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The pathogenesis and vital factors of early and progressive stages of stomach

adenocarcinoma (STAD) have not been fully elucidated. In order to discover novel

and potential targets to guide effective treatment strategies, a comprehensive

bioinformatics study was performed, and the representative results were then

validated by quantitative polymerase chain reaction (qPCR) and

immunohistochemical (IMC) staining in clinical samples. A total of 4,627, 4,715,

and 3,465 differentially expressed genes (DEGs) from overall-, early-, and

progressive-stage STAD were identified, respectively. Prognostic models of 5-

yearOSwere established for overall-, early-, and progressive-stage STAD, andROC

curves demonstrated AUC values for each model were 0.73, 0.87, and 0.92,

respectively. Function analysis revealed that mRNAs of early-stage STAD were

enriched in chemical stimulus-related pathways, whereas remarkable enrichment

ofmRNAs in progressive-stage STADmainly lay in immune-related pathways. Both

qPCR and IHC data confirmed the up-regulation of IGFBP1 in the early-stage and

CHAF1A in progressive-stage STAD compared with their matched normal tissues,

indicating that these two representative targets could be used to predict the

prognostic status of the patients in these two distinct STAD stages, respectively.

In addition, seven mRNAs (F2, GRID2, TF, APOB, KIF18B, INCENP, and GCG) could

be potential novel biomarkers for STAD at different stages from this study. These

results contributed to identifying STAD patients at high-risk, thus guiding targeted

treatment with efficacy in these patients.
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1 Introduction

Gastric cancer (GC) is one of the most commonmalignancies

worldwide. Although many advances of systemic treatment in

GC had been made over the past decades, it remained a concern

that the majority of patients showed strong resistance to many

treatment strategies (Rihawi et al., 2021), which resulted in a

great health burden.

In GC, stomach adenocarcinoma (STAD) was the most

common histological type (about 95%), and clinical

guidelines had addressed differences in STAD therapeutic

strategies and outcomes within different clinicopathological

stages (Ajani et al., 2017). Optimally, patients with early-

stage STAD undergo limited resection through endoscopies,

while patients with advanced STAD require surgeries and

multidisciplinary adjuvant treatments (Ajani et al., 2017).

The 5-year survival rate for early-stage STAD (according to

TNMmalignancy classification) is 95%; however, the median

survival time for patients with advanced-stage STAD was

only 9–10 months (Ajani et al., 2016). Therefore, spotting

high-risk STAD patients and choosing the appropriate

treatment at the early time was crucial for prolonging

survival time in these patients. Emerging evidence had

revealed that biomarkers contributed to molecular

classification, predicting prognosis, and driving precision

therapy approaches in STAD population (Joshi and

Badgwell, 2021). For example, Jiang et al. found that

ITGB1-DT was apparently up-regulated in STAD tissues

and was connected with the T stage, therapeutic effect,

and poor prognosis of STAD patients, while suppression

of ITGB1-DT could inhibit cell proliferation, invasion, and

migration of STAD cells (Jiang et al., 2022). Furthermore,

bioinformatics analysis can be used to screen key immune-

related genes (IRGs) and pathways significantly linked to

STAD therapy. For example, Xia et al. constructed an

immune-related risk signature model consisting of

BMP8A, MMP12, NRG4, S100A9, and TUBB3, which

were associated with prognosis in patients and could be

the potential biomarkers for immunotherapy in STAD

(Xia et al., 2022). Nevertheless, the pathogenesis and vital

factors of early- and progressive-stage STAD had not been

fully highlighted; it is of importance to identify novel and

promising targets and Cox model, elucidate the mechanism

of STAD, and provide a candidate diagnosis option in

patients with distinct STAD stages.

mRNA is single-stranded ribonucleic acid that carries

genetic information to guide protein synthesis, and it has a

central role in the pathogenesis of various cancers, including

STAD. Numerous researchers underlined that mRNA had

diagnostic and prognostic values in clinical practice. For

example, Huang et al. demonstrated that the expression

level of sirtuin-4 (SIRT4) was reduced in STAD tissues

compared with normal gastric tissues and was also

correlated with pathological differentiation and tumor-

infiltrating depth of STAD (Huang et al., 2015). Lu et al.

demonstrated that metastasis-associated lung

adenocarcinoma transcript 1 (MALAT1) was up-regulated

in MGC-803 cells, and the increased MALAT1 could

promote the metastasis of cancer cells, while the decreased

MALAT1 could suppress the progression and proliferation

of STAD (Lu et al., 2019). BicC family RNA-binding protein

1 (BICC1), which codes an RNA-binding protein, proved to

be significantly correlated with grade, TNM stage, invasion

depth, and even immune infiltrates in STAD (Zhao et al.,

2020). Taken together, these results indicated the key roles of

mRNAs as the targets helping tumor diagnosis and targeted

treatment.

The extensive applications of gene chips and high-

throughput sequencing technologies in cancer research had

brought omics data explosion, and STAD is no exception.

Integrated bioinformatics analysis of publicly available data

of STAD improves the insight into the underlying molecular

mechanism of tumorigenesis, and it also contributes to

identifying potential tumor biomarkers and drug targets

for STAD. Depending on these analyses in mRNAs, we

distinguished STAD patients from distinct stages and

accurately predicted their clinical outcomes by

constructing prognostic models. Function annotations and

pathway enrichment of mRNA signatures revealed that

different STAD stages were dominated by distinct key

mechanisms. Representative biomarkers in early and

progressive stages were measured in clinical samples by

qPCR and IHC detections. The overall bioinformatics

analysis procedure is summarized in Figure 1. This study

highlighted burgeoning evidence supporting some mRNAs as

biomarkers for the diagnosis of patients in different STAD

stages, which could form the basis of precision medicine

strategies in the future.

2 Materials and methods

2.1 Data preparation and DEGs
identification

mRNAs expression and clinical data of 407 STAD total

samples were downloaded from The Cancer Genome Atlas

(TCGA) database (http://portal.gdc.cancer.gov/), including

32 paracancer and 375 tumor samples. mRNAs expression

and clinical data of early-stage (stages I and II) and

progressive-stage (stages III and IV) STAD were classified

as two independent datasets. The early-stage STAD samples

included 21 paracancers and 164 tumor samples, while the

progressive-stage STAD samples included 10 paracancers

and 188 tumor samples. These two datasets were obtained

from the 407 STAD total samples after the deletion of
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24 samples without clinical staging information. All these

data of STAD samples were downloaded in March 2021.

