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The accurate prediction of potential associations betweenmicroRNAs (miRNAs)

and small molecule (SM) drugs can enhance our knowledge of how SM cures

endogenous miRNA-related diseases. Given that traditional methods for

predicting SM-miRNA associations are time-consuming and arduous, a

number of computational models have been proposed to anticipate the

potential SM–miRNA associations. However, several of these strategies failed

to eliminate noise from the known SM-miRNA association information or failed

to prioritize the most significant known SM-miRNA associations. Therefore, we

proposed a model of Graph Convolutional Network with Layer Attention

mechanism for SM-MiRNA Association prediction (GCNLASMMA). Firstly, we

obtained the new SM-miRNA associations by matrix decomposition. The new

SM-miRNA associations, as well as the integrated SM similarity and miRNA

similarity were subsequently incorporated into a heterogeneous network.

Finally, a graph convolutional network with an attention mechanism was

used to compute the reconstructed SM-miRNA association matrix.

Furthermore, four types of cross validations and two types of case studies

were performed to assess the performance of GCNLASMMA. In cross validation,

global Leave-One-Out Cross Validation (LOOCV), miRNA-fixed LOOCV, SM-

fixed LOOCV and 5-fold cross-validation achieved excellent performance.

Numerous hypothesized associations in case studies were confirmed by

experimental literatures. All of these results confirmed that GCNLASMMA is a

trustworthy association inference method.
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1 Introduction

As a form of non-coding RNA (ncRNA), MicroRNA

(miRNA), is roughly 22 nucleotides in length (Bartel, 2004;

Hammond, 2015; Lu and Rothenberg, 2018). Lin-4 was the

first human miRNA identified in1993 by Lee et al. in

Caenorhabditis elegans (Lee et al., 1993; Wightman et al.,

1993). With the advent of high-throughput sequencing

technologies, an increasing number of miRNAs with

important functions in human gene expression have been

identified (Denzler et al., 2016; Tagliafierro et al., 2017;

Thomou et al., 2017; Gam et al., 2018; Ghini et al., 2018; Liu

et al., 2018). Specifically, miRNAs can attach to the 3′
UnTranslated Region (3’ UTR) of target messenger RNAs

(mRNAs) via base-pairing to control the degradation of target

mRNAs and limit the translation of target mRNAs, hence

regulating gene expression (Gorbea et al., 2017). In the

control of target mRNA gene expression by miRNA, one

miRNA may regulate many target mRNAs, or numerous

miRNAs regulate one target mRNA (Saikia et al., 2020; Iwata

et al., 2021; Zhong et al., 2021). Several studies demonstrated the

role of miRNAs in the maturation of immune cells (Kumar

Kingsley and Vishnu Bhat, 2017). Since the profound impact of

miRNAs on biological development became apparent, numerous

miRNA types have been identified to be involved in biological

evolutionary processes (Rupaimoole and Slack, 2017; Cristino

et al., 2019).

Small Molecule (SM) drugs are mostly composed of

molecules with molecular weights typically fewer than 1,000 g/

mol. More than 98 percent of today’s drugs are SMs (Geng and

Craig, 2021). The development of SMs that target miRNAs is a

current trend in drug research (Dai and Tan, 2015; Yu et al.,

2020). In previous drug development, protein enzymes and

receptors were typically employed as therapeutic targets. Over

80 percent of drug development was intimately tied to protein

enzymes and receptors (Deyle et al., 2017; Yekkirala et al., 2017;

Nair et al., 2018; Lai-Kwon et al., 2021). In recent years, more

scientific experiments have proven inextricable linkages between

SMs and miRNAs (Healy et al., 2012; Monroig et al., 2015; Haniff

et al., 2021).WhenmiRNAs fail to regulate the gene expression of

an organism, specific disorders such as cardiovascular diseases,

neurological diseases and cancers may develop (Kumari et al.,

2018; Xia et al., 2019; Dragomir et al., 2021). In addition, SMs are

effective in regulating miRNA dysregulation to treat linked

endogenous disorders, and numerous SMs have been created

for clinical therapy of these diseases (Dragomir et al., 2021).

The development of novel SMs is facilitated by the accurate

identification of miRNA-related SMs. Recent studies have

focused on discovering possible associations between SMs and

miRNAs (Chen et al., 2021; Li et al., 2021; Wang et al., 2021).

Early identification approaches used high-throughput screening

methods, such as mass spectrometry, fluorescence and reporter

genes (Seth et al., 2005; Parsons et al., 2009; Carnevali et al., 2010;

Chen et al., 2012). The most frequent method for discovering

potential SM-miRNA associations is the reporter genes. On the

basis of the reporter genes, a functional novel drug screening

method capable of screening lead compounds was proposed. By

substituting biomacromolecules with tiny organic compounds,

the screening process for drugs could be expedited dramatically.

The use of tiny organic compounds throughout the screening

procedure could provide information on the functional responses

of cells. (Wen et al., 2015). In drug screening research, luciferase

reporter genes satisfy the requirements for high sensitivity, target

specificity and high throughput (Thorne et al., 2010).

However, it was discovered that biological screening

approaches are stochastic and time-consuming. With the

proliferation of bioinformatics databases, the number of

known SM-miRNA associations increased, as did the

calculational methodologies for SM and miRNA similarity.

Consequently, machine learning techniques obtained more

precise prediction outcomes (Qu et al., 2019).

Bioinformaticians have begun to employ machine learning

techniques to predict probable SM-miRNA associations to

circumvent time-consuming and labor-intensive biological

investigations (Wang and Chen, 2019; Wang et al., 2019).

Among the previous methods for predicting probable SM-

miRNA associations, (Qu et al., 2018), developed a model titled

Triple Layer Heterogeneous Network based Small Molecule-

MiRNA Association prediction (TLHNSMMA). TLHNSMMA

first merged the known SM-miRNA associations, SM similarity

and miRNA similarity into a three-layer heterogeneous network.

The three-layer heterogeneous graph was then implemented with

an iterative updating algorithm. Finally, the reconstructed SM-

miRNA association matrix was obtained using an iterative

propagation approach that made extensive use of global data.

