
Increasing quantitation in spatial
single-cell metabolomics by
using fluorescence as ground
truth

Martijn R. Molenaar1, Mohammed Shahraz1, Jeany Delafiori1,2,
Andreas Eisenbarth1, Måns Ekelöf1, Luca Rappez1,3* and
Theodore Alexandrov1,4,5,6*
1Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL),
Heidelberg, Germany, 2Laboratório Innovare de Biomarcadores, Faculdade de Ciências
Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil, 3European
Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain, 4Metabolomics Core Facility, EMBL,
Heidelberg, Germany, 5Molecular Medicine Partnership Unit, EMBL and Heidelberg University,
Heidelberg, Germany, 6Bio Studio, BioInnovation Institute, Copenhagen, Denmark

Imaging mass spectrometry (MS) is becoming increasingly applied for single-

cell analyses. Multiplemethods for imagingMS-based single-cell metabolomics

were proposed, including our recent method SpaceM. An important step in

imaging MS-based single-cell metabolomics is the assignment of MS intensities

from individual pixels to single cells. In this process, referred to as pixel-cell

deconvolution, the MS intensities of regions sampled by the imaging MS laser

are assigned to the segmented single cells. The complexity of the contributions

from multiple cells and the background, as well as lack of full understanding of

how input from molecularly-heterogeneous areas translates into mass

spectrometry intensities make the cell-pixel deconvolution a challenging

problem. Here, we propose a novel approach to evaluate pixel-cell

deconvolution methods by using a molecule detectable both by mass

spectrometry and fluorescent microscopy, namely fluorescein diacetate

(FDA). FDA is a cell-permeable small molecule that becomes fluorescent

after internalisation in the cell and subsequent cleavage of the acetate

groups. Intracellular fluorescein can be easily imaged using fluorescence

microscopy. Additionally, it is detectable by matrix-assisted laser desorption/

ionisation (MALDI) imaging MS. The key idea of our approach is to use the

fluorescent levels of fluorescein as the ground truth to evaluate the impact of

using various pixel-cell deconvolution methods onto single-cell fluorescein

intensities obtained by the SpaceM method. Following this approach, we

evaluated multiple pixel-cell deconvolution methods, the ‘weighted average’

method originally proposed in the SpaceM method as well as the novel ‘linear

inverse modelling’ method. Despite the potential of the latter method in

resolving contributions from individual cells, this method was outperformed

by the weighted average approach. Using the ground truth approach, we

demonstrate the extent of the ion suppression effect which considerably

worsens the pixel-cell deconvolution quality. For compensating the ion

suppression individually for each analyte, we propose a novel data-driven

approach. We show that compensating the ion suppression effect in a
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single-cell metabolomics dataset of co-cultured HeLa and NIH3T3 cells

considerably improved the separation between both cell types. Finally, using

the same ground truth, we evaluate the impact of drop-outs in the

measurements and discuss the optimal filtering parameters of SpaceM

processing steps before pixel-cell deconvolution.

KEYWORDS

spatial single-cell metabolomics, imaging mass spectrometry (imaging MS), SpaceM,
ion suppression, fluorescein diacetate (FDA), pixel-cell deconvolution

Introduction

Imaging mass spectrometry is becoming an increasingly

popular technology for single-cell metabolomics (Rubakhin

et al., 2013; Zenobi, 2013; Liu and Yang, 2021; Taylor et al.,

2021). We recently developed SpaceM, an open-source method

to perform spatial single-cell metabolomics that integrates

microscopy and imaging mass spectrometry (imaging MS)

(Figure 1A) (Rappez et al., 2021).

In SpaceM, cellular metabolite intensities are calculated from

imaging mass spectra of pixels overlapping with segmented cells

in the process hereinafter called as pixel-cell deconvolution

[previously referred to as normalisation (Rappez et al., 2021)].

As the regions sampled by the imaging MS laser (hereinafter,

FIGURE 1
Evaluating pixel-cell deconvolution in imaging MS-based spatial single-cell metabolomics by using fluorescein. (A) Procedure of SpaceM prior
to pixel-cell deconvolution: (1) pre-MALDI microscopy, (2) MALDI-imaging MS acquisition, (3) post-MALDI microscopy, (4) image registration,
ablated region selection and cell segmentation. (B) Pixel-cell deconvolution and the confounding factors. Single-cell pie charts illustrate the
contributions of different cells or the extracellular area to the ablated regions sampling (i) multiple cells, (ii) a single cell, or (iii) both intra- and
extracellular areas. Pixel-cell deconvolution methods aim to estimate the metabolite levels of the single cells depicted in magenta, red, blue and
orange. (C)Overlay of the fluorescein fluorescence (magenta), fluorescein MALDI-signals (yellow), laser-ablated regions (grey) and segmented cells
(blue). (D) Representative scatter plots (belonging to one replicate) of median fluorescein fluorescence versus assigned fluorescein MALDI-signal of
single cells for the tested pixel-cell deconvolution methods: linear inverse modelling (LIM), weighted average (WA). The methods use sampling
proportion cut-offs of 0.3, mass spectral intensities are integrated within 4 ppm m/z tolerance and TIC-normalised. (E) Boxplot with density-
weighted Spearman correlations between fluorescent and MALDI intensities of fluorescein obtained for each of the pixel-cell deconvolution
methodsWA, LIM and themixedmodel (MIX) for 6 replicates. (F) Illustration of the process of data simulation to evaluate the pixel-cell deconvolution
methods. Cell signals are colour-scaled fromwhite to red for cells (ground truth, top panel) and ablated regions (measured intensities, bottom panel).
(G) Scatter plots with Spearman correlations of the ground truth versus assigned signals in the simulated data when using the pixel-cell
deconvolution methods LIM (blue) or WA (red).
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ablated regions) do not always completely overlap with the

cellular regions or overlap with multiple cells, the pixel-cell

deconvolution is a challenging task (Figure 1B). Moreover,

there is a lack of full understanding of how co-ablated regions

from multiple cells or from cells and background contribute to

integrated intensities in a mass spectrum due to the ion

suppression, namely when intensities of one analyte are

reduced by the presence of another abundant and easily-

ionizable analyte. Earlier, we proposed a pixel-cell

deconvolution method called ‘weighted average’ that involves

two steps (Rappez et al., 2021). First, theMS signals of the ablated

regions are normalised by dividing them by their ‘sampling

proportion’, which is the fraction of their overlap with cellular

regions. Second, the weighted average of all normalised ablated

regions associated with a cell-of-interest is calculated. In this

approach, the weights are represented by the ‘sampling

specificities’: the fractions in which the cellular sampling areas

are overlapping with the cell-of-interest. Finally, the resulting

weighted average is assigned to the cell-of-interest as intensity,

after which the procedure is repeated for all other cells.

The motivation for the weighted average method was to

reduce the impact of ablated regions associated with multiple

cells (hereinafter, co-ablated regions). To a certain extent,

however, the co-ablated regions do still mix signals from two

neighbouring cells. To this end, we additionally proposed to

filter out the most extreme co-ablated regions by using a cut-off

for sampling specificity (Rappez et al., 2021). Furthermore, we

used cut-offs for sampling proportion to reduce the effect of

ablated regions with limited overlap with cells. However,

stringent cut-offs may lead to a loss of data points and

possibly even to a failure in assigning signals to the cell-of-

interest.

Here, we propose a novel method for pixel-cell

deconvolution, relying on linear inverse modelling. We

propose to model the metabolite signals associated with the

ablated regions (which are the knowns) as a linear

combination of the cellular metabolite signals (the unknowns)

multiplied by their ‘specific sampling proportion’, which is the

sampling proportion multiplied by the sampling specificity of the

ablated-region-of-interest (the knowns). The resulting system of

linear equations is overdetermined, as the number of ablated

regions is larger than the number of cells by experimental design

(hence, pixel-cell deconvolution would not be possible otherwise)

and can be approached and solved as a linear inverse problem.

Both methods, the weighted average (‘WA’) and linear

inverse modelling (‘LIM’), assume the linearity of the signals.

However, this assumption is not always satisfied in mass

spectrometry. A key factor compromising the linearity is the

ion suppression generally present in MS (Annesley, 2003; Furey

et al., 2013). In this process, the detector response for a particular

molecular species in the analysed complex mixture is reduced

due to the competition between various molecular species to

obtain charge. As molecular species have different ionisation

efficiencies, the magnitude of the response reduction for a given

molecular species depends on other molecules present in the

analysed sample, in particular on the abundant ones. Ion

suppression is a considerable factor in imaging MS, which is

performed without prior chromatography, i.e., all molecular

species are analysed simultaneously. In imaging MS-based

single-cell metabolomics, ion suppression may lead to

decreased signals of intracellular analytes in cellular vs.

extracellular pixels, since intracellular regions contain more

analytes (both MALDI matrix and intracellular molecules) vs.

extracellular regions which contain predominantly MALDI

matrix only. Moreover, the MALDI matrix signals can have

higher intensities in the extracellular regions even if their

concentration is the same throughout the full analysed area.

Thus, metabolite intensities from ablated regions non- or

partially-overlapping with cells are expected to be

overestimated, thereby introducing a potential error into the

cell pixel-cell deconvolution. However, there is currently no

method for quantitative estimation and compensation of the

impact of ion suppression onto single-cell intensities, partially

due to the lack of knownmetabolite concentrations in single cells.

Here, we aim to bridge this gap by proposing a novel

approach to estimate the quantitation in spatial single-cell

metabolomics by using a fluorescent dye, and demonstrate

how it can be used to evaluate pixel-cell deconvolution

methods. The key idea of the approach is to use a

fluorescent dye that can be detected by both fluorescent

microscopy and imaging MS. We chose fluorescein diacetate

(FDA), a compound widely used in cell biology to assess cell

viability (Mckinney et al., 1964; Jones and Senft, 1985), because

it has high fluorescence, high mass spectrometry response, has

no reported metabolic effects, and is fluorescent only when

intracellular. In its esterified form, the compound is cell-

permeable and not fluorescent. After internalisation in the

cell, the acetate groups are cleaved by cellular esterases, and

free fluorescein is formed (Rotman and Papermaster, 1966).

Intracellular fluorescein can be easily imaged using widely

available fluorescence filters used for green fluorescent

protein. Additionally, fluorescein is detectable by matrix-

assisted laser desorption/ionisation (MALDI) imaging MS

(Liu et al., 2013) used in SpaceM and other approaches for

single-cell metabolomics. As a result, the fluorescent levels of

fluorescein can serve as the ground truth and can be compared

with MS-derived intensities of fluorescein obtained by a

particular pixel-cell deconvolution strategy.

Following this approach, we evaluated two pixel-cell

deconvolution approaches for SpaceM, as well as optimised

their parameters. We observed that, although the LIM method

is expected to perform superior by theoretical considerations, it is

outperformed by the WA method. Furthermore, we show that

non-linearity in MS measurements due to effects such as ion

suppression considerably worsens the quantitation and propose a

method to compensate for this effect.
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Results

Experimental ground-truth model with
multi-modal fluorescent and MALDI-MS
readout

To assess the pixel-cell deconvolution quality of single-cell

metabolomics obtained by MALDI-imaging MS, we sought for a

fluorescent probe that is retained in cells, has little cytotoxicity or

effect on metabolism, is chemically inert and can be detected by

MALDI-MS. After testing several candidates, we selected FDA as

the most promising dye. To evaluate pixel-cell deconvolution

methods, we aimed to maximise the dynamic range of fluorescein

inside the cells. Therefore, we incubated adherent HeLa cells with

four different concentrations of FDA (see Methods). After

incubation, we trypsinized, pooled the cells together and

immobilised them on the cell culture surface of an 8-well

chamber slide by centrifugation. Subsequently, we performed

spatial single-cell metabolomics using the SpaceM method as

described previously (Rappez et al., 2021).

After registration of pre- and post-MALDI microscopy

images based on the fiducial pen marks (Figure 1A), we were

able to overlay the fluorescence of fluorescein with the ion image

of m/z 331.0612, corresponding to the [M-H]- ion of fluorescein

(Figure 1C). As expected, we observed higher fluorescein signals

in cellular areas and a good agreement between the two

modalities.

Impact of pixel-cell deconvolution
methods on the quantitation

We then segmented the cells using the brightfield channel of

the pre-MALDI microscopy image, applied a grid-fitting

approach with fixed-radius circular shapes to estimate the

ablated regions and calculated the sampling proportions,

sampling specificities, and specific sampling proportions

(Supplementary Figure S1) to be used as inputs for the two

pixel-cell deconvolution methods WA and LIM. After using the

optimal pre-processing settings of the input measurements (as

discussed in the next sections), we applied the two pixel-cell

deconvolution methods. We then calculated weighted Spearman

correlations between both fluorescent and MALDI modalities as

a measure of pixel-cell deconvolution quality (Figure 1D). For

each method, a scatter plot showed the expected relation between

microscopy and MS signal. Surprisingly, the total number of cells

with non-zero assignments was higher in the WA method.

Furthermore, the weighted Spearman correlation coefficients

of the WA method were considerably higher (median ρ of ca.

0.50) than for the LIMmethod (median ρ of ca. 0.35) (Figure 1E).
This is surprising, as the ablated regions co-sampling multiple

cells should represent a linear combination of the ions coming

from the sampled cells, especially considering the frequent

occurrence of co-ablated regions in our data (Supplementary

Figure S2). Indeed, applying both methods on simulated data

lacking any measuring error (Figure 1F) results in a perfect

correlation between the ground-truth and calculated values for

the LIM method, whereas WA cannot fully recapitulate the

ground-truth signals (Figure 1G).

We speculated that the LIM method might suffer from local

underdetermined systems (networks of cells that are connected

by overlapping ablated regions, with more cells than ablated

regions present). Indeed, we found that about 12% of the cells

were members of a local underdetermined system. We tested

whether a mixed method could further improve pixel-cell

deconvolution. To this end, we first applied LIM, after which

we reapplied WA on the underdetermined cells. However, this

approach improved the pixel-cell deconvolution only to a little

extent (Figure 1E, ‘MIX’).

Investigating ion suppression in single-cell
metabolomics

Amajor factor affecting quantitation in MS and in particular

in imaging MS is ion suppression. We have evaluated whether

mass spectrometry intensities of fluorescein are reduced by the

ion suppression in the cells compared to the background. First,

for each ablated region we defined the ratio η as its fluorescein

[M-H]- intensity versus the corresponding fluorescence intensity.

Next, we assumed that for an ablated region with a high sampling

proportion (“cellular” ablated region), the MS intensity (and

consequently the ratio η) is reduced compared to an ablated

region with a low sampling proportion (“background” ablated

region). To test this, we plotted the ratio η as a function of the

ablated region sampling proportion (Figure 2A). Indeed, we

observed a decrease of η with the increase of the sampling

proportion, following a negative power-law relationship

(linear after log-transformation of both axes), which is in line

with our hypothesis of the non-linear signal reduction due to the

ion suppression.

In untargeted metabolomics, modelling ion suppression is

challenging as neither the molecular composition of the analysed

material nor the relative ionisation efficiencies of the analytes are

known. Nevertheless, approaches such as total-ion current

(TIC)-normalisation have been suggested to decrease the

impact of ion suppression in imaging MS (Taylor et al., 2018).

Indeed, applying the TIC-normalisation minimised MS intensity

overestimation of the ablated regions with lower sampling

proportions, as revealed by a slightly lower slope (Figure 2A).

Furthermore, the correlation between fluorescence and MS

intensities for both ablated regions (Figure 2B) and cells

(Figure 2C) improved after TIC-normalisation. To further

investigate the impact of ion suppression on pixel-cell

deconvolution, we estimated η of each ablated region by

quantile regression of the log-transformed data points of
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Figure 2A. After dividing the fluorescein [M-H]- intensities by

the estimated η (thus, compensating for ion suppression), the

correlations between fluorescence and MS intensities for both

ablated regions (Figure 2B) and cells (Figure 2C) improved

considerably. This demonstrates the impact of ion suppression

on single-cell intensities.

Compensating ion suppression in spatial
single-cell metabolomics

Applying the same procedure as illustrated for fluorescein,

however, cannot be done for endogenous molecules, since it

requires corresponding fluorescent readouts. Therefore, we

developed an unsupervised analyte-specific method for

compensating for the ion suppression. First, we assumed that

MS-intensities for the ablated regions are proportional to their

sampling proportions in case of no ion suppression. Second, for

each ablated region we considered the ratio μ between the MS-

intensity of fluorescein [M-H]- and its sampling proportion.

When we plotted μ as a function of the sampling proportion,

we observed a decline of μ with the increase of the sampling

proportion (Figure 2D, top panel), similarly to the ratio η

(Figure 2A). Interestingly, other metabolites detected in this

dataset showed a similar relationship (Figure 2D, bottom

panels), albeit with slightly different slopes indicating the

analyte-specific nature of ion suppression, potentially

explainable by their specific susceptibility to ion suppression.

We propose to estimate μ using quantile regression (Figure 2D,

top panel) as a function of the sampling proportion.

Based on these findings, we propose to compensate for the

ion suppression in spatial single-cell metabolomics by regressing

out the impact of sampling proportion onto the MS intensities.

We propose to do this by estimating the relationship between μ

and the sampling proportion for each analyte by using the

quantile regression, followed by dividing the MS intensity by

FIGURE 2
Compensating for ion suppression in spatial single-cell metabolomics. (A) Representative scatter plot for ablated regions (belonging to one
replicate), plotting the scaled ratio η (fluorescein ion [M-H]- intensity divided by the fluorescence) against the ablated region sampling proportion; the
ratios η are set to 1 for sampling proportions of 1; using TIC-normalised (red) and unnormalized (blue) MS intensities; both axes are log-transformed.
(B,C) Boxplots with density-weighted Spearman correlations between fluorescence and MS intensities of fluorescein for either ablated regions
(B) or cells (C) using the WA method (sampling proportion of 0.3, m/z tolerance 4 ppm) for 6 replicates, with different normalisation methods
including the supervised and unsupervised ion suppression method (ISM). (D) Representative scatter plots of the ratio μ plotted against the sampling
proportion for four ions [(C20H12O5-H)- corresponding to fluorescein, (C12H22O11-H)- for a disaccharide, (C14H25NO11-H)- for a polysaccharide, and
(C20H32O2-H)- for arachidonic acid]; ratios are set to 1 for sampling proportions of 1; both axes are log-transformed. (E)UMAP visualisation of single-
cell metabolomics data obtained from a co-culture of HeLa (blue) and NIH3T3 (red) cells (Rappez et al., 2021). Cells wereWA-normalised with (upper
panel) or without (bottom panel) applying the unsupervisedmethod for compensating the ion suppression (ISM). (F)Quantification of the intermixing
between the cell types from panel E, with barplots showing themean and standard deviation of themean fractions of all cell’s 10 nearest-neighbours
with the opposite cell type, per normalisation approach.
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the regression value. After applying this unsupervised

compensation to the fluorescein ion [M-H]-, the correlations

between fluorescence and MS intensities increased substantially

for both ablated regions (Figure 2B) and cells (Figure 2C) to the

degree comparable when using the supervised method requiring

fluorescence. Taken together, our method for compensating the

ion suppression in spatial single-cell metabolomics improves

quantitation, can be applied to any molecular species, and

delivers a similar improvement as the supervised method

requiring fluorescence values as the ground truth.

Next, we applied this method for ion suppression to the

previously published single-cell metabolomics dataset (Rappez

et al., 2021). In this dataset, cells of two types expressing

fluorescent reporters (mCherry-expressing HeLa and GFP-

expressing NIH3T3 cells) were co-cultured and analyzed by

the SpaceM method. Following (Rappez et al., 2021), we used

the mCherry and GFP fluorescent intensities to identify cell types

thus creating ground truth information for evaluating single-cell

metabolic profiles. We hypothesized that our unsupervised

method for compensating the ion suppression could increase

FIGURE 3
Investigating mass spectrometry drop-outs. (A) Representative scatter plot (belonging to one replicate) showing relations between the
fluorescence intensities andMS intensities for fluorescein, measured for the ablated regions. (B)Histogram of the fluorescence intensities for ablated
regions with non-zero (blue) and zero (red) MS intensities for the fluorescein ion. (C,D) Boxplots with density-weighted Spearman correlations
between fluorescence andMS intensities of fluorescein either for the ablated regions (C) or cells (D) using theWAmethod (sampling proportion
of 0.3, m/z tolerance of 4 ppm) for 6 replicates, using all ablated regions (blue) or only those with non-zero MS intensities for fluorescein (red) from
panels (A,B). (E,F) The effect of increasing peak integration m/z tolerance on the fraction of zeros in the input measurements (E) and correlation
between fluorescence andMS intensity for fluorescein (F). Pixel-cell deconvolution methods were performed as described for panel (D). Data points
indicate themean values and standard deviation of the 6 replicates, the dashed lines show the 3 ppm (red, default in METASPACE) or 4 ppm tolerance
found to be optimal for this experiment (grey).
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the ability of SpaceM to distinguish the two cell types. Indeed,

compensating for the ion suppression led to a visible

improvement of the separation between both cell types in the

UMAP visualisation (Figure 2E). This observation was supported

by the observed reduction of the cell-type intermixing

(Figure 2F).

Effect of drop-outs on quantitation

Another potential factor affecting quantitation is the

presence of zero MS intensities of fluorescein, in single-cell

analyses referred to as drop-outs. Drop-outs can occur due to

either biological heterogeneity or technical artefacts (e.g.,

intensities below the limit of detection, variability in mass

spectrometry accuracy, errors in signal processing). Depending

on their nature, multiple approaches are reported on how to deal

with drop-outs in single-cell transcriptomics (Patruno et al.,

2021), but no recommendations are available for single-cell

metabolomics.

First, we investigated the nature of drop-outs by comparing

fluorescent and MS intensities for the ablated regions

(Figure 3A). If drop-outs resulted from metabolite intensities

being below the detection limit, one would observe low

fluorescence signals for those ablated regions. This is,

however, not entirely the case in our data, with mass

spectrometry zeros present for ablated regions with both low

and high fluorescence. Although the fraction of zeroes is

decreasing with higher fluorescence signals (Supplementary

Figure S3), the distribution of fluorescent intensities for both

the zero (“drop-outs”) and the non-zero ablated regions MS

intensities demonstrates a clear bimodality (Figure 3B). This

finding suggests that zeros are detected not only for the signals

below the limit of detection, but additionally appear to be

randomly distributed in the dataset (also referred to as

Missing Completely at Random, MCAR) (Sterne et al.,

2009). If the majority of the zeros are of MCAR-nature,

filtering out zeros could improve pixel-cell deconvolution.

Applying this filtering approach on our data by omitting

ablated regions with zero MS values for fluorescein, however,

did not further improve the correlations between fluorescence

and MS intensities for neither ablated regions nor cells

(Figures 3C,D).

In imaging MS, missing values with MCAR characteristics

may be caused by insufficient and pixel-variable mass accuracy.

To this end, we tested if the number of zeros assigned to the

fluorescein ion [M-H]- decreases with increasing m/z tolerance.

Indeed, the fraction of zeros decreased (Figure 3E), accompanied

by increasing quantitation (Figure 3F). Although the fraction of

zeros further decreased when using the m/z tolerance higher than

4 ppm, this did not lead to a better quantitation, with the

correlation between fluorescence and MS intensity plateauing

at the 4 ppm m/z tolerance. Notably, this tolerance is higher than

the 3 ppm tolerance used by default for metabolite annotation in

METASPACE (Palmer et al., 2017) (see Discussion).

Optimising filtering parameters for
sampling proportion and specificity

Finally, we tested whether excluding specific pixels can

improve quantitation. First, we calculated the mean density-

weighted Spearman correlation as a function of the sampling

proportion cut-off, which excludes input measurements with

lower ablated region–cell overlap proportions than the cut-off

(Figure 4A). The correlation (blue line) was maximised at the

cut-off of 0.3, at the expense of a decrease of the total number of

cells that could be assigned (red line). Higher cut-offs resulted in

both lower pixel-cell deconvolution quality as well as in much

lower number of cells. Next, using a constant sampling

proportion cut-off of 0.3, we calculated the mean density-

weighted Spearman correlation as a function of the sampling

specificity cut-off (Figure 4B) used to exclude co-ablated regions.

In contrast to our expectations, increasing the cut-off, and thus

excluding co-ablated regions, did not considerably improve

pixel-cell deconvolutions, possibly explained by the

accompanying decrease of the number of assigned cells.

Furthermore, we calculated the correlation as a function of

both cut-offs, shown as a heatmap in Figure 4C. We observed

two local maxima: at the sampling proportion cut-offs of 0.3 and

0.75 (correlations >0.5). However, the latter one was achieved for

the sampling specificity cut-off of 1 and resulted in the loss of

about 80% of all cells (Figure 4D). In summary, the sampling

proportion cut-off of 0.3 and the sampling specificity cut-off of

0 were found to be optimal, resulting in the maximal correlation

between fluorescence and MS yet retaining a majority of cells.

Discussion

We proposed a novel approach to evaluate quantitation in

spatial single-cell metabolomics by using a fluorescent dye

detectable by mass spectrometry. This helped us assess the

method for pixel-cell deconvolution, in particular the earlier

proposed weighted average method (WA) (Rappez et al.,

2021). Additionally, we evaluated whether an alternative

approach using linear inverse modelling (LIM) can improve

the quantitation. We used fluorescein, the fluorescent product

of fluorescein diacetate that can be measured by both

fluorescence microscopy and MALDI-imaging mass

spectrometry.

Applying this approach to evaluate pixel-cell deconvolution

methods led us to surprising findings. First, we expected superior

performance by our newly proposed LIMmethod as this method

is designed to better handle ablated regions overlapping with

multiple cells. However, the earlier proposed WA method
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(Rappez et al., 2021) outperformed the LIMmethod. As required

for solving linear inverse problems, the overall data sets

contained more known measurements (ablated regions) than

unknown variables (single-cell intensities). After closer

inspection, however, we found that the data harboured some

local undetermined networks (groups of neighbouring co-ablated

cells, with more cells than ablated regions). Underdetermined

systems have a solution space rather than one solution and might

therefore result in unpredictable outcomes when using the LIM

approach. To deal with this, we proposed a mixed model where

LIM would be initialised with WA values but this did not lead to

improvements. We hypothesise that the WA method

demonstrates superior results as it may be more robust in

handling noise and non-linear effects present in MALDI

imaging MS data.

A more detailed examination of factors influencing the MS-

intensities identified a striking intensity overestimation for

fluorescein in areas only partly overlapping with cells,

suggesting the effect ion suppression. We found that TIC-

normalisation of the MS-intensities partly counteracted the

effect of ion suppression and improved the quantitation.

Possibly, using TIC-normalisation could be more beneficial if

a larger m/z range was used (we used 300–400 m/z to increase the

sensitivity for fluorescein). Furthermore, we developed a

fluorescence-relying supervised method to compensate for the

effects of ion suppression, which greatly improved quantitation.

Unfortunately, applying the same method for molecules that do

not have a fluorescent readout is not feasible, as it relies on

measurements of a complementary modality such as

fluorescence. Applying the compensation method trained on

fluorescein to other analytes is not necessarily justified as ion

suppression can be molecule- and context-dependent. However,

we observed that the ion suppression can be compensated using

an unsupervised method that improved quantitation equally

well. Using the unsupervised method does not require any

additional measurements, can be applied to the available data

and compensates for the ion suppression effect in a metabolite-

specific manner. This provides an easy-to-adopt and data-driven

approach to compensate for the effects of ion suppression in

imaging MS-based spatial single-cell metabolomics.

We also found that increasing the m/z tolerance for the

fluorescein ion [M-H]- up to 4 ppm slightly improved the

quantitation. This tolerance is slightly higher than the

tolerance of 3 ppm that we use by default when using the

Orbitrap analyzer and which is recommended in

METASPACE for metabolite annotation (Palmer et al., 2017).

FIGURE 4
Optimising parameters of the weighted average pixel-cell deconvolution. (A,B) The effect of increasing the sampling proportion cut-off (A) or
sampling specificity cut-off (B) on themean density-weighted Spearman correlation ρ (blue) between fluorescence andMS intensities of fluorescein
(deconvolution method WA, m/z tolerance of 4 ppm) as well as the fraction of cells with assigned MS-signals (red). Data points indicate the mean
values and standard deviation of the 6 replicates, dashed lines the optimal values. (C,D) Heatmaps of mean weighted Spearman correlation (C)
or fraction of assigned cells (D) as function of sampling (x-axis) or specificity (y-axis) proportion cut-offs. White stars indicate the values maximising
the mean weighted correlation ρ.
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Closer inspection revealed a small m/z shift of the peak of the

fluorescein ion [M-H]-. This m/z shift appeared to be specific to

fluorescein, as we did not observe m/z shifts for other analytes.

Surprisingly, the observed m/z shift for fluorescein was intensity-

dependent, with higher shifts for peaks with lower intensities

(Supplementary Figure S4). Most likely, the observed peak

comprises two analytes (fluorescein and an unknown analyte)

with similar m/z values. In this scenario, the centroided m/z

values may shift to the mass of the unknown analyte when

fluorescein is less abundant. As a result, we do not advise

increasing the m/z tolerance in general as it can lead to false

positive annotations or a reduction of the number of annotations

at the fixed level of the false discovery rate.

It is tempting to generalise the optimizations in this study

and to apply them to other MALDI-based single-cell

metabolomics experiments. On one hand, the optimal values

of parameters (e.g., sampling proportion cutoff) identified in this

study are in line with our previous study of co-cultures of HeLa

and NIH3T3 cells (Rappez et al., 2021). On the other hand, it

should be noted that fluorescein has properties that are unique to

the compound, including a uniform distribution within cells and

a low delocalisation during MALDI-acquisition. For metabolites

encountered in biological samples, these characteristics might be

different. Furthermore, compared to the co-culture dataset of

(Rappez et al., 2021), the data in our study has a relatively large

proportion of ablated regions that do not completely overlap with

cells: about 97% of all cell-associated ablated regions have

overlaps smaller than 100% (Supplementary Figure S2). This

large percentage is probably the result of the experimental

procedure, in which we immobilised the cells by

centrifugation rather than by cell culture. While cells after

longer culture have a more protruded morphology, our cells

had a spherical shape and were small in diameter. We suspect

that different ratios between partly and fully overlapping ablated

regions could shift the optimal filtering parameters prior pixel-

cell deconvolution. This is illustrated by a different optimum for

sampling specificity cut-off (of 0.9) in the HeLa and NIH3T3 data

set (Rappez et al., 2021), versus a cut-off of 0 in our experiment.

Whenever possible, we suggest avoiding a high occurrence of

partly overlapping ablated regions for future experiments, as we

observed that ion suppression is most pronounced in these

regions. For instance, this can be achieved by decreasing the

diameters of the laser-ablated regions, although this can lead to

decreased sensitivity and increased runtime, or by using larger

cells. Another consideration that can potentially limit the

applicability of our approach is the need for intracellular

conversion of fluorescein diacetate into fluorescein. Although

fluorescein is a commonly used dye, the conversion can be

compromised in cells with viability or in highly-necrotic cells.

The observed correlations between fluorescent and MS

intensities were considerably lower than one. This could

have been caused by limitations of MALDI as well as other

factors. For example, fluorescence microscopy has a limited

dynamic range and potentially did not lead to a full linear

response to the fluorescein concentration. The image

registration accuracy, which was evaluated visually, and

object segmentation quality might have played a role. In

addition, we simplified the computational analysis by

assuming a uniform energy distribution of the MALDI-laser.

This is, however, most likely not the case. Making reliable

estimations of these distributions is challenging and was not

considered in this study.

Although the method was already useful in the scenarios

considered in this manuscript, as well as has helped us formulate

an approach to compensate for ion suppression, there is a

number of potential future directions and method

improvements. One can consider other molecules which are

detectable by both MALDI mass spectrometry and

fluorescence microscopy and have no activity on the cell

metabolism. Although fluorescein showed to be more useful

than other alternatives (tetracycline, doxycycline, DAPI

fluorescent dye, rhodamine fluorescent dye), there might be

other molecules which have better detection by MALDI mass

spectrometry. Using other techniques such as Raman or near-

infrared spectroscopy instead of fluorescent microscopy may

open possibilities for using non-fluorescent ground-truth

molecules, provided these techniques can achieve specific

detection. Following advice of an anonymous reviewer, the

following next steps would improve the method: First, it

would be useful to create a single-cell mimetic model on a

patterned surface where cells, cell extracts, and specific

analytes of interest, including endogenous metabolites as well

as drugs, can be spotted on with a high spatial precision. Such

single-cell mimetic model would help investigate the questions

related to spatial resolution, as well as ion suppression in a

quantified manner with a known ground truth. Second, it would

be useful to analyse titrated ground-truth analyte to construct a

calibration curve and estimate the linear range. Spotting titrated

fluorescein onto the glass substrate, however, proved to be

challenging because of the way diluted fluorescein crystallises.

Third, using MALDI imaging MS with a higher spatial resolution

(e.g., with 2 μm pixel size) is expected to increase the confidence

in pixel-cell assignment and potentially increase the levels of

quantitation by being able to resolve subcellular localization of

the ground-truth analyte. Fourth, one can investigate the analyte-

specific values μ of the ion suppression to validate whether they

are translatable to tissue and other experiments, whether they can

be predicted from the molecular structure, or whether this

information can lead to insights into the mechanisms of the

ion suppression. Fifth, one can also explore the potential of the

pixel-cell deconvolution for assigning pixel intensities to other

spatial objects such as increased spatial resolution of imaging

microanatomical structures in the tissue, subcellular imaging of

large and distinct cellular compartments in big cells, and surface

analysis of synthetic materials and cross-sections of layered

materials.
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In summary, we evaluated pixel-cell deconvolution

performance by making use of the fluorescent dye fluorescein.

We found that the pixel-cell deconvolution method WA

outperformed the LIM method and that quantitation suffers

from dependence on the ablated area sampling proportion

likely caused by ion suppression. We proposed an

unsupervised method to compensate for the effect of the ion

suppression. Finally, we identified optimal parameters of SpaceM

processing steps before pixel-cell deconvolution.

Materials and methods

Cell culture

HeLa cells (ATCC) were cultured at 37°C and 5% CO2 in

regular Dulbecco’s Modified Eagle Medium (Gibco) containing

10% fetal bovine serum. For the experiments, cells were plated on

8-well dishes (Nunc) and incubated with 25, 50, 75 or 100 μM

FDA (Sigma-Aldrich) for 30 min at 37°C. The stock solution of

FDA was 10 mM in DMSO and was prepared freshly prior to the

experiment. Subsequently, cells from all dishes were trypsinized

with 0.25% trypsin-EDTA (Gibco), resuspended in medium and

pooled into one tube. Then, cell suspensions were deposited at

approximately 15,000 cells per well at 1,000 rpm for 10 min.

After aspiration of the medium, slides were wrapped in

aluminium foil to protect them from light, vacuum-desiccated

for 1 h, and marked with fiducials as described earlier (Rappez

et al., 2021).

Experimental steps SpaceM

The experimental protocols of the SpaceM procedure

(MALDI, pre- and post-MALDI microscopy) were performed

as described previously (Rappez et al., 2021), with the following

modifications. The fluorescence of fluorescein in the pre-MALDI

microscopy step was imaged using the Nikon Ti-E inverted

microscope (Nikon Instruments) equipped with a FITC filter.

Before full acquisition, we checked for potential background

signals by autofluorescence in this channel by comparing

FDA-treated cells with untreated cells (Supplementary Figure

S5). Before MALDI acquisition, the slide was sprayed with 1,5-

diaminonapthalene (DAN) (Sigma-Aldrich) by a TM sprayer

(HTX) with these parameters: temperature, 80°C; number of

passes, 8; flow rate, 0.07 mL min−1; velocity, 1,350 mm min−1;

track spacing, 3 mm min−1; pattern, CC; pressure, 10 psi; gas flow

rate, 5 L min−1; drying time, 15 s and nozzle height, 41 mm. The

estimated matrix density was 0.00311 mg mm−2. MALDI

acquisition was performed using a Q-Exactive Plus mass

spectrometer (ThermoFisher Scientific), equipped with an AP-

SMALDI5 source (Transmit), in the negative mode using a mass

range between m/z 300–400 (resolving power R = 140,000 at m/z

200). The pixel step size of the MALDI stage was 25 μm and the

acquisition areas were 100 by 100 pixels. The MALDI laser

attenuator was set to 33°. Raw acquisition files were converted

to centroided imzML files using Alan Race’s converter (Race

et al., 2012). We used the METASPACE cloud software (https://

metaspace2020.eu) to perform metabolite annotation using false

discovery rate-controlled annotation as published earlier (Palmer

et al., 2017) against the CoreMetabolome v3 database.

METASPACE was not able to annotate fluorescein at FDR

50% in the two of the initial eight data sets: these data sets

were excluded.

Computational pre-processing

The computational steps of the SpaceM procedure were

performed as described previously (Rappez et al., 2021), by

performing 1) the image registration between pre- and post-

MALDI microscopy images, 2) the registration between the

METASPACE dataset and post-MALDI microscopy, 3) the

segmentation of single cells 4) and ablated regions, and 5) the

calculation of the overlaps between cell and ablated region

shapes, required to determine the sampling proportions,

sampling specificities, and specific sampling proportions

(Supplementary Figure S1). This pre-processing was done

using in-house software which mostly follows the open-source

implementation from (Rappez et al., 2021). Compared to the

previously described version of SpaceM, there were some

modifications. Briefly, the image registration between pre- and

post-MALDI microscopy images was performed using the

iterative closest point method (Besl and McKay, 1992). For all

datasets, the registration accuracy was visually inspected by

overlaying the fluorescein channels of both images. For single-

cell segmentation, we made use of CellPose (Stringer et al., 2021)

with the following parameters: input images: brightfield; cell

diameter, 30.0; flow threshold, 0.4; cell probability threshold,

0.0. The ablated regions were segmented by first visually guiding

a 100 by 100 regular grid on the ablated regions of the post-

MALDI microscopy brightfield channel (Supplementary Figure

S6). Then, we performed segmentation by defining circular

shapes with a diameter of 30 pixels (equals about 19 μm) on

the grid.

Pixel-cell deconvolution methods

We made use of two distinct pixel-cell deconvolution

methods. The weighted average (WA) method was described

previously (Rappez et al., 2021). Briefly, MS-signals from ablated

regions (thus, MALDI-pixels) associated with the cell of interest

are first divided by their sampling proportion (the fraction in

which the ablated region overlaps with any cell, Supplementary

Figure S1). Then, the assigned MS-signal Scell is calculated by the
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weighted average with the sampling specificity (fraction of the

sampling proportion that overlaps with the cell-of-interest,

Supplementary Figure S1) as weights:

For the linear inverse modelling (LIM) method, we store

our [fluorescein-H]- signals from the MALDI-pixels as vector p

and the specific sampling proportions (the Hadamard product

of sampling proportions and sampling specificities,

Supplementary Figure S1) in an n x m matrix S, where n is

the number of pixels and m the number of cells. The cellular

[fluorescein-H]- signals c can be determined by solving the

following equation:

After we constrain c to be non-negative, c is estimated using

linear inverse modelling (LIM) as implemented in the

R-packages nnls v.1.4 and LimSolve v.1.5.6 (Soetaert et al., 2009).

We used a combined approach (MIX) as follows. First, both

the LIM andWAmethods are used in parallel. Then, of each cell,

it is determined whether this cell is part of either an under- or

over-determined subnetwork. To this end, all cells and ablated

regions are added to a network as nodes, connected by edges

between cells and ablated regions in case they are overlapping

(with sampling proportions of > 0.3). Using R-package igraph

(v.1.3.1), distinct subnetworks with no links to other subnetworks

are determined. Cells are defined as underdetermined when they

are members of a subnetwork with more cells than ablated

regions. Finally, all underdetermined cells are assigned with

the values obtained from the WA method, while all others are

obtained from the LIM method.

In all pixel-cell deconvolution methods, N/A (not a number)

values are returned when cells are not associated to any included

ablated regions. Zeros are returned when the result of the pixel-

cell deconvolution assignments are zero.

Evaluation of the pixel-cell deconvolution
methods

Initial measurements and pixel-cell deconvolution methods

were evaluated by calculating the weighted Spearman

correlation coefficients (R-package wCorr v.1.9.5) between

the fluorescein fluorescence and MS intensities of ablated

regions (MALDI-pixels) or cells. The weights were used to

adjust for the different distributions of fluorescein in the ablated

regions versus the cells (for the ablated regions, the vast

majority is extracellular and zero, whereas this is not the

case for cells). Therefore, we defined weights ω as negatively

proportional to the normalised local density ρ of the

fluorescence vector:

The evaluation and UMAP projection of the co-culture dataset

(Rappez et al., 2021) was done with R-package Seurat (v.4.1.1). We

calculated the intermixing fraction of the different cell-types in the

following way. First, we calculated all pair-wise cell-cell distances

based on the 2-dimensional UMAP. Then, for each cell, the

10 nearest neighbours were selected, after which the intermixing

fraction was calculated: this is the fraction of neighbours that are of

another cell type as the cell-of-interest. This process was repeated for

all cells. The means of all intermixing fractions per cell were

reported. The overall workflow and settings can be found in

Supplemental Information 1.

Ion suppression compensation

For the supervised compensation of ion suppression of the

fluorescein MALDI-intensities, we first plotted all MALDI-

intensities with a sampling proportion higher than 0.1 in the

following manner. The y-axis was log-scaled and depicted the

ratio η. This ratio was found by dividing the fluorescein MALDI-

intensities by the sum fluorescence measured by microscopy.

Subsequently, the ratio ηwas normalized by dividing all values by

the median η of all MALDI-pixels with a sampling proportion of

1. The x-axis depicts the sampling proportions and is also log-

scaled (see Figure 2A). Data points with η of zero were excluded.

Next, η as a function of sampling proportion was modelled using

quantile (median) regression. Using this model, every fluorescein

MALDI-intensity was corrected for ion suppression by dividing

this intensity by the estimated η. These MALDI-intensities were

used as inputs for the subsequent pixel-cell deconvolution

methods discussed earlier.

For the unsupervised compensation of ion

suppression—applicable to all identified molecules—, a similar

approach was used. Here, for each molecule a ratio (now referred

to as μ) was calculated by dividing the molecular MALDI-

intensities by the corresponding sampling proportions. Data

points with μ of zero were excluded. Every (molecule-specific) μ

as a function of sampling proportion was then modelled using

quantile (median) regression. All MALDI-intensities were

corrected for ion suppression by dividing these intensities by

the estimated μ of the corresponding molecule-specific model.

These MALDI-intensities were used as inputs for the

subsequent pixel-cell deconvolution methods discussed

earlier. For the unsupervised ion suppression compensation

of the co-culture dataset (Rappez et al., 2021), we required at

least 10 non-zero data points to perform the regression. For

molecules with less than 10 of these data points, we used the η-

model generated for the molecule with the highest amount of

data points.
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accession number MTBLS78 (https://www.ebi.ac.uk/metabolights/

MTBLS78). All analyses were run in RStudio v.2022.02.2 (R v.4.2.0)

and are available as an RMarkdown document (Supplemental

Information 1). All figures were built in RStudio and/or Inkscape

v0.92.2. All code is available via https://git.embl.de/grp-alexandrov/

evaluation-of-single-cell-metabolomics-using-fda. The raw data and

analyses used in the paper are also available via the MetaboLights

repository MTBLS6465.
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