Based on the three sets of STAD sample groups: overall-,

early-, and progressive-stage STAD samples; differentially

expressed genes (DEGs) were identified by analyzing the

expression profile with edgeR R language package (Version

4.0.2) according to the cutoff criteria of Padj < 0.05, |log2FC| >
1. Adjusted p-value took into account the false discovery rate

(FDR), and the volcano maps of DEGs in these three datasets

were generated.

2.2 Univariate Cox regression analysis

The survival package of R software was adopted to conduct the

univariate Cox proportional hazard regression assessment of DEGs

in the overall-, early-, progressive-stage STAD groups. With the

criteria p < 0.05, overall survival-related mRNAs (mRNAs-OS) in

each stage were obtained, which was related to the survival and

prognosis of STAD patients.

2.3 PPI network construction and key
mRNAs identification

To further identify the key mRNAs-OS in all three stages

of STAD, the Search Tool for the Retrieval of Interacting

Genes (STRING, http://string-db.org) was applied to analyze

the mRNAs-OS and obtain protein interaction data. Proteins

with a minimum required interaction score of 0.400 or above

were selected to create a protein–protein interaction (PPI)

network, in which the nodes with network interruption were

hidden. The PPI network and its combined scores were then

imported into Cytoscape software (Version 3.6.1, https://

cytoscape.org/), and potential key mRNAs were identified

using CytoHubba, a plug-in in Cytoscape software.

FIGURE 1
Analytic procedures of the study.
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According to the node degree, the top 40 candidate mRNAs

selected in each stage were displayed for further analysis.

2.4 Establishment of three Cox
proportional hazards regression models

The package “surminer” of R was applied to perform

multivariate Cox proportional hazard regression analysis on

those identified top mRNAs-OS, and subsequently, a

prognostic model consisting of mRNAs-OS related to the

patients’ prognosis (mRNAs-PRO) was constructed for the

overall-, early-, progressive-stage STAD. Among them,

mRNA-PRO with p < 0.05 was regarded as an independent

prognostic factor of STAD. Based on the expression of mRNAs-

PRO, the risk score of individual patients was computed as

follows: risk score = Exp (mRNA1) × β1 + Exp (mRNA2) × β2
+ Exp (mRNA3) × β3 +... + Exp (mRNAn) × βn. According to the
median risk score, the STAD patients were clustered into high-

risk and low-risk groups, and 5-year survival rates of the high-

and low-risk patients were calculated for each prognostic model.

Then, a risk score curve was drawn to distinguish the risk score

differences between two groups of patients. A survival status map

was drawn to reflect the survival status of each patient. A

heatmap was drawn to exhibit the differences of the

expression levels of the mRNAs-PRO in the high- and low-

risk groups. A survival curve was drawn to display the 5-year

survival rate in the high- and low-risk groups. An ROC curve

showed by the area under the curve (AUC) of the model was

drawn to evaluate its accuracy and reliability of predicting

prognosis in each stage.

2.5 Functional enrichment and pathway
analysis

To understand the underlying biological significance of

mRNAs-OS in overall-stage STAD, GO function annotations

including cellular component (CC), biological process (BP), and

molecular function (MF) based on the FunRich (http://www.

funrich.org/) database, and KEGG pathway enrichment based on

KOBAS (http://kobas.cbi.pku.edu.cn/kobas3/) database were

then analyzed. A p-value < 0.05 was set as the threshold to

determine the crucial functions or pathways closely related to

STAD in the overall stage. Furthermore, gene set enrichment

analysis (GSEA) was carried out on the mRNAs of early- and

progressive-stages STAD in order to explore the critical functions

and pathways of the mRNA signatures in these two stages. The

top three terms of BP, CC, MF, and KEGG pathways were

presented. The threshold in this step was set based on net

enrichment score (NES) and p-value. Gene sets with |NES| >
1 and p < 0.05 were considered to be statistically significantly

enriched.

2.6 Diagnostic capability evaluation of
prognostic models

In order to compare predictive accuracy of the age, gender,

stage, and risk score for individual prognosis in overall-, early-,

and progressive-stage STAD, the univariate Cox proportional

hazards regression analysis was performed with the criterion of

Ps < 0.05. Moreover, multivariate Cox proportional hazards

regression analysis was applied to identify whether the age,

gender, stage, and risk score could be independent prognostic

factors in STAD patients. In addition, in order to investigate the

prognostic values of mRNAs-PRO in different stratifications of

other clinical prognostic variables, the overall-, early-, and

progressive-stage STAD patients were clustered into different

subgroups of age (≥65 or <65), gender, T stage, M stage, and

N stage. The Kaplan–Meier survival curves were used to

evaluate the prognostic capacity difference of three

prognostic Cox models in STAD patients under different

clinical variables.

2.7 Quantitative real-time polymerase
chain reaction and immunohistochemical
staining

A total of 30 pairs of cDNA tissue chips (including 13 early-

stage pairs and 17 progressive-stage pairs), 84 pairs of tissue

microarrays (including 32 early-stage pairs and 52 progressive-

stage pairs), and the related clinicopathological information of

these matched STAD and normal samples were obtained from

Shanghai OUTDO Biotech Co., Ltd. (Shanghai). All patients

were pathologically diagnosed as STAD according to American

Joint Committee on Cancer (AJCC) criteria. The samples were

obtained following written consent in accordance with an

established protocol approved by Institutional Review Board

of Biobank in Shanghai Outdo Biotech Co., Ltd.

QPCR was used to detect the expression levels of insulin-like

growth factor binding protein-1 (IGFBP1) and chromatin

assembly factor 1 subunit A (CHAF1A) in 30 pairs of cancer

and normal samples (detailed clinical data are seen in

Supplementary Table S1), and GAPDH was used as a

reference gene. Total RNA was extracted from tissues and

cells by the TRIzol reagent (Sigma, America). The cDNA was

obtained by reverse transcription of RNA using PrimeScriptTM

RT Master Mix (perfect real time) (Takara, Japan) according to

the protocol of manufacturer. The expressions of IGFBP1 and

CHAF1A were determined by the protocol of the ChamQ

Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China),

according to the manufacturer’s protocol. The primers used in

this study were as follows: IGFBP1, forward: 5′-GCATTTCTG
CTCTTCCAAAG-3′, reverse: 5′-GCAACATCACCACAGGTA
G-3’; and CHAF1A, forward: 5′-AAAGGAGCAGGACAGTTG
GA-3′, reverse: 5′-CTGGAAGGGACTTGATTTGC-3’.
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IHC was conducted to detect the protein levels of IGFBP1 and

CHAF1A in 84 pairs of cancer and normal samples (detailed clinical

data are seen in Supplementary Table S2), according to standard

procedures by two independent pathologists blinded to the study.

Based on proportion and staining intensity of positive stained cells,

expression levels of IGFBP1 and CHAF1A were accessed semi-

quantitatively (Proteintech, China). Proportion was evaluated using

semi-quantitative criterion: 0, (no staining); 1, minimal (< 10%); 2,

moderate (10–50%); and 3, diffuse (> 50%) staining cells. Staining

intensity was also scored as 0 (negative); +1 (weak); +2 (moderate);

and +3 (strong). Taken together, the final expression score of each

case, considering both proportion and staining intensity, was given

as 0+ (0), negative; 1+ (1 or 2), weakly positive; 2+ (3 or 4),

moderately positive; and 3+ (5 or 6), strongly positive. The

statistical analysis was performed using a software package (SPSS,

version 19.0, Chicago, IL, United States). Clinical pathological

features and expression data of representative targets were

analyzed using Pearson’s chi-square and likelihood ratio tests. A

level of p < 0.05 was considered statistically significant.

3 Results

3.1 Differential expression analysis

A total of 4,627 DEGs were identified from the overall stage

of STAD, composed of 2,445 up-regulated mRNAs and

2,182 down-regulated mRNAs (Figure 2A; Supplementary

Table S3). In addition, 4,715 DEGs were distinguished from

early-stage STAD, in which 2,542 DEGs were remarkably up-

regulated and 2,173 DEGs were notably down-regulated

(Figure 2B, Supplementary Table S3). A total of 3,465 DEGs

were detected from progressive-stage STAD, composed of

1,493 DEGs up-regulated mRNAs and 1972 down-regulated

mRNAs (Figure 2C, Supplementary Table S3).

Intersections between overall- and early-stage, overall- and

progressive-stage, and early- and progressive-stage STAD

provided 4,059, 2,850, and 2,540 overlapping signatures,

respectively. Overlapping of target DEGs of all three stages in

STAD obtained 2,526 consensus mRNAs (Figure 3A,

Supplementary Table S4).

Interestingly, six mRNAs, including SCGB3A1, SRARP,

MUC5B, GABRB1, CNMD, and KRT27, were all up-regulated

in early-stage STAD but down-regulated in progressive-stage

STAD, while these targets were not significantly different

when brought into overall STAD samples (Supplementary

Table S4).

3.2 Cox proportional hazards regression
model of DEGs

Univariate Cox regression analysis identified 504, 430, and

193 mRNAs-OS for the overall-, early-, and progressive-stage

STADs (Supplementary Table S5). Intersections analyzes

revealed 168, 104, and 15 overlapping mRNAs-OS between

overall- and early-stage STAD, overall- and progressive-stage

STAD, and early- and progressive-stage STAD, respectively

(Figure 3B, Supplementary Table S6). Moreover, after

overlapping mRNAs-OS among all three stages of STAD, a

total of 14 signature genes were obtained (Figure 3B,

Supplementary Table S6). In addition, CytoHubba plug-in

analysis selected 40 top mRNAs-OS from the overall-, early-,

and progressive- stage STAD (Supplementary Table S7).

FIGURE 2
Volcano plots of DEGs. (A)DEGs of overall-stage STAD group. (B)DEGs of the early-stage STAD group. (C)DEGs of the progressive-stage STAD
group. The abscissa denotes the log2 transformation value of the differential expression fold change between the STAD samples and the matched
paracancerous samples. The ordinate denotes the -log10 transformation value of the Padj (FDR) value. Green dots symbolize significantly
downregulated mRNAs. Red dots symbolize significantly upregulated mRNAs.
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Further multivariate Cox analysis based on those top mRNAs-

OS constructed three prognostic models with 7, 9, and 14 mRNAs-

PRO for these three stage sets (Figure 4, Supplementary Table S8).

The survival risk score based on mRNAs-PRO for each stage was

calculated by themodel formula and stratified patients into low- and

high-risk groups based on their median risk score. As presented in

Figures 4A,D,G, expression heatmaps, risk score curve, and survival

statusmapwere plotted between the low- and high-risk groups of 7-,

9-, and 14-mRNA-based prognostic models for the overall-, early-,

and progressive-stage STAD, respectively. The Kaplan–Meier

survival curve of the high-risk group and the low-risk group for

overall-, early-, and progressive-stage STAD analysis is presented in

Figures 4B,E,H. The AUC value of the ROC curve was 0.73, 0.87,

and 0.92 for overall, early-, and progressive-stage STAD,

respectively, indicating that these models could form reliably to

accurately predict the prognosis of STAD patients (Figures 4C,F,I).

3.3 Functional enrichment analysis

GO functional annotation and KEGG pathway analyses

were carried out by the FunRich and KOBAS databases in

FIGURE 3
Venn diagrams of overlapping DEGs and mRNAs-OS from overall-, early-, and progressive-stage STAD. Venn diagrams are shown for
overlapping DEGs (A) or mRNAs-OS (B). Terms over the circles represent the groups of DEGs or mRNAs-OS at different stages of STAD.
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504 mRNAs-OS of the overall-stage STAD. mRNAs-OS of

overall stage were enriched in 47 GO terms (p < 0.05),

composed of seven BP, 12 MF, and 28 CC items. As

exhibited in Figure 5A, in BP, the smallest p-value lay in

the cell communication item (p = 3.27E-3), while annotation

with the largest count number annotation was signal

transduction (count = 122). The annotation with the

smallest p-value and largest count number in the MF

category was the extracellular matrix structural

constituent (p = 2.54E-7, count = 18). As for CC,

mRNAs-OS was remarkably enriched in functions as

extracellular (p = 5.68E-10), and the largest count number

was laid in the plasma membrane (count = 127). KEGG

pathway analysis demonstrated that enriched mRNAs-OS

were notably involved in 68 pathways, and the top eight

pathways with smallest p-values are shown in Figure 5B,

including neuroactive ligand–receptor interaction,

complement and coagulation cascades, ABC transporters,

ascorbate and aldarate metabolisms, malaria, cAMP

signaling pathway, phospholipase D signaling pathway,

and steroid hormone biosynthesis.

In order to explore the functions and pathways of mRNAs in

different stages of STAD, gene set enrichment analysis (GSEA)

was conducted in early- and progressive-stage STAD,

respectively. Three most significantly enriched pathways were

exhibited in Figure 6. As for BP, enrichment of mRNAs was

remarkably laid in detection of chemical stimulus, detection of

stimulus involved in sensory perception, and sensory perception

of chemical stimulus in early-stage STAD (Figure 6A), while

those mRNAs were significantly enriched in positive regulation

FIGURE 4
Construction of three prognosticmodels. The top, bottom left, and bottom right corner of this figure (three subgraphs) represent the STAD total
samples group (A–C), STAD samples in the early-stage group (D–F), and STAD samples in the progressive-stage group (G–I). (A,D,G) From top to
bottomof every subgraph are the expression heatmap, risk score curve, and survival statusmap between the low-risk and high-risk groups. The color
bar reveals the relative mRNAs-PRO expression level, with red denoting high expression and green denoting low expression. (B,E,H) Survival
curve for the low-risk and high-risk groups. (C,E,I) ROC curve for survival predictions.
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of cell activation, regulation of lymphocyte activation, and

regulation of T cell activation in progressive-stage STAD

(Figure 6B). mRNAs of CC were markedly enriched in

intermediate filament, intermediate filament cytoskeleton, and

keratin filament in early-stage STAD (Figure 6C), while they

were notably enriched pathways in progressive-stage STAD

including external side of plasma membrane, immunological

synapse, and presynapse (Figure 6D). The significantly

enriched pathways in MF included olfactory receptor activity,

odorant binding, and metal cluster binding in early-stage STAD

FIGURE 5
Functional enrichments of mRNAs-OS in overall-stage STAD. (A) GO function annotations (including BP, CC, and MF). The abscissa represents
the p-value, and the ordinate represents the name of the functions. The bubble area increases with the number of mRNA-OS increasing. (B) KEGG
pathways analysis. The color of the columns changes from blue to red as the degree of mRNAs enriched in the pathways increases.
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(Figure 6E), while pathways of progressive-stage STAD enriched

in immune receptor activity, cytokine receptor activity, and

structural constituent of muscle (Figure 6F). In addition,

KEGG pathway analysis of early-stage STAD revealed that

mRNAs were enriched significantly in olfactory transduction,

maturity onset diabetes of the young, and regulation of

autophagy (Figure 7A), while mRNAs were enriched in

pathways including cell adhesion molecules cams, primary

FIGURE 6
GO function annotations of mRNAs in the early- and progressive-stage STAD cohorts viaGSEA. The left side of the figure refers to the enriched
annotations in the early-stage group, while the right side refers to the enriched annotations in the progressive-stage group. From top to bottom of
this figure are biological process (BP) (A,B); cellular component (CC) (C,D); and molecular function (MF) (E,F)
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immunodeficiency, and T-cell receptor signaling pathway in

progressive-stage STAD (Figure 7B).

3.4 Prognostic model validation

The predictive association between the age, gender, stage

and risk score, and individual prognosis was evaluated by

univariate and multivariate Cox regression analyses. Figure 8

shows both univariate and multivariate Cox regression

analyses of overall survival time in overall-, early-, and

progressive-stage STAD patients. As exhibited in the forest

plots, while stage were significantly associated with the overall

survival time in overall- and early-stage STAD patients (Ps ≤
0.044) (Figures 8A–D), the risk score was the only

independent factor for all the three stages STAD patients

by both univariate and multivariate Cox regression models

(Ps ≤ 0.002) (Figures 8A–F). These demonstrated the

rationality of the stage stratification in the overall group

and the risk-based prognostic models built for the overall-,

early-, and progressive-stage STAD patients in this study.

Moreover, the reliability and validity of prognostic models

in classifying the high- and low-risk groups were further

confirmed under various clinical circumstances by the

Kaplan–Meier survival curves, and the overall survival (OS)

time in the high-risk group was significantly lower than that of

the low-risk group in overall- (Supplementary Figure S1),

early- (Supplementary Figure S2), and progressive-

(Supplementary Figure S3) stage STADs in all clinical

situations, including age (≥ 65 or < 65), gender, T stage, M

stage, and N stage (all p < 0.05). Thus, the prognostic models

of overall-, early-, and progressive-stage STADs could be well

used in a variety of clinical practices, indicating these three

prognostic models were reliable and stable under different

clinical circumstances.

3.5 QPCR and IHC of IGFBP1 and CHAF1A
in STAD samples

Relative mRNA levels of IGFBP1 and CHAF1A in STAD and

matched paracancerous tissues were evaluated via qPCR in

overall-, early-, and progressive-stage STAD (Figure 9A), and

the results showed the expression of IGFBP1 was significantly

elevated in early-stage STAD in comparison with matched

normal tissues (p = 0.018, Figure 9A-top), which was in line

with bioinformatics findings. CHAF1A was markedly increased

in overall- and progressive-stage STAD in comparison with

matched normal tissues (both p < 0.001, Figure 9A-bottom),

which was also consistent with expected analyses.

In addition, Figure 9B showed the representative IHC

staining on the protein levels of IGFBP1 and CHAF1A, and

Figure 9C demonstrated the cytoplasmic immunoreactivity of

these two representative targets in the paired cancer and

paraneoplastic normal tissues of STAD patients. For IGFBP1,

cancer samples demonstrated stronger staining than matched

normal tissues in early-stage STAD (p = 0.022, Figure 9C-top).

For CHAF1A, cancer samples showed much stronger staining

than matched normal tissues in the overall-, early-, and especially

the progressive-stage STAD (all p < 0.001, Figure 9C-bottom).

The IHC results on the protein levels of these two representative

targets were basically lined well with the qPCR results on their

mRNA expressions; both were in accordance with the calculation

results. Thus, IGFBP1 could serve as a biomarker for early-stage

STAD, while CHAF1A could act as a biomarker for progressive-

stage STAD.

4 Discussion

According to the Global Cancer Statistics 2020, the incidence

and mortality of GC ranks the fifth and fourth in all

FIGURE 7
KEGG pathways of mRNAs in the early- and progressive-stage STAD cohorts viaGSEA. (A) Enriched pathways in early-stage STAD. (B) Enriched
pathways in progressive-stage STAD.
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malignancies, respectively (Sung et al., 2021). It causes a

considerable global health burden and requires urgent

attention (Yue et al., 2021). STAD accounts for 90% of gastric

cancer and is the most common histological type of this

malignance (Joshi and Badgwell, 2021). As the onset of STAD

is insidious, most patients had already developed an advanced

stage of cancer when they were confirmed diagnosis (Joshi and

Badgwell, 2021). Current interventions have highlighted

advances in therapeutics of STAD, including surgery, systemic

chemotherapy, radiotherapy, immunotherapy, and targeted

therapy; however, the efficacy does not meet the need for

advanced gastric cancer (Jim et al., 2017), and the 5-year

survival rate of distant-stage gastric cancer is less than 10%

(Li et al., 2022). Under the passive situations nowadays,

discovery of novel diagnostic biomarkers and biomarker-

driven therapy for STAD is urgently needed.

With the development of high-throughput sequencing

technologies, the mRNA molecules have been emerging as

a new class of cancer biomarkers. Recent studies have explored

associations between mRNAs and cancer features, and

FIGURE 8
Forest plot of clinical factors prognostic analysis. (A–B)Overall-stage STAD; (C–D) early-stage STAD; and (E–F) progressive-stage STAD. (A,C,E)
Univariate analysis of clinical factors. (B,D,F) Multivariate analysis of clinical factors. The dotted line indicates risk ratio (HR) = 1, the green or red
rectangle to the left of the dotted line indicates that the clinical factor is a protective factor for STAD (HR < 1), and the green or red rectangle to the
right of the dotted line indicates that the clinical factor is a risk factor for STAD (HR > 1).
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FIGURE 9
mRNAandprotein expression levels of IGFBP1 andCHAF1Aevaluated fromSTADandnormal samples by qPCRand IHC, respectively. (A)MRNAexpression
levels of IGFBP1 and CHAF1A detected by qPCR in 30 STAD and paired paracancerous normal tissues (early-stage: 13 pairs and progressive-stage: 17 pairs). (B)
Representative images of IHCdisplaying negative (0), low (1+),moderate (2+), and strong (3+) staining for IGFBP1 andCHAF1A proteins from84 STADandpaired
paraneoplastic normal tissues (early-stage: 32 pairs and progressive-stage: 52 pairs). Various staining intensities ofmatched cancer and normal tissueswere
demonstrated, respectively, for IGFBP1andCHAF1A. (C) IHCscoresofoverall, early-stage, andprogressive-stageSTAD,andpairednormal tissuesarepresented in
histograms with frequency. The statistical analysis was performed using Pearson’s χ2 test and likelihood ratio test. *p < 0.05 and ***p < 0.001.
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moreover, various mRNA signatures have been reported in

STAD for prognostic analysis (Ren et al., 2020; Wu et al., 2020;

Zhou et al., 2020). However, some limitations of these studies

should be noticed: most of them were reports of key

biomarkers in overall STAD, while neglecting STAD stages

(Li et al., 2019; Fu et al., 2020; Qiu et al., 2020). Nevertheless,

STAD is a cancer characterized with high heterogeneity, and

the differences of pathological features in distinct STAD

stages were evident (Ren et al., 2021). Therefore, it is

inappropriate to use the same mRNAs as biomarkers to

classify patients with STAD at all the different stages in the

clinical work.

This study identified 4,715 DEGs of early-stage STAD and

3,465 DEGs of progressive-stage STAD, and a total of

2,540 DEGs were overlapping, indicating that many

remaining DEGs were evidently different in early- and

progressive-stages STAD, and these DEGs might be vital to

characterize the two stages. Interestingly, six mRNAs

(SCGB3A1, SRARP, MUC5B, GABRB1, CNMD, and

KRT27) were up-regulated in early-stage STAD, while they

were down-regulated in progressive-stage STAD. This

suggested these mRNAs might play a role in different

stages of cancers by participating in different mechanisms;

meanwhile, these signatures might act as convenient

biomarkers to distinguish STAD stages.

Multivariate Cox regression analysis of the age, gender, stage,

and risk score demonstrated that the tumor stage was an

independent prognostic factor, and the mRNAs-PRO

signatures for distinct STAD stages were potential predictors

for prognosis.

The prognostic models of overall-, early-, and progressive-

stage STAD were, respectively, composed of 7 mRNAs,

9 mRNAs, and 14 mRNAs. There was no consensus

mRNAs-PRO in these three prognostic models. The AUC

values of ROC curves of the prognostic models for overall,

early, and progressive groups were 0.73, 0.87, and 0.92,

respectively. The value of the overall stage was the smallest,

suggesting a sorting stage might slightly improve the AUC

value and the predictive reliability of the prognostic models.

We also constructed a prognostic model by analyzing the data

of all GC patients with the same procedure as the other three

sets of data, and the value of the AUC was only 0.70, which was

worst (data were not shown). This re-emphasized that the

prognostic model established by stratified data according to

influential clinical variables was more effective. As the amount

of experimental data increased, novel molecular biomarkers

could be identified to facilitate more accurate predictions after

stratification. This might indicate that the prognostic model

constructed for the overall-stage STAD was problematic due

to the stage mixing.

Table 1 compared the abnormal expression of the prognostic

mRNAs-PRO predicted in this study with those reported in

previous studies. In the prognostic model of overall-stage

STAD, all seven mRNAs (EGF, SERPINE1, ESCO2, ERCC6L,

UHRF1, SPARC, and F2) were calculated to be up-regulated in

this study. After a systematic and careful literature research, we

found that the former six mRNAs were all experimentally

validated to be overexpressed in either STAD tissues or GC

tissues, and the aberrant expression of the remaining F2 in this

cancer has not been confirmed by any previous experiments or

bioinformatics analysis.

Among the nine mRNAs in the prognostic model of early-

stage STAD, four mRNAs were up-regulated (WT1, IGFBP1,

APOE, and TF) and five mRNAs were down-regulated (JUN,

CA10, GRIA2, GRID2, and APOB). After comparing the

outcomes in the related literature with the findings in our

results, it was shown that the high expression level of WT1,

IGFBP1, and APOE, and the low expression level of JUN was

verified by previous clinical cases or experiments on GC, and

the down-regulations of CA10 and GRIA2 were demonstrated

in other tumor origins, where the results were all matched

with our calculations. Although the remaining three mRNAs

have not been reported by any cancer experiments before,

GRID2 was calculated to be significantly down-regulated in

endometrial carcinoma by bioinformatics studies, and TF and

APOB have not been mentioned by any cancer studies before

and were novel candidate prognostic signatures in early-stage

STAD reported for the first time by this study. Notably,

Kalantari et al. demonstrated that Lgr5High/DCLK1 high

phenotype was associated with early-stage gastric

carcinoma specimens (Kalantari et al., 2017). However, in

this study, we found that Lgr5 was significantly upregulated,

but DCLK1 was significantly downregulated in early-stage

STAD (Supplementary Table S3); moreover, DCLK1 was one

of the mRNAs-OS (Supplementary Table S5), though it was

not in the 9-mRNA prognostic model of this premature stage.

The contradiction between these two studies needs to be

further explored.

Among the 14 mRNAs in the prognostic model of

progressive-stage STAD, 13 mRNAs (CHAF1A, VCAN,

CDH11, PDGFRB, BMP1, ASPN, BGN, GINS4, COL6A3,

ECT2, IBSP, KIF18B, and INCENP) were upregulated, while

one mRNA (GCG) was downregulated. As shown by the

summaries of earlier studies in Table 1, we noted that the

overexpression of eleven mRNAs (CHAF1A, VCAN, CDH11,

PDGFRB, BMP1, ASPN, BGN, GINS4, COL6A3, ECT2, and

IBSP) were all verified in GC cell lines; the increased expression

level of KIF18B had been confirmed in hepatocellular carcinoma

cells, and INCENP and GCG have not been mentioned by any

cancer studies before and were novel candidate prognostic

signatures in progressive-stage STAD reported for the first

time by this study.

Emerging predictive tools for GC had been established

based on prognostic genes (Chen J. et al., 2021b), lymph node

histopathology (Wang X. et al., 2021b), immune

microenvironment or/and tumor microenvironment-
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TABLE 1 Comparison of the abnormal expressions of the mRNAs-PRO in the overall-, early-, and progressive-stage STAD between this study and previous
experimental studies.

Stage mRNA-
PRO

Feature Abstract Citation

Overall EGF Using western blotting and immunocytochemical staining, Han et al. revealed that
compared with normal gastric tissues, EGF was significantly higher expressed in STAD
tissues and facilitated the migration and invasion of STAD cells by activating ERK1/2

PMID: 24789460 Han et al.
(2014)

SERPINE1 Through the analysis of clinical samples, TCGA database samples, and cell lines in vitro,
Yang et al. manifested that SERPINEI was significantly upregulated in STAD, and it
promoted the invasion, migration, and proliferation of STAD cells by regulating EMT

PMID: 31724495 Yang et al.
(2019)

ESCO2 In in vitro cell experiments, Chen et al. found that ESCO2 was significantly upregulated in
GC cells, and the knockdown of ESCO2 inhibited the proliferation and induced the
apoptosis of GC cells

PMID: 29330052 Chen et al.
(2018)

ERCC6L Using qRT-PCR and IHC detections, Chen et al. discovered that compared with normal
gastric tissues, ERCC6L was significantly upregulated in GC, and it facilitated the growth
and metastasis of GC cells by activating NF-κB signaling

PMID: 34425559 Chen et al.
(2021a)

UHRF1 Zhang et al. illustrated that UHRF1 was significantly up-regulated in GC by cell
experiments, which further promoted the migration and invasion of the GC cells and
inhibited the cell apoptosis through ROS signaling

PMID: 30352833 Zhang et al.
(2018)

SPARC By the analysis of gene microarray data, Wang et al. revealed that SPARC was significantly
upregulated in GC cells, and its high expression was positively correlated to the lymph
node metastasis, lymphatic infiltration, and shorter survival of GC patients

PMID: 15558074 Wang et al.
(2004)

F2 Abnormal expression of F2 has not been reported in any cancer experiments. However, our
study showed that F2 was significantly upregulated in STAD, implicating that F2 might be
a novel biomarker of STAD

NA

Early WT1 Li et al. found that WT1 was significantly upregulated in STAD by qRT-PCR. In addition,
the overexpression of BASP1 in cell experiments of STAD could apparently inhibit the
activation of the Wnt/β-catenin pathway to restrain the proliferation, migration, and
invasion of STAD cells by downregulating the expression of WT1

PMID: 33426068 Li et al.
(2020a)

JUN Using IHC, Jin et al. showed that JUN was down-regulated and had tumor suppressor
activity in GC. The loss of JUN expression was correlated to a more advanced stage,
lymphatic invasion, lymph node metastasis, and shorter survival of GC patients

PMID: 18158,562 Jin et al.
(2007)

IGFBP1 Luo et al. suggested that compared with the control groups, IGFBP1 was significantly
upregulated in GC cells infected with H. pylori 26695. However, its overexpression could
reduce the promoting effect of MMP-9 on the BGC-823 cells migration, indicating the
protective role of IGFBP1 in the process of H. pylori-induced GC

PMID: 28864349 Luo et al.
(2017)

APOE Sakashita et al. suggested via RT-PCR that APOE was significantly highly expressed in GC,
and GC samples with high expression of APOE had deeper tumor infiltration, more
positive lymph node metastasis, and shorter survival compared with low APOE expression
patients

PMID: 19020708 Sakashita
et al. (2008)

CA10 Tao et al. found that CA10 was significantly downregulated in glioma and CA10 secreted
by depolarized cultured neurons blocked the neuronal activity-dependent growth and
inhibited the invasion of glioma by cell experiments

PMID: 30636076 Tao et al.
(2019)

GRIA2 Through qRT-PCR and IHC, Choi et al. manifested that GRIA2 was significantly
downregulated in advanced ovarian serous adenocarcinomas and the upregulation of
GRIA2 was associated with the better survival of patients

PMID 22644307 Choi et al.
(2012)

TF The abnormal expression of TF has not been reported in any cancer experiments.
However, our study showed that TF was not differentially expressed in overall-stage STAD,
but was significantly up-regulated in the early-stage STAD, implying that TF might be a
novel biomarker of early-stage STAD

NA

GRID2 Abnormal expression of GRID2 has not been reported in any cancer experiments.
However, Chen et al. suggested that GRID2 was significantly downregulated in
endometrial carcinoma, and its expression was significantly associated with the
proliferation and invasion of cancer cells through bioinformatics analysis. In this study, it
was shown that GRID2 was significantly downregulated in the overall- and early-stage
STAD, indicating that GRID2 might be a novel biomarker of these two stages of STAD

PMID: 33577492 Chen et al.
(2021c)

APOB Abnormal expression of APOB has not been reported in any cancer experiments. However,
our study showed that APOB was significantly downregulated in the overall- and early-
stage STAD, indicating that APOB might be a novel biomarker of these two stages STAD

NA

(Continued on following page)
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TABLE 1 (Continued) Comparison of the abnormal expressions of the mRNAs-PRO in the overall-, early-, and progressive-stage STAD between this study and
previous experimental studies.

Stage mRNA-
PRO

Feature Abstract Citation

Progressive CHAF1A Zheng et al. found that CHAF1A was highly expressed in GC cells and could promote
gastric carcinogenesis by upregulating c-MYC and CCND1. Moreover, the overexpression
of CHAF1A in progressive-stage STAD were verified by qRT-PCR and IHC in our study

PMID: 30449701 Zheng et al.
(2018)

VCAN Using qRT-PCR of clinical tissue samples, Cheng et al. illustrated that VCAN was
significantly upregulated, which promoted the proliferation, invasion, and migration of
GC cells

PMID: 33116649 Cheng et al.
(2020)

CDH11 By bioinformatics analysis and cell experiments, Liu et al. found that CDH11 was highly
expressed in GC and as an oncogene, CDH11 facilitated GC progression via
transcriptional up-regulation by HEYL, but its overexpression could reversely promote the
malignant behavior of HEYL-knockdown GC cells

PMID: 32463580 Liu et al.
(2020)

PDGFRB Through the RT-qPCR analysis of clinical tissue samples, Higuchi et al. revealed that
PDGFRB was significantly upregulated in stage II/III gastric cancer and was closely related
to the poor 5-year survival rate and proliferation of cancer cells

PMID: 28356977 Higuchi et al.
(2017)

BMP1 Through targeted RNA sequencing of clinical specimens, Hsieh et al. found that BMP1 was
highly expressed in late-stage GC and significantly related to the poor prognosis of GC
patients. In addition, in vitro suppression of BMP1 led to the reduction of the mobility of
the GC cell lines, implying an important role of BMP1 in metastasis

PMID: 29720137 Hsieh et al.
(2018)

ASPN Via IHC assay, Zhang et al. illustrated that ASPN was significantly upregulated in GC,
which was related to the poor prognosis of GC patients. The upregulation of ASPN
promoted the growth of GC cells and inhibited apoptosis via deactivating LEF1-gene
transcription independent of β-catenin in vitro and in vivo

PMID: 34127813 Zhang et al.
(2021b)

BGN Via in vitro and in vivo experiments, Pinto demonstrated that BGN was significantly
overexpressed in GC tissues, which was related to disease recurrence and poor prognosis of
patients with advanced GC. The over-expressed BGN promoted the cell migration,
invasion, and angiogenesis of GC

PMID: 33809543 Pinto et al.
(2021)

GINS4 Using the qRT-PCR and IHC detection of clinical tissue samples, Zhu et al. illustrated that
GINS4 was significantly overexpressed in GC, and the up-regulation of GINS4 was
associated with poor differentiation, advanced stage, depth of invasion, and lymph node
metastasis of GC tissues

PMID: 31754397 Zhu et al.
(2019)

COL6A3 Sun et al. showed that COL6A3 was highly expressed in GC by using RT-PCR, and the
overexpression of COL6A3 facilitated the proliferation, migration, and inhibited the
apoptosis of GC cells.

PMID: 31122696 Sun et al.
(2019)

ECT2 Through RT-qPCR and Western blotting, Zhang et al. suggested that compared with
normal control, the expression level of ECT2 in GC increased significantly and was
positively correlated to histological differentiation, lymph node metastasis, and TNM stage
of GC

PMID: 34367280 Zhang et al.
(2021a)

IBSP Using the qRT-PCR and IHC detection of clinical tissue samples, Wang et al. suggested
that IBSP was overexpressed in esophageal squamous cell carcinoma and the upregulation
of IBSP was significantly associated with the lymph node metastasis, clinicopathological
stage, and poor disease survival

PMID: 31709184 Wang et al.
(2019)

KIF18B With the qRT-PCR and IHC detection of clinical tissue samples, Yang et al. illustrated that
KIF18B was significantly upregulated in hepatocellular carcinoma, thus promoting the
progression of hepatocellular carcinoma by activating the Wnt/β-catenin pathway

PMID: 32052444 Yang et al.
(2020)

INCENP Abnormal expression of INCENP has not been reported in any cancer experiments.
However, our study showed that INCENP was not differentially expressed in overall-stage
STAD but was significantly upregulated in progressive-stage STAD, indicating that
INCENP might be a novel biomarker of progressive-stage STAD

NA

GCG Abnormal expression of GCG has not been reported in any cancer experiments. However,
our study showed that GCGwas not differentially expressed in overall-stage STAD but was
significantly downregulated in the progressive-stage STAD, indicating that GCG might be
a novel biomarker of progressive-stage STAD

NA

mRNAs experimentally up-regulated in STAD in accordance with our calculated result. mRNAs experimentally downregulated in STAD in accordance with our calculated result.

mRNAs experimentally upregulated in GC in accord with our calculated result. mRNAs experimentally downregulated in GC in accordance with our calculated result. mRNAs

experimentally upregulated in other cancers in accordance with our calculated result. mRNAs experimentally down-regulated in other cancers in accordance with our calculated result.

mRNAs upregulated in our calculated results not experimentally verified in cancers. mRNAs downregulated in our calculated results not experimentally verified in cancers.
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relevant genes (Cai et al., 2020; Wan et al., 2020), deep

learning radiomic nomogram (Dong et al., 2020), lncRNAs

(Ma et al., 2020), and other scoring systems (Zhang et al.,

2019). Although these prognostic models mentioned earlier

could predict the outcomes of certain GC patients in diverse

clinical practices, they all have shortcomings: they did not be

classified as histopathology types or stages, and AUC values of

ROC curves for early- and progressive-stage STAD in this

study were superior. This demonstrated better survival

prediction, probably owing to the more refined and

representative data after stratification. Moreover, three

models were further confirmed reliably in various clinical

circumstance, including different ages (≤65 years or >
65 years), genders (males or females), T stages (T1, 2 or T3,

4), N stages (N0 or N1, 2), and M stage (M0) (Supplementary

Figures S1–3), indicating the applicability of prognostic

models established by stratified data according to vital

clinical variables. As experimental data were enhanced after

stratification, novel molecular biomarkers would be identified

to facilitate more accurate predictions.

Enrichment analysis of the overall STAD stage was based

on mRNAs-OS, whereas the GSEA of stratification stages was

based on all mRNAs. As for GO analysis, most of mRNAs-OS

were enriched in cell communication, cell growth and/or

maintenance, signal transduction, receptor activity, cell

adhesion molecule activity, and auxiliary transport protein

activity (Figure 5A), which were basic, common, and essential

for survival of cancer cells. Both GO and KEGG analyses in

stratified STAD stages revealed notable heterogeneity in early-

and progressive-stage STAD. In early-stage STAD, GSEA-

revealed chemical stimulus, including detection, and sensory

were markedly enriched (Figure 6A), but few reports focused

on these respects. MRNAs of progressive-stage STAD from

GSEA were mainly enriched in immune-related functions,

including regulation of lymphocyte activation, regulation of

T-cell activation, immunological synapse, cytokine receptor

activity, and immune receptor activity (Figures 6B,D,F).

Immune-related signatures took part in formation of the

tumor microenvironment and could predict prognosis in

GC (Dai et al., 2021). Wang et al. performed pathway

enrichment analysis based on single-cell sequencing in GC,

and 12 pathways were immune-related, such as defensins, IL-7

signaling, and IL6/JAK/STAT3 signaling; meanwhile, these

pathways were all associated with longer survival, suggesting

certain immune-related biological processes contribute to

distinct molecular consequences and patient survival

(Wang R. et al., 2021a). As for KEGG analyses in early-

stage STAD, regulation of autophagy is of note (Figure 7A).

Autophagy is a double-edged sword in GC. On the one hand, it

inhibits tumor initiation at early-stage by clearing damaged

mitochondria, peroxisome, and also meets the high metabolic

needs from enhanced proliferating tumors (Kongara and

Karantza, 2012). On the other hand, autophagy protects

some tumor cells against nutrient and oxygen deprivation,

and harsh tumor microenvironments; meanwhile, autophagy

is shown to facilitate resistance to cisplatin in GC cells, and

thus, it is a cause of tumor metastasis, recurrence, and

chemoresistance (Maes et al., 2013; Katheder et al., 2017).

As for KEEG analysis in progressive-stage STAD, cell

adhesion molecules (CAMs) were of note (Figure 7B). Cell

adhesion molecules have multifaceted roles, including

signaling molecules, and key constituents of the cell

migration machinery, which are involved in virtually each

step of tumor progression from primary cancer development

to metastasis (Hamidi and Ivaska, 2018). Altered expression of

cell adhesion molecules is frequently detected in tumors, and

meanwhile, these molecules contribute to supporting the

oncogenic growth factor receptor (GFR) signaling, and

GFR-dependent cell invasion and migration, which are

main features of progressive tumors (Hamidi and Ivaska,

2018).

Further qPCR and IHC detections were performed to

estimate mRNA and protein levels of two representative

targets in clinical samples. IGFBP-1, which belongs to the

insulin-like growth factor system, plays an essential role in the

pathophysiology of various tumors (Lin et al., 2021). The role

of IGFBP1 had been explored by previous experiments. Yuya

Sato et al. reported IGFBP1 could predict hematogenous

metastasis in patients with gastric cancer (Sato et al., 2019),

while another research demonstrated that the role of IL35 in

GC angiogenesis was altering TIMP1, PAI1, and IGFBP1 (Li

X. et al., 2020b). In our study, the experimental results of

IGFBP1 in both transcriptional and protein levels were in

accordance with the bioinformatics outcome, which

illustrated it could predict early-stage STAD. CHAF1A, as a

known histone chaperone, is also upregulated in tumors of

many origins, including GC. It has been reported CHAF1A

could upregulate the c-MYC and CCND1 expressions and

further promote gastric carcinogenesis (Zheng et al., 2018). In

this study, both qPCR and IHC results of CHAF1A were in

line with bioinformatics analysis, which illustrated that it

could predict progressive-stage STAD. Thus, these two

targets could serve as potential signatures for identification

of STAD at different risks.

This study stratified STAD into early and progressive

stages, which is closely related to distinct treatment and

prognosis, and by combining TCGA data, conclusions

drawn are more general and representative. In addition,

through research validation in clinical cases, we believed

our results were stable and reliable. Meanwhile, it is worth

noting that limited to TCGA data, the number of

paraneoplastic tissues was small, and cancer and

paraneoplastic normal cases were evidently not one-to-one

matching. Therefore, selection bias is hard to avoid in

bioinformatics results when based on these data. Also,

since there were only 30 cases in the qPCR validation

Frontiers in Molecular Biosciences frontiersin.org16

Hong et al. 10.3389/fmolb.2022.1022056

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1022056


cohort, and most of which were progressive-stage STAD, and

for IHC, though validated by more than 80 paired STAD and

paraneoplastic normal tissues, it was a semi-quantitative

method, so subjectivity cannot be ruled out when

evaluation of targets. Therefore, further investigations by

large and matched cohorts were strongly suggested to be

performed in the future.

In conclusion, our study combined bioinformatics analysis,

clinical parameters, qPCR, and IHC detections in clinical samples

to draw the conclusion that mRNA-based models by

stratification could predict outcomes of patients at different

risks, and selected signatures could serve as novel biomarkers

for STAD patients at varied stages.
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