Based on the establishment of a three-layer SM-miRNA

heterogeneous network, (Liu et al., 2020), suggested a novel

model for potential SM-miRNA association prediction called

Random Walk with Negative Samples (RWNS). Firstly, RWNS

obtained integrated similarities of SM and miRNA. Then, Liu

et al. devised a Credible Negative Sample extraction method

(CNSMiRS) to extract plausible negative SM-miRNA samples

under the premise that dissimilar SMs/miRNAs are unlikely to be

associated with each other’s related miRNAs/SMs. Finally, the

reconstructed SM-miRNA association matrix was obtained by

implementing a random walk algorithm on the constructed small

molecule-disease-miRNA association network. However, the

performance of TLHNSMMA and RWNS is dependent on the

known SM-miRNA association adjacency matrix. Consequently,

(Yin et al., 2019), suggested a model of Sparse Learning and

Heterogeneous Graph Inference for Small Molecule-MiRNA

Association prediction (SLHGISMMA). Yin et al. first used

matrix decomposition on known SM-miRNA associations to

obtain the new SM-miRNA associations. Then, the new SM-

miRNA associations, integratedmiRNA similarity and integrated

SM similarity were incorporated into a heterogeneous network.
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Finally, the reconstructed SM-miRNA association matrix was

obtained using heterogeneous graph inference. Chen et al. (2021)

recently proposed the Bounded Nuclear Norm Regularization for

SM–miRNA Associations prediction (BNNRSMMA), which

treated the problem of potential SM-miRNA association

prediction as a matrix complementation problem. In addition,

BNNRSMMA included a regularization term to remove the

negative effects of data noise.

In recent years, improvements have been made to machine

learning techniques, and deep learning has emerged as one of the

brightest new stars (Wang et al., 2020). Deep learning has

achieved exceptional results in traditional classification tasks,

such as handwritten font recognition (Singh et al., 2021),

computer vision (Borges Oliveira et al., 2021) and

computational biology (Angermueller et al., 2016). In

addition, deep learning has substantially affected the field of

potential association prediction. For example, zeng et al.

proposed a computational framework termed AOPEDF based

on drug-target network and deep forest algorithm to predict

potential drug-target associations (Zeng et al., 2020). AOPEDF

attained excellent performance in identifying molecular targets

among known drugs on two external validation datasets by

comparison to other machine learning methods. Therefore, we

proposed a model of Graph Convolutional Network with Layer

Attention mechanism for SM-MiRNA Association prediction

(GCNLASMMA). To evaluate the performance of

GCNLASMMA, we used two types of cross validation,

namely, 5-fold cross-validation and Leave-One-Out Cross

Validation (LOOCV). Additionally, we also utilized two types

of case studies to confirm the effectiveness of GCNLASMMA in

identifying potential miRNAs for investigated SMs. The results

showed that GCNLASMMA could accurately and effectively

predict the SM-miRNA pairs most likely to be potentially

associated.

2 Materials and methods

2.1 SM-miRNA associations

We named two datasets used in our work after dataset1 and

dataset2. Eight hundred and thirty-one SMs in dataset1 were

downloaded from three databases, namely SM2miR, DrugBank

(Knox et al., 2011) and PubChem (Wang et al., 2009). Five

hundred and forty-one miRNAs were downloaded from four

databases, namely SM2miR, HMDD (Li et al., 2014),

miR2Disease (Jiang et al., 2009) and PhenomiR (Ruepp et al.,

2010). Six hundred and sixty-four known SM-miRNA

associations were downloaded from a database, namely

SM2miR V1.0 (Liu et al., 2013). On the basis of dataset1, we

removed the SMs andmiRNAs that did not constitute any known

association. Then, we obtained dataset2 which included

286 different miRNAs, 39 different SMs and 664 known

SM-miRNA association pairs. Specifically, the known SM-

miRNA association Aij between the ith SM and the jth
miRNA was stored as follows.

2.2 Integration of SM similarities

The integrated SM similarity was calculated by (Lv et al.,

2015). In his method, a total of four SM similarities were used,

namely SM side effect similarity (Gottlieb et al., 2011), gene

functional consistency-based similarity for SMs (Lv et al.,

2012), SM chemical structure similarity (Hattori et al.,

2003) and disease phenotype-based similarity for SMs

(Gottlieb et al., 2011). In Lv’s article, the side effect

properties of SM were first downloaded from SIDe Effect

Resource (SIDER) and calculated by Jaccard score to obtain

SMs side effect similarities (Gottlieb et al., 2011). The

calculation of gene functional consistency-based similarities

for SMs was implemented on the target genes of SMs obtained

from the DrugBank and Therapeutic Targets Database (TTD)

(Liu et al., 2011). The Gene Set Functional Similarity (GSFS)

method was given in the previous article (Lv et al., 2012).

Specifically, we downloaded the SM chemical structure

information. Then, a graph-based method, SIMilar

COMPound (SIMCOMP) (Lv et al., 2012), was applied to

obtain SMs’ chemical structure similarities. Finally, the

disease phenotype-based similarities for SMs were obtained

by calculating the data downloaded from the DrugBank and

TTD with the Jaccard score method.

After obtaining all four SM similarities, we named them after

SS1, SS2, SS3 and SS4, respectively. Then, the scores of the four

SM similarities were integrated by the following formula,

SSM � ∑iαiSSi∑i αi
, (i � 1, 2, 3, 4) (1)

where α represents the weights of SM similarities. All of the

measures are important in terms of biology. Thus, we set the

values of all α to 1, which means that each SM similarity made an

equal contribution to constituting the integrated SM similarity

(Li et al., 2004). Finally, the integrated SM similarity SSM(si, sj)
between the ith and jth SMs was obtained after normalization as

follows.

SSM(si, sj) � SSM(si, sj)�������������∑ns
l�1SSM(si, sl)

√ �������������∑ns
l�1SSM(sl, sj)√ (2)

2.3 Integration of miRNA similarities

Two miRNA similarities, gene function consistency-based

similarity (Lv et al., 2012) and indication phenotype-based

similarity (Gottlieb et al., 2011), were used to obtain
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integrated miRNA similarity. Specifically, we downloaded the

target scores of each miRNA from the database TargetScan

(Agarwal et al., 2015) and obtained gene function consistency-

based similarity using the GSFS method (Lv et al., 2012). The

indication phenotype-based similarity was obtained from the

Human MicroRNA Disease Database (HMDD) version 2.0 (v

2.0), miR2Disease and PhenomiR databases using the GSFS

method. Then, we combined the gene function consistency-

based similarity and the indication phenotype-based similarity

using the Jaccard score. Then, we named the two kinds of miRNA

similarities after SM1 and SM2, respectively. Moreover, the

integrated miRNA similarity SMR was obtained by the

following equation,

SMR � ∑jβjSMj∑j βj
, (j � 1, 2) (3)

where β1 and β2 represent the weights of miRNA similarities.

Also, we set the values of β1 and β2 to 1, which means each

miRNA similarity made an equal contribution to constituting the

integrated miRNA similarity. Finally, the integrated miRNA

similarity SMR(mi,mj) between the ith and jth miRNAs was

obtained after normalization as follows.

SMR(mi,mj) � SMR(mi,mj)���������������∑nm
l�1SMR(mi,ml)

√ ���������������∑nm
l�1SMR(ml,mj)√ (4)

2.4 GCNLASMMA

GCNLASMMA was separated into two steps. The known

SM-miRNA association A was initially decomposed and

reconstructed to obtain the new SM-miRNA association A*.

The reconstructed SM-miRNA association matrix A′ was then
obtained by calculating the new SM-miRNA associationA* using

a graph convolutional network with an attention mechanism.

More specifically, we obtained the new SM-miRNA associations

by matrix decomposition. Then, the new SM-miRNA association

matrix, integrated SM similarity and integrated miRNA

similarity were constructed into a heterogeneous network.

Finally, the graph convolutional network with layer attention

mechanism was applied to obtain the reconstructed SM-miRNA

association matrix. GCNLASMMA is a model of a neural

network with more hidden layers than other networks. The

multi-layer calculation thoroughly considered the known

FIGURE 1
The flow chart of potential SM-miRNA association prediction based on GCNLASMMA. Firstly, the matrix decomposition is applied to obtain the
new SM-miRNA associations. Then the new SM-miRNA associations, integrated SM similarity and integratedmiRNA similarity are constructed into an
SM-miRNA association heterogeneous network. Finally, a graph convolutional network with layer attention mechanism is applied to obtain the
reconstructed SM-miRNA association matrix.
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features and avoided overfitting. Moreover, the attention

mechanism extracted significant information from each layer,

thereby improving the accuracy of association prediction (Niu

et al., 2021). The specific flow chart of GCNLASMMA is shown

in Figure 1.

2.4.1 Matrix decomposition
The existence of noise in known SM-miRNA associations

tends to reduce prediction accuracy. Prior research has

demonstrated that hidden features with considerable value can

be extracted by applying dimension-reduction and noise-

reduction to the data (Vidal, 2011). A low-rank matrix is a

tool for efficiently obtaining hidden features with significant

values (Peng et al., 2012). Therefore, we used matrix

decomposition to learn a low-rank matrix from the known

SM-miRNA association A. The decomposition of A was

performed as follows:

A � A × X + E (5)

Since the above equation contains an infinite number of

solutions, we applied the constraint to turn it into:

min
X,E

‖X‖p + α‖E‖2,1 s.t. A � A × X + E (6)

where ‖X‖p � ∑iσ i, (σ i is the singular value ofmatrixX),
‖E‖2,1 � ∑n

j�1
���������∑m

i�1(Eij)2
√

. In Eq. 6, the nuclear norm and

sparse norm were applied to constrain X and E, which

allowed X and E to be low-rank and sparse matrices,

respectively. The balance parameter of low-rank and sparse

matrices α was set to 0.1. According to earlier research, if A

in Eq. 6 is transformed into an identity matrix, then the model is

degenerated to the Robust Principal Component Analysis

(RPCA), a convex optimization problem with constraints

(Chandrasekaran et al., 2009).

min
X,E,J

‖J‖p + α‖E‖2,1 s.t. A � A × X + E,X � J (7)

Based on the previous work (Meng et al., 2014), Eq. 7 can be

converted into an unconstrained optimization problem.

Therefore, the problem can be resolved using the Exact

Augmented Lagrange Multipliers (EALM) algorithm.

L � ‖J‖p + α‖E‖2,1 + tr(YT
1 (A − A × X − E)) + tr(YT

2 (X − J))
+δ
2
(‖A − A × X − E‖2F + ‖X − J‖2F) (8)

In Eq. 8, the penalty parameter δ ≥ 0. According to the

Inexact Augmented Lagrange Multipliers (IALM) algorithm

(See Table 1), we fixed other variables and solved the

minimum value of J, X and E by updating the Lagrange

multipliers Y1 and Y2. Moreover, we defined X* and E* as

the solution of Eq. 8. X* represents the similarity matrix of

miRNA or SM. E* represents the noise matrix. Then, the new

SM-miRNA association A* was expressed as:

A* � A × X* (9)

2.4.2 SM-miRNA heterogeneous network
In this study, the new SM-miRNA association A*,

integrated SM similarity SSM and integrated miRNA

similarity SMR were combined into a heterogeneous

network. There would be a known association between the

ith SM and the jth miRNA if element Aij
* in A* equaled 1.

SSM(i, j) represented the integrated similarity between the ith
SM and the jth SM. SMR(i, j) represented the integrated

similarity between the ith miRNA and the jth miRNA. The

specific equation of the heterogeneous network AH

construction is as follows:

AH � [~ SMR A*
A*T ~ SSM

] (10)

where A*T represents the transpose matrix of A*. In Eq. 10, we

normalized the similarity matrix of SM and miRNA by ~ SSM �
D

−1
2

s SSMD
−1
2

s and ~ SMR � D
−1
2

m SMRD
−1
2

m , respectively.

Specifically, Ds � diag(∑jSSMij) and Dm � diag(∑jSMRij).

2.4.3 Graph convolutional network
As classic network models, Long-Short Term Memory

(LSTM) and Convolution Neural Network (CNN) are only

applicable to grid-structured data. Nevertheless, the Graph

Convolutional Network (GCN) can manage data with

generalized topological graph structures and deeply explore

the features of the data (Habib and Qureshi, 2020). In this

paper, we constructed GCNLASMMA, which is a model for

graph convolution of biological information. Specifically, GCN

was implemented on the SM-miRNA heterogeneous networkAH

that was constructed by the known SM-miRNA associations, SM

similarities and miRNA similarities. GCN is a neural network

TABLE 1 The illustration of the IALM algorithm.

Algorithm: Inexact augmented lagrange multipliers

Input: Known SM-miRNA association matrix A and α � 0.1

Initialize:
X � 0, E � 0, Y1 � 0, Y2 � 0, μ � 10−4 , max μ � 1010 , ρ � 1.1, ε � 1010

While true

1. Fix others and J � argmin 1
μ‖J‖* + 1

2‖J − (X + Y2/μ)‖2F
2. Fix others and X � (I + ATA)(ATA − ATE + J + (ATY1 − Y2)/μ)
3. Fix others and E � argmin α

μ‖E‖2,1 + 1
2‖E − (A − AX + Y1/μ)‖2F

4. Update Y1 � Y1 + μ(A − AX − E); Y2 � Y2 + μ(X − J)
5. Update μ � min(ρμ, max μ)
If ‖A − AX − E‖∞ < ε and ‖X − J‖∞ < ε
End while

Output: X* and E*
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structure consisting of an input layer, an output layer and many

hidden layers that can represent nodes in a low-dimensional

manner. Each hidden layer of GCN takes the output of the

previous layer as input. The graph convolutional network

propagation rule is as follows:

H(l+1) � f(H(l), G) � σ(D−1
2GD−1

2H(l)W(l)) (11)

In Eq. 11,H(l) andH(l+1) denote the embeddings of nodes in the

lth and (l + 1)th layers, respectively. D � diag(∑jGij) is a

diagonal matrix of input graph G, W(l) represents the

trainable weight matrix with a layer-specific value, σ(·)
denotes the nonlinear activation function.

In the encoder part, to learn low-dimensional representations

of miRNAs and SMs, we combined the new SM-miRNA

association, integrated SM similarity and integrated miRNA

similarity into SM-miRNA association heterogeneous network

AH. Firstly, we set a penalty factor μ in the input graph G during

the propagation process as follows:

G � [ μ ~ SMR A*
A*T μ ~ SSM

] (12)

Then, we initialized the input layer embeddings as:

H(0) � [ 0 A*
A*T 0

] (13)

In this way, we obtained the propagation formula for the first

layer from Eqs 11, 13:

H(1) � σ(D−1
2GD−1

2H(0)W(0)) (14)

In Eq. 12, W(0) is a weight matrix that acts only between the

input layer and the first hidden layer. H(1) is the first-layer

embeddings of the heterogeneous network AH, k is the

dimension of the embeddings. Similarly, the propagation rules

for the subsequent layers of the GCN encoder followed Eq. 11,

where l � 1, 2,/, L. After L iterations, we obtained L k −
dimensional embeddings from different graph convolution

TABLE 2 Validation of the random 50 SM-miRNAs associations. The first column records the random 1–25 associations. The second column records
the random 26–50 associations.

SM miRNA Evidence SM miRNA Evidence

CID 4116 hsa-mir-329-2 unconfirmed CID 2662 hsa-mir-330 unconfirmed

CID 60726 hsa-mir-216b unconfirmed CID 7028 hsa-mir-592 unconfirmed

CID 4760 hsa-mir-520c unconfirmed CID 5656 hsa-mir-646 32083545

CID 3052 hsa-mir-193a unconfirmed CID 3520 hsa-mir-1266 unconfirmed

CID 444036 hsa-mir-199a-2 unconfirmed CID 43008 hsa-mir-519a-1 unconfirmed

CID 3198 hsa-mir-216a unconfirmed CID 3343 hsa-mir-1469 unconfirmed

CID 157922 hsa-mir-1260a unconfirmed CID 5566 hsa-mir-548a-3 unconfirmed

CID 3698 hsa-mir-2110 unconfirmed CID 5493444 hsa-mir-1285-2 unconfirmed

CID 4212 hsa-mir-219-2 unconfirmed CID 60843 hsa-let-7d unconfirmed

CID 8223 hsa-mir-98 unconfirmed CID 110635 hsa-mir-216b unconfirmed

CID 19861 hsa-mir-659 unconfirmed CID 2801 hsa-mir-744 unconfirmed

CID 71329 hsa-mir-100 unconfirmed CID 216239 hsa-mir-1273e unconfirmed

CID 47641 hsa-mir-150 unconfirmed CID 71398 hsa-mir-526a-1 unconfirmed

CID 443980 hsa-mir-760 unconfirmed CID 4201 hsa-mir-153-2 unconfirmed

CID 5574 hsa-mir-512-2 unconfirmed CID 5281040 hsa-mir-548a-2 unconfirmed

CID 8969 hsa-mir-543 unconfirmed CID 444020 hsa-mir-320a unconfirmed

CID 5282415 hsa-mir-619 unconfirmed CID 3025 hsa-mir-24-1 unconfirmed

CID 65833 hsa-mir-760 unconfirmed CID 3019 hsa-mir-1226 unconfirmed

CID 1775 hsa-mir-520f unconfirmed CID 1125 hsa-mir-27a unconfirmed

CID 3749 hsa-mir-1285-2 unconfirmed CID 1349907 hsa-mir-642a unconfirmed

CID 2905 hsa-mir-96 unconfirmed CID 656719 hsa-mir-611 unconfirmed

CID 3180 hsa-mir-148a unconfirmed CID 2795 hsa-mir-711 unconfirmed

CID 5566 hsa-mir-646 unconfirmed CID 23994 hsa-mir-614 unconfirmed

CID 4212 hsa-mir-18a 31063487 CID 4099 hsa-mir-708 unconfirmed

CID 82146 hsa-mir-490 unconfirmed CID 5281106 hsa-mir-1302-6 unconfirmed
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layers. Exponential linear elements were used as nonlinear

activation functions in the graph convolution layer, which

sped up the learning process and significantly improved the

generalization performance.

In addition, we tried several different combinations of

parameters from the range α ∈ {400, 600, 800, 1000},
lr ∈ {0.00700, 0.00725, 0.00750, 0.00775, 0.00800}. By adjusting

the parameters empirically, we set the dimensions of embeddings

k � 64, the number of layers L � 3, the initial learning rate of

optimizer lr � 0.00725, the total training epochs α � 600, the two

dropout rates β � 0.6 and γ � 0.4, the penalty factor μ � 6 on both

dataset1 and dataset2.

2.4.4 Layer attention mechanism
In addition, the layer attention mechanism was added to this

model by introducing an attentionmechanism between each layer

and storing the position information in AH. As a help for the

attention mechanism, we extracted the pertinent information

straight from the source data when constructing the

embeddings of each layer output during the decoding process.

Through this mechanism, we obtained the final SM embeddings

and final miRNA embeddings from the fully connected layer:

[Hm

Hs
] � ∑ alHl, where Hm represents the final embeddings of

miRNA, Hs is the final embeddings of SM. The neural network

automatically adjusted the value of al by the initial input value
l

(l+1), l � 1, 2,/, L. Finally, we obtained the reconstructed SM-

miRNA associationmatrixA′ by an activation function as follows,

A′ � sigmoid(HmW′HT
s ) (15)

whereW′ is a trainable matrix. The corresponding element Aij
′

is the potential correlation score between miRNA mi and

SM sj.

3 Results

To evaluate the performance of GCNLASMMA, we used two

types of cross validation, namely, 5-fold cross-validation and

Leave-One-Out Cross Validation (LOOCV). The two different

datasets include the same known 664 SM-miRNA associations.

Specifically, dataset 1 has 831 SMs and 541miRNAs. On the basis

of dataset1, we removed the SMs and miRNAs that did not

constitute any known association. Then, we obtained

dataset2 which has only 286 different miRNAs, 39 different

SMs. In this study, the Area Under the receiver operating

characteristic Curves (AUCs) obtained under 5-fold cross-

validation based on dataset1 and dataset2 were 0.9721 ±

0.0018 and 0.8393 ± 0.0047, respectively. The global AUC and

local AUC obtained under LOOCV based on dataset1 were

0.9751 (global LOOCV), 0.9746 (miRNA-fixed LOOCV) and

0.5014 (SM-fixed LOOCV), respectively. Based on dataset2, the

AUCs of GCNLASMMA were 0.8504 (global LOOCV), 0.8490

(miRNA-fixed LOOCV) and 0.6398 (SM-fixed LOOCV),

respectively. Additionally, we utilized two types of case studies

to confirm the effectiveness of GCNLASMMA in identifying

FIGURE 2
The left half of the figure shows the comparison of GCNLASMMAwith two comparison algorithms under global LOOCV based on dataset1. As a
result, GCNLASMMA, SLHGISMMA and SMiR-NBI achieve AUCs of 0.9751, 0.9273 and 0.8843, respectively. The right half of the figure shows the
comparison of GCNLASMMA with two comparison algorithms under global LOOCV based on dataset2. As a result, GCNLASMMA, SLHGISMMA and
SMiR-NBI achieve AUCs of 0.8504, 0.7897 and 0.7264, respectively.

Frontiers in Molecular Biosciences frontiersin.org07

Ni et al. 10.3389/fmolb.2022.1009099

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1009099


potential miRNAs for investigated SMs. Specifically,

GCNLASMMA has predicted the potential miRNAs associated

with 5-Fluorouracil (5-Fu, CID: 3385), 5-Aza-2′-deoxycytidine
(5-Aza-CdR, CID: 451668) and 17β-Estradiol (E2, CID: 5757).

For 5-Fu, the results showed that 9, 16 and 39 out of the top 10,

20 and 50 potential related miRNAs in the first type of case

studies, 8, 15 and 39 out of the top 10, 20 and 50 potential related

miRNAs in the second type of case studies were validated in other

FIGURE 3
The left half of the figure shows the comparison of GCNLASMMA with two comparison algorithms under miRNA-fixed LOOCV based on
dataset1. As a result, GCNLASMMA, SLHGISMMA and SMiR-NBI achieve AUCs of 0.9746, 0.9553 and 0.8837, respectively. The right half of the figure
shows the comparison of GCNLASMMA with two comparison algorithms under miRNA-fixed LOOCV based on dataset2. As a result, GCNLASMMA,
SLHGISMMA and SMiR-NBI achieve AUCs of 0.8490, 0.8106 and 0.7846, respectively.

FIGURE 4
The left half of the figure shows the comparison of GCNLASMMA with two comparison algorithms under SM-fixed LOOCV based on dataset1.
As a result, GCNLASMMA, SLHGISMMA and SMiR-NBI achieve AUCs of 0.5014, 0.7702 and 0.7497, respectively. The right half of the figure shows the
comparison of GCNLASMMA with two comparison algorithms under SM-fixed LOOCV based on dataset2. As a result, GCNLASMMA, SLHGISMMA
and SMiR-NBI achieve AUCs of 0.6398, 0.6565 and 0.6100, respectively.
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literature or databases, respectively. For 5-Aza-CdR, the results

showed that 8, 13 and 26 out of the top 10, 20 and 50 potential

related miRNAs in the first type of case studies, 8, 14 and 28 out

of the top 10, 20 and 50 potential related miRNAs in the second

type of case studies were validated in other literature or databases,

respectively. For E2, the results showed that 6, 14 and 29 out of

the top 10, 20 and 50 potential related miRNAs in the first type of

case studies, 4, 11 and 29 out of the top 10, 20 and 50 potential

related miRNAs in the second type of case studies were validated

in other literature or databases, respectively.

3.1 Performance evaluation

In 5-fold cross-validation, all known SM-miRNA

associations were randomly separated into five subsets of

nearly comparable size. Then, each subset was in turn

considered as the test sample, and the rest four subsets were

treated as training samples. Moreover, all unknown SM-miRNA

pairs were regarded as candidate samples. Subsequently, we

obtained a predicted association score matrix by

GCNLASMMA, and ranked the scores of each test sample

against those of the candidate samples. This partition-

prediction-ranking procedure was repeated 100 times to

obtain a sound estimate of the mean and variance of

GCNLASMMA’s prediction accuracy. Finally, the prediction

of a test sample was deemed successful if the sample’s rank

was higher than the given threshold. Therefore, we utilized the

threshold to calculated the false positive rate (FPR, 1-specificity)

and the true positive rate (TPR, sensitivity). The FPR and TPR

represented the percentage of candidate samples that lower than

the threshold and the percentage of test samples that higher than

the threshold, respectively. Then, we regarded FPR and TPR as

horizontal and vertical axis. The Receiver Operating

Characteristic (ROC) curve were plotted. Finally, we attained

the Area Under the ROC Curve (AUC) by computing the area

under the ROC curves. In this investigation, GCNLASMMA

achieved the AUCs of 0.9721 ± 0.0018 and 0.8393 ± 0.0047 under

5-fold cross-validation based on dataset1 and dataset2,

respectively.

LOOCV was further classified as either global and local.

Then, the local-LOOCV was subdivided into miRNA-fixed

TABLE 3 Validation of the top 50miRNAs associated with 5-Fu in the first type of case studies. The first column records the top 1–25 relatedmiRNAs.
The second column records the top 26–50 related miRNAs.

SM miRNA Evidence SM miRNA Evidence

CID 3385 hsa-miR-151a 23220571 CID 3385 hsa-miR-126 26062749

CID 3385 hsa-miR-195 21947305 CID 3385 hsa-miR-128-1 23220571

CID 3385 hsa-let-7d 23220571 CID 3385 hsa-miR-337 unconfirmed

CID 3385 hsa-miR-195 21947305 CID 3385 hsa-miR-181c unconfirmed

CID 3385 hsa-miR-125a 23220571 CID 3385 hsa-miR-30c-1 unconfirmed

CID 3385 hsa-miR-345 unconfirmed CID 3385 hsa-miR-27a 23220571

CID 3385 hsa-miR-16-1 26198104 CID 3385 hsa-let-7a-1 23220571

CID 3385 hsa-miR-24-1 26198104 CID 3385 hsa-miR-139 27173050

CID 3385 hsa-miR-23b 23220571 CID 3385 hsa-miR-302b 26457704

CID 3385 hsa-miR-1226 26198104 CID 3385 hsa-let-7b 25789066

CID 3385 hsa-miR-151a 23220571 CID 3385 hsa-miR-26b 23220571

CID 3385 hsa-miR-132 23220571 CID 3385 hsa-miR-221 27501171

CID 3385 hsa-125b-1 unconfirmed CID 3385 hsa-miR-338 28928082

CID 3385 hsa-let-7e 23220571 CID 3385 hsa-miR-130a unconfirmed

CID 3385 hsa-miR-19a 23220571 CID 3385 hsa-miR-10b 22322955

CID 3385 hsa-miR-181a-1 unconfirmed CID 3385 hsa-miR-204 27095441

CID 3385 hsa-miR-181b-1 unconfirmed CID 3385 hsa-miR-26a-1 unconfirmed

CID 3385 hsa-miR-25 23220571 CID 3385 hsa-miR-92a-1 23220571

CID 3385 hsa-miR-106a 23220571 CID 3385 hsa-miR-299 31786874

CID 3385 hsa-miR-200c 23220571 CID 3385 hsa-miR-107 26636340

CID 3385 hsa-miR-22 25449431 CID 3385 hsa-miR-181a-2 24462870

CID 3385 hsa-miR-20a 23220571 CID 3385 hsa-miR-205 24396484

CID 3385 hsa-let-7d 23220571 CID 3385 hsa-miR-23a 23220571

CID 3385 hsa-miR-34b unconfirmed CID 3385 hsa-miR-199b unconfirmed

CID 3385 hsa-miR-205 24396484 CID 3385 hsa-miR-93 23220571
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LOOCV and SM-fixed LOOCV. In LOOCV, each known SM-

miRNA association was in turn considered to be the test sample

and the others were treated as the training samples. Moreover, all

unknown SM-miRNA pairs were treated as candidate samples. In

miRNA-fixed LOOCV and SM-fixed LOOCV, test samples and

training samples were chosen similarly. However, in SM-fixed

LOOCV, only unknown SM-miRNA pairs containing the

selected SM were regarded as candidate samples. Similarly, in

miRNA-fixed LOOCV, candidate samples only included those

involving the chosen miRNA. Then, we ranked the score of the

test sample against those of the candidate samples. Finally, the

prediction of a test sample was deemed successful if the rank of

this test sample was higher than the given threshold. Based on

dataset1, GCNLASMMA attained the AUCs of 0.9751,

0.9746 and 0.5014 under global LOOCV, miRNA-fixed

LOOCV and SM-fixed LOOCV, respectively. Based on

dataset2, GCNLASMMA attained the AUCs of 0.8504,

0.8490 and 0.6398 under global LOOCV, miRNA-fixed

LOOCV and SM-fixed LOOCV, respectively.

The AUC comparison figures based on dataset1 (dataset2)

were plotted to determine the differences between

GCNLASMMA and other models’ outcomes. AUC =

0.5 would suggest that the model was only capable of

random prediction, whereas AUC = 1 would indicate that

all test samples were accurately predicted. Figure 2

demonstrates that the results of GCNLASMMA under

global LOOCV are significantly better than that of SMiR-

NBI. Figures 3, 4 show that the results of GCNLASMMA

under miRNA-fixed local LOOCV and SM-fixed local

LOOCV were significantly better than those of

SLHGISMMA and SMiR-NBI. Furthermore, the AUC of

miRNA-fixed local LOOCV based on dataset1 is 0.9746,

which means almost all potential SM-miRNA associations

in dataset1 were predicted successfully.

3.2 Case studies

To further illustrate the GCNLASMMA’s applicability to

identify potential miRNAs, we conducted two types of case

studies on three essential SMs, namely 5-Fluorouracil (5-Fu,

CID: 3385), 5-Aza-2′-deoxycytidine (5-Aza-CdR, CID:

TABLE 4 Validation of the top 50 miRNAs associated with 5-Fu in the second type of case studies. The first column records the top 1–25 related
miRNAs. The second column records the top 26–50 related miRNAs.

SM miRNA Evidence SM miRNA Evidence

CID 3385 hsa-miR-151a 23220571 CID 3385 hsa-miR-195 21947305

CID 3385 hsa-let-7d 23220571 CID 3385 hsa-miR-27a 23220571

CID 3385 hsa-miR-205 24396484 CID 3385 hsa-miR-204 27095441

CID 3385 hsa-miR-181a-2 24462870 CID 3385 hsa-miR-181a-1 unconfirmed

CID 3385 hsa-miR-23a 23220571 CID 3385 hsa-miR-25 23220571

CID 3385 hsa-miR-1226 26198104 CID 3385 hsa-miR-199b unconfirmed

CID 3385 hsa-miR-181c unconfirmed CID 3385 hsa-miR-139 27173050

CID 3385 hsa-miR-151a 23220571 CID 3385 hsa-miR-195 21947305

CID 3385 hsa-miR-26a-1 unconfirmed CID 3385 hsa-miR-132 23220571

CID 3385 hsa-miR-26b 23220571 CID 3385 hsa-miR-20a 23220571

CID 3385 hsa-miR-130a unconfirmed CID 3385 hsa-miR-126 26062749

CID 3385 hsa-miR-345 unconfirmed CID 3385 hsa-125b-1 unconfirmed

CID 3385 hsa-miR-128-1 23220571 CID 3385 hsa-miR-200c 23220571

CID 3385 hsa-let-7d 23220571 CID 3385 hsa-miR-299 31786874

CID 3385 hsa-miR-181b-1 unconfirmed CID 3385 hsa-miR-30c-1 unconfirmed

CID 3385 hsa-miR-205 24396484 CID 3385 hsa-miR-24-1 26198104

CID 3385 hsa-miR-125a 23220571 CID 3385 hsa-miR-93 23220571

CID 3385 hsa-miR-22 25449431 CID 3385 hsa-let-7e 23220571

CID 3385 hsa-miR-16-1 26198104 CID 3385 hsa-let-7b 25789066

CID 3385 hsa-miR-106a 23220571 CID 3385 hsa-miR-221 27501171

CID 3385 hsa-miR-23b 23220571 CID 3385 hsa-miR-19a 23220571

CID 3385 hsa-miR-338 28928082 CID 3385 hsa-miR-92a-1 23220571

CID 3385 hsa-miR-10b 22322955 CID 3385 hsa-miR-302b 26457704

CID 3385 hsa-let-7a-1 23220571 CID 3385 hsa-miR-107 26636340

CID 3385 hsa-miR-337 unconfirmed CID 3385 hsa-miR-34b unconfirmed
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451668) and 17β-Estradiol (E2, CID: 5757). On the basis of all

known SM-miRNA associations, the first type was applied to

forecast potential miRNAs for investigated SMs. As the training

set, we utilized the known SM-miRNA associations from

dataset1. Then, for each investigated SM, we ranked all

candidate miRNAs according on their predicted scores. The

second type was used to forecast potential miRNAs for

investigated SMs without any known SM-miRNA association.

Therefore, we removed all verified associations related to the

investigated SMs before the prediction and ranked them as the

first type of case studies. After ranking all candidate miRNAs for

each investigated SM based on their predicted scores, the top

50 predicted miRNAs were picked out and verified in other

literature or databases. Moreover, we selected 10, 20 and

50 associations randomly from all potential associations to

further demonstrate the validity of GCNLASMMA. The

results show that only 0, 0 and 2 out of random 10, 20 and

50 associations are confirmed in other literature or databases (See

Table 2), which significantly worse than the top 10, 20 and

50 miRNAs related to investigated SMs.

3.2.1 5-Fu
5-Fu, one of the earliest anticancer drugs, can be fully absorbed by

tumor cells. Moreover, 5-Fu can decrease tumor cell proliferation by

interfering with the formation of DeoxyriboNucleic Acid (DNA) and

RiboNucleic Acid (RNA) in tumor cells. It has been demonstrated

that 5-Fu has considerable inhibitory effects on various cancer cells.

Therefore, 5-Fu is frequently used as a positive control in anticancer

drug effect experiments and clinical adjuvant treatment of gastric

cancer (Longley et al., 2003). The first type of case studies’ results show

that 9, 16 and 39 out of the top 10, 20 and 50 potential 5-Fu-associated

miRNAs are confirmed in other literature or databases (See Table 3).

The second type of case studies’ results show that 8, 15 and 39 out of

the top 10, 20 and 50 potential 5-Fu-associated miRNAs are

confirmed in other literature or databases (See Table 4). For

example, 5-Fu is the most common chemotherapeutic agent for

colorectal cancer. On the one hand, over-expression of hsa-miR-

23a causes the resistance to 5-Fu in microsatellite instability colorectal

cancer, which results in a diminished effect of 5-Fu chemotherapy

(Shang et al., 2014). On the other hand, Ectopic expression of hsa-

miR-23a increased the viability and survival of microsatellite stability

TABLE 5 Validation of the top 50 miRNAs associated with 5-Aza-CdR in the first type of case studies. The first column records the top 1–25 related
miRNAs. The second column records the top 26–50 related miRNAs.

SM miRNA Evidence SM miRNA Evidence

CID 451668 hsa-miR-20a 23220571 CID 451668 hsa-miR-30a unconfirmed

CID 451668 hsa-miR-320a 26198104 CID 451668 hsa-miR-107 23220571

CID 451668 hsa-miR-125a 23220571 CID 451668 hsa-miR-199b 24659709

CID 451668 hsa-miR-182 23220571 CID 451668 hsa-let-7a-1 unconfirmed

CID 451668 hsa-miR-204 unconfirmed CID 451668 hsa-miR-92a-1 unconfirmed

CID 451668 hsa-miR-200b 23626803 CID 451668 hsa-miR-181a-1 23220571

CID 451668 hsa-miR-23a unconfirmed CID 451668 hsa-let-7e 22053057

CID 451668 hsa-let-7f-1 23220571 CID 451668 hsa-miR-26a-1 unconfirmed

CID 451668 hsa-let-7b 26708866 CID 451668 hsa-miR-1233-1 unconfirmed

CID 451668 hsa-miR-200c 23626803 CID 451668 hsa-miR-130a 23220571

CID 451668 hsa-miR-25 23220571 CID 451668 hsa-miR-30c-1 unconfirmed

CID 451668 hsa-miR-128-1 27705931 CID 451668 hsa-miR-22 23220571

CID 451668 hsa-miR-145 26198104 CID 451668 hsa-miR-301a unconfirmed

CID 451668 hsa-miR-221 unconfirmed CID 451668 hsa-let-7g 23220571

CID 451668 hsa-miR-19b-1 unconfirmed CID 451668 hsa-miR-195 23333942

CID 451668 hsa-miR-197 unconfirmed CID 451668 hsa-miR-302b unconfirmed

CID 451668 hsa-let-7i 23220571 CID 451668 hsa-miR-26b unconfirmed

CID 451668 hsa-miR-181b-1 unconfirmed CID 451668 hsa-miR-205 unconfirmed

CID 451668 hsa-miR-338 unconfirmed CID 451668 hsa-miR-218-1 unconfirmed

CID 451668 hsa-let-7d 26802971 CID 451668 hsa-miR-93 23220571

CID 451668 hsa-miR-139 unconfirmed CID 451668 hsa-miR-124-1 unconfirmed

CID 451668 hsa-miR-328 unconfirmed CID 451668 hsa-miR-15b unconfirmed

CID 451668 hsa-miR-126 23220571 CID 451668 hsa-miR-10b unconfirmed

CID 451668 hsa-miR-17 23220571 CID 451668 hsa-miR-128-2 unconfirmed

CID 451668 hsa-miR-19a 23220571 CID 451668 hsa-miR-27a 23220571
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colorectal cancer cells, thereby leading to the apoptosis of colorectal

cancer cells (Li et al., 2015).

3.2.2 5-Aza-CdR
5- Aza-CdR can bind to DNA methyltransferases to reduce

methylation levels, reducing the biological activity of

methyltransferase inhibitors and regulating gene expression.

In clinical usage, 5-Aza-CdR is frequently used in clinical

settings to treat diseases caused by gene variants (Do Amaral

et al., 2019). Additionally, 5-Aza-CdR can suppress tumor cell

proliferation via demethylation, making it one of the most potent

inhibitors currently available in vitro (Lemaire et al., 2008).

Meanwhile, 5-Aza-CdR can enhance the sensitivity of targeted

drugs in non-small cell lung cancer chemotherapy, inhibit cell

proliferation, accelerate the apoptosis of cancer cells, induce cell

differentiation and activate quiescent anticancer cells in the

human body. The first type of case studies’ results show that

8, 13 and 26 out of the top 10, 20 and 50 potential 5-Aza-CdR-

associated miRNAs are confirmed in other literature or databases

(See Table 5). The second type of case studies’ results show that 8,

14 and 28 out of the top 10, 20 and 50 potential 5-Aza-CdR-

associated miRNAs are confirmed in other literature or databases

(See Table 6). For example, quantitative methylation-specific

Polymerase Chain Reaction analysis showed hypermethylation

of the choline phosphoglyceride island adjacent to hsa-let-7e, and

demethylation treatment with 5-Aza-CdR or transfection of pYr-

let-7e-shRNA plasmid containing unmethylated hsa-let-7e DNA

sequence could restore hsa-let-7e expression and partly reduce

the chemoresistance (Cai et al., 2013).

3.2.3 E2
In addition to stimulating the growth and maintenance of the

reproductive system, E2 exerts protective effects on cardiovascular

and other organs. Specifically, E2 can reduce blood cholesterol levels

by decreasing Low-Density Lipoprotein (LDL), increasing High-

Density Lipoprotein (HDL) and boosting apolipoprotein content

(Oh et al., 2019). Moreover, researchers are payingmore attention to

the anti-inflammatory, antioxidant and anti-apoptotic properties of

E2 on cardiovascular diseases such as coronary heart disease and

atherosclerosis, are getting more attention from researchers (Tse

TABLE 6 Validation of the top 50miRNAs associated with 5-Aza-CdR in the second type of case studies. The first column records the top 1–25 related
miRNAs. The second column records the top 26–50 related miRNAs.

SM miRNA Evidence SM miRNA Evidence

CID 451668 hsa-miR-20a 23220571 CID 451668 hsa-miR-92a-1 unconfirmed

CID 451668 hsa-miR-181b-1 unconfirmed CID 451668 hsa-miR-125a 23220571

CID 451668 hsa-miR-205 unconfirmed CID 451668 hsa-let-7b 26708866

CID 451668 hsa-miR-19a 23220571 CID 451668 hsa-miR-302b unconfirmed

CID 451668 hsa-miR-181a-1 23220571 CID 451668 hsa-miR-30a unconfirmed

CID 451668 hsa-miR-130a 23220571 CID 451668 hsa-miR-23b 23220571

CID 451668 hsa-let-7g 23220571 CID 451668 hsa-miR-199b 24659709

CID 451668 hsa-miR-200b 23626803 CID 451668 hsa-miR-128-2 unconfirmed

CID 451668 hsa-miR-126 23220571 CID 451668 hsa-miR-15b unconfirmