no systematic studies on the roles and corresponding
mechanisms of EVs in the development and transmission of
insulin resistance. Recent studies have preliminarily confirmed
that EVs can regulate the progression of insulin resistance (Choi
et al., 2015). EVs from different cells may have opposite effects due
to their different cargoes. Neutral ceramidase-enriched exosomes
can prevent insulin resistance induced by palmitic acid, while the
injection of exosomes from obese mice into healthy mice can lead to
the development of insulin resistance (Deng et al., 2009; Zhu et al.,
2016). Hence, if insulin resistance is treated as a transmissible
pathological condition that can spread from cell to cell, the
progression of T2DM could be inhibited by blocking its
transmission.

In this article, we discuss the mechanisms that drive cell–EV–cell
axis formation, thus causing insulin resistance, a point that has rarely
been discussed in previous studies. Various factors may lead to insulin
resistance, such as phosphorylation of most serine sites of insulin
receptor substrate (IRS) proteins. It has been demonstrated that the
phosphorylation of different serine residues has the opposite effect on
insulin signaling (Copps andWhite, 2012). Here, we aim to discuss the
function of the cell–EV–cell axis in the development of

noncommunicable diseases (NCDs). Thus, all the “p-s-IRS” in this
paper represent the phosphorylation of negative regulatory sites of IRS
proteins. The word “exosome” has been used in the article, but it is
noted that the term small extracellular vesicle (EV) is more precise and
consistent with the latest findings in the EV field.

Insulin resistance can be transmitted via
the cell–EV–cell axis to protect against
stress-induced cellular damage

Insulin resistance is a cellular protective
mechanism against glucose-induced ROS

The lesser sensitivity or complete nonresponsivity of cells to
insulin is termed insulin resistance, a typical symptom at the early
stage of T2DM. Insulin resistance can occur in multiple tissues and
organs throughout the body and can be induced by a variety of
inducers such as inflammation and obesity. Physiological stress can
lead to a variety of cell dysfunctions, and some of these changes are
protective mechanisms for improving cell survival through insulin
resistance (Ye, 2013). Chronic exposure to hyperglycemia can lead to
cellular dysfunction, termed glucotoxicity, which may become
irreversible over time (Robertson et al., 2003; Staels, 2017). In
addition to being an energy source, blood glucose can also result in
side effects due to its toxicity. Glucose toxicity is reflected in its
capacity to induce protein glycosylation (Burd, 2019). Glucose as a
polyhydroxy aldehyde can react with amino residues of proteins to
form fructosamine bonds and eventually become advanced glycation
end products (AGEs) after a series of reactions. AGEs are associated
with various diabetic complications such as diabetic retinopathy,
kidney disease, and neurological diseases (Beisswenger, 2012).
Therefore, the body can execute corresponding responses
immediately by secreting insulin to reduce blood glucose levels and
protect the body from glucose toxicity upon the high-level glucose
stimulation.

Glucose is metabolized in cells into glyceric acid,
glyceraldehyde, and acetone, thereby subsequently entering the
tricarboxylic acid cycle and generating ATP through oxidative
phosphorylation to provide energy for various physiological
activities of cells. However, when a large amount of glucose
enters cells, glycolysis is not able to consume enough glucose,
and the glyceraldehyde metabolism is inhibited, thus eventually
leading to the activation of nicotinamide adenine dinucleotide
phosphate (NADPH) oxidases (NOX) (Han et al., 2012). NOX is
a membrane protein widely distributed in tissues and organs of the
body and includes multiple isoforms, such as NOX1, NOX2, NOX3,
NOX4, and NOX5. NADPH is reduced after being utilized as the
substrate of NOX2. Under the catalysis of NOX2, the electron can
be transferred to O2 from NADPH on the cytosolic side of the
phagosomal membrane, thereby resulting in the increase of O2

−.
Thus, NOX enzymes are the major source of ROS (Spencer and
Engelhardt, 2014). NADPH is consumed during this process as the
major antioxidant factor in cells and can reduce H2O2 to promote
resistance to oxidative stress. Therefore, excessive glucose intake
leads to the generation and accumulation of ROS (Han, 2016; Jiang
et al., 2018), which can induce pathological oxidative damage in
many tissues and cause the retrogradation of redox signaling in cells
(Murphy, 2008). Oxygen free radicals, a type of ROS, are chemical
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species with an unpaired electron produced from molecular oxygen
(Turrens, 2003). Both endogenous and exogenous free radicals can
negatively impact bioactive factors such as nucleic acids, lipids, and
proteins by altering the normal redox status, thus increasing
oxidative stress. Free radical-dependent oxidative stress is
involved in diabetes (Phaniendra et al., 2015).

The function of the cell membrane depends on the fluidity and
physical state of the membrane, which is determined by the membrane
lipid acyl chain profile. The acyl chains of lipids can be peroxidized by
ROS, thereby reducing the fluidity of the cell membrane and leading to
abnormal membrane function (Watanabe et al., 1990; Eze, 1992). ROS
interferes with the normal physiological activities of cells and leads to
the decreased expression of insulin-related genes and proteins, such as
PDX-1 and MafA (Matsuoka et al., 1997; Bensellam et al., 2012).
Hence, in the case of excessive glucose intake-induced insulin
resistance, the cells must have a strong requirement to reduce the
absorption of glucose to protect the normal function of the membrane
(Ye, 2013). Insulin resistance is the hallmark of T2DM, associated with
obesity induced by excessive energy intake (Veech, 2004). At the
molecular level, insulin resistance is a complex pathological condition
consisting of serious pathological phenomena, such as suppressed
insulin receptor (IR), down-regulated p-AKT, or up-regulated p-s-IRS
(Tanti and Jager, 2009; Tonks et al., 2013). It has been widely accepted
that excessive generation and accumulation of ROS will significantly
induce insulin resistance (Houstis et al., 2006). High uric acid-induced
ROS can significantly inhibit the phosphorylation of AKT, promote
the activation of p-s-IRS, and stimulate insulin resistance in
differentiated 3T3L1 adipocytes and mice (Zhu et al., 2014;
D’Apolito et al., 2010). Nonetheless, the mechanism of how ROS

blocks insulin signaling is still unclear. Recent studies have
demonstrated that ROS is an induction factor for EV secretion
(Hedlund et al., 2011; Aswad et al., 2014; Atienzar-Aroca et al.,
2016). O2

− and H2O2 are two major stimulators of cell damage. EV
secretion promotes a significant increase against H2O2-induced stress
in Jurkat and Raji cells (Hedlund et al., 2011). Therefore, ROS may
induce insulin resistance and stimulate the secretion of EVs in a
feedback manner (Figure 1).

EVs form a transport axis between cells to
spread insulin resistance

It has been shown that cells will form a signal axis through EVs
due to stress-induced cellular damage. Donor cells can secrete EVs in
response to the signaling of EVs from recipient cells (Crewe et al.,
2018). In response to the signals received from EVs, endothelial cells
secrete Caveolin1-containing EVs that are believed to be transported
to specific adipocytes lacking the Caveolin1 protein. Furthermore, the
process of Caveolin1 transfer relies mainly on EV transmission.
When GW4869 inhibits EV secretion, the transmission of
Caveolin1 can be significantly reduced (Crewe et al., 2018).
However, a similar EV-dependent signaling axis can be formed
under a state of excessive glucose intake. Excessive glucose not
only promotes the generation and accumulation of ROS but also
leads to the synthesis of lipids in cells (Parekh and Anania, 2007),
thereby enhancing the secretion and transportation of adiponectin.
Moreover, fatty acid-induced adiponectin transportation can be
transmitted via EVs (DeClercq et al., 2015). Adiponectin is an

FIGURE 1
High blood glucose levels lead to ROS generation and accumulation, and the signal exchange through the cell–EV–cell axis promotes cell survival by
suppressing apoptosis.
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adipokine involved in regulating the balance of glucose and lipid
metabolism. It can reduce the oxidized LDL-induced ROS in
endothelial cells (Ouedraogo et al., 2006; Tao et al., 2014). It has
been demonstrated that exosomes with abundant adiponectin
promote the release of interleukin-6 (IL-6) and tumor necrosis
factor-α (TNF-α) from adipocytes (Zhang et al., 2016). IL-6 can
regulate the inflammatory response and impair insulin signaling.
TNF-α is a pro-inflammatory cytokine involved in systemic
inflammation. TNF-α gene knockout mice have a higher
sensitivity to insulin in an obese state (Hotamisligil, 1999). The
secretion of IL-6 and TNF-α will reduce the translocation of IRS-1
and GLUT4, thus leading to insulin resistance (Uysal et al., 1997;
Rotter et al., 2003). Furthermore, adipocyte-derived EVs have been
proven to be the major immunomodulatory effectors for the secretion
of insulin resistance factors (Kranendonk et al., 2014). Thus, excessive
glucose-induced ROS may activate a cell–EV–cell signal axis to help
cells under ROS stress gain insulin resistance factors.

EVs play a critical role in the development of
diabetic complications such as DPN

evere complications often accompany diabetes, and
neuropathy is the most common (Feldman et al., 2019), leading
to many patient deaths. The treatment of DPN can significantly
improve patient quality of life. The mechanism of DPN
progression is associated with a variety of signaling pathways.
Recent studies have shown that EVs have a significant influence on
DPN, either positive or negative. Mesenchymal stromal cell
(MSC)-derived exosomes significantly increased nerve
conduction and inhibited the Toll-like receptor (TLR)4/NF-κB
signaling pathway in diabetic mice with DPN (Fan et al., 2020).
Exosomes enriched with miR-146a enhanced the therapeutic
efficacy of DPN in diabetic mice (Fan et al., 2021). However, as
we discussed previously, the function of EVs depends on the cargo
they carry. An example is provided by the interaction of Schwann
cells with nerve cells. Schwann cells significantly impact nerve
cells, such as helping axons form typical large-caliber axons via
controlling the number of neurofilaments and elevating the
phosphorylation state of neurofilaments. EVs mediate
intercellular communication between Schwann cells and nerve
cells by exchanging their biomaterials. Exosomes derived from
high-glucose-stimulated Schwann cells contain high levels of miR-
28, miR-31a, and miR-130a, which may contribute to the
development of DPN (Jia et al., 2018). Thus, nerve cells may
also form a cell–EV–cell axis in response to the stimulation of
multiple physiological changes.

Factors inhibiting insulin signaling can be
transmitted via EVs

HFD-induced insulin resistance is due to
down-regulated p-y-IRS and up-regulated
p-s-IRS

In addition to obesity and other causes, at the molecular level, the
abnormality of key proteins in the insulin signal pathway may affect
cell sensitivity to insulin, such as the decrease in phosphorylated

AKT, the up-regulation of phosphorylated IRS at the serine site
(p-s-IRS), and the down-regulation of phosphorylated insulin
receptor substrate at the tyrosine site (p-y-IRS) (Gao et al., 2002).
Under normal circumstances, a cascade of reactions is activated after
insulin binds to its cell surface receptors and causes receptor
autophosphorylation. Phosphorylated insulin receptors will recruit
their corresponding substrates to accomplish the phosphorylation at
the tyrosine site, thereby further activating PI3K and leading to the
phosphorylation of AKT. In contrast, p-s-IRS can activate
subsequent signal pathways and inhibit p-y-IRS, thereby resulting
in insulin resistance (Zhu et al., 2011). Multiple factors for inducing
p-s-IRS can result in the increase of free fatty acids, cytokines,
angiotensin II, endothelin-1, amino acids, cellular stress, and
hyperinsulinemia (Gual et al., 2005). In addition, p-s-IRS can
promote a decrease in tyrosine kinase activity (Schmelzle et al.,
2006). Recent studies have shown that EVs can transmit these factors
that block the insulin signal pathway between cells (Kapogiannis
et al., 2015).

Ubiquitinated IR and IRS packed into EVs can
be released into the extracellular
environment

Many cells secrete EVs in an evolutionarily conserved manner.
There is a wide range of EVs, including classical exosomes,
nonclassical exosomes, classical microvesicles, large oncosomes,
apoptotic vesicles, and autophagic extracellular vesicles (Jeppesen
et al., 2019). Although the biogenesis of microvesicles and
exosomes involves different pathways, they have similar
morphology, compositions, and functions (Van Niel et al.,
2018). As the medium for information transfers between cells,
EVs secreted by different cells carry different substances and have
multiple targets to cause different effects on recipient cells.
Exosomes secreted by renal carcinoma cells will spread to other
renal carcinoma cells and eventually cause resistance to sunitinib
via transporting lncARSR (Qu et al., 2016). However, exosomes
containing inflammasomes after central nervous system (CNS)
injury can execute the protection of CNS from injury by activating
the innate immune response of peripheral tissue (de Rivero
Vaccari et al., 2016). Thus, to explore the functions of EVs, the
substances in EVs must be studied. Exosomes secreted by T2DM
patients have been found to contain p-s-IRS acting as an inhibitor
to the insulin signal pathway (Kapogiannis et al., 2015). The most
immediate factor for inducing EV formation is the abnormal
expression or modification of ubiquitinated proteins. Recent
studies have shown that the phosphorylation of IRS-1 at the
serine site can lead to its degradation, followed by
ubiquitination (Kim et al., 2012; Yoneyama et al., 2018).
However, proteins monoubiquitinated on the cell surface are
often transferred to multivesicular bodies (MVBs) (Buschow
et al., 2005; Gual et al., 2005). Sorting machineries, such as
transmembrane proteins and the endosomal sorting complex
required for transport (ESCRT), can generate both
microvesicles and exosomes (Akers et al., 2013). Exosomes are
present in MVBs as intraluminal vesicles (ILVs) before release into
the extracellular environment (Kowal et al., 2014; Wang et al.,
2020). The MVBs from the early-stage endosomes and the
formation of ILVs are involved in specific sorting machineries.
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These sorting machineries can separate the cargoes into a specific
area of the MVE as the microdomain and germinate small
membrane vesicles containing isolated cargoes (Kalra et al.,
2016). The ESCRT complex is the driver of membrane
invagination and budding to accomplish exosome formation in
a certain order (Meldolesi, 2018). The ubiquitinated
transmembrane cargoes are confined to the microdomain of the
MVE by ESCRT-0 and ESCRT-I. Then, the ESCRT-III complex is
recruited by ESCRT-II to conduct microdomain formation
(Hurley, 2008). Transmembrane proteins are involved in
sorting ESCRT-dependent and ESCRT-independent vesicle
contents, such as transmembrane 4 superfamily (TM4SF) (Gual
et al., 2005). When MVBs are formed, some are transported to
lysosomes for degradation rather than fusion with the plasma
membrane (Davies et al., 2009). As a calcium-dependent
phospholipid-binding protein, Annexin A2 (Anxa2) can be
involved in diverse cellular processes. Anxa2-containing MVBs
can fuse directly with plasma membranes rather than be degraded
by lysosomes (Valapala and Vishwanatha, 2011), and AnxA2 is
highly expressed in diabetic patients (Bin et al., 2012). IR and IRS
labeled with ubiquitin may be transported to MVBs rather than be
degraded (Song et al., 2013; Zhao et al., 2018) (Figure 2). Thus,
obesity-induced p-s-IRS or p-s-IR may be released to the

extracellular microenvironment by EVs, which makes insulin
resistance a transmissible pathological condition.

The transmission of insulin resistance
can be prevented by altered EV cargoes
induced by exercise and meditation

T2DM is a metabolic disease caused by excessive energy
intake-induced obesity and insulin resistance. It is widely
accepted that exercise can promote body weight loss by
accelerating excessive energy consumption and increasing the
insulin sensitivity of cells (Kjøbsted et al., 2017). However,
exercise also can accomplish health promotion or disease
rehabilitation via EVs (Bertoldi et al., 2018). Multiple tissues
release EVs following exercise (D’Souza et al., 2018), and
exercise can up-regulate p-y-IRS (Heled et al., 2003; Wrann
et al., 2013). Recent studies have demonstrated a significant
increase in the amount of EVs during exercise, which restores
to pre-exercise level after 4 h. Moreover, EVs induced by exercise
tend to be transported to the liver (Whitham et al., 2018; Li et al.,
2022). Insulin resistance in the liver is a critical inducement of
T2DM (Perry et al., 2014), and pharmacological intervention of

FIGURE 2
Diagram depicts that p-s-IRS is selectively loaded into EVs and released to the extracellular environment.
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glucose metabolism in the liver is an important treatment strategy
for T2DM (Lin et al., 2000; Shaw et al., 2005). Hyperinsulinemia is
a common symptom of T2DM, leading to decreased insulin
signaling in the liver and skeletal muscle by increasing the
p-s-IRS level, thereby resulting in insulin resistance (Ueno
et al., 2005). Exercise can reduce serum insulin, improve
p-y-IRS, and reduce p-s-IRS (Ngo et al., 2002; Heled et al.,
2003; Ropelle et al., 2006). Furthermore, exercise-derived
exosomes can improve the symptoms of T2DM (Houmard
et al., 2004; Safdar et al., 2016). Thus, exercise may block the
EV-dependent transmission of insulin resistance and reverse its
spread. Similarly, pioglitazone (PIO), a common T2DM drug, can
reverse insulin resistance by altering exosome cargo compositions

(Kubota et al., 2006; Lopez and Pratley, 2018). The level of p-y-IRS
can be improved upon PIO treatment (Hammarstedt et al., 2005),
with a similar effect as exercise intervention (Figure 3).

While there has been increased research on EV-related NCD, it is
important to note that different sample types have been used in
various studies, as summarized in Table 1. As indicated in Table 1,
most studies have used either cells or animal samples. Fewer studies
have used clinical samples, highlighting the need for greater efforts to
analyze clinical samples in future work.

Conclusion

The current studies on the development of insulin resistance
have mainly focused on rescuing insulin resistance rather than
suppressing its transmission in the body. Although studies on EVs
for regulating the development and progression of insulin
resistance have been initiated, the accurate regulatory roles of
EVs in the transmission of insulin resistance and underlying
mechanisms are still unclear. EVs, the information-exchanging
carriers between cells, are involved in multiple pathological signal
pathways. Exploring the regulatory roles of EVs in the
development and progression of insulin resistance can not only
help us understand the mechanisms for blocking the transmission
of insulin signaling but also provide us with potentially effective
EV-based preventive and therapeutic strategies. However, the
functions of EVs depend on their compositions, such as p-s-IRS
and p-y-IRS; therefore, exercise or medication interventions may

FIGURE 3
EVs are the information carriers between cells. Excessive energy intake will lead to insulin resistance transmitted through EVs; exercise and meditation
can reverse insulin resistance.

TABLE 1 Summary of EV-related NCD studies and their sources of experimental
samples.

Source Reference

Cell Wang et al. (2017); Ying et al. (2017); Choi et al. (2015); Kowal et al.
(2016); Zhu et al. (2016); Jeppesen et al. (2019); Hedlund et al. (2011);
Aswad et al. (2014); Atienzar-Aroca et al. (2016); Crewe et al. (2018);
DeClercq et al. (2015); Qu et al. (2016); Buschow et al. (2005); Valapala

and Vishwanatha (2011); Keryer-Bibens et al. (2006)

Animal Ying et al. (2017); Choi et al. (2015); Deng et al. (2009); Aswad et al.
(2014); Crewe et al. (2018); Qu et al. (2016); Bertoldi et al. (2018);

Whitham et al. (2018); Eguchi et al. (2016)

Clinical Kapogiannis et al. (2015); Kowal et al. (2016); Jeppesen et al. (2019); de
Rivero Vaccari et al. (2016); Akers et al. (2013); Wang et al. (2020);

D’Souza et al. (2018); Eguchi et al. (2016)
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reverse insulin resistance by blocking the transmission of insulin
signaling by altering the cargoes of EVs (Figure 3).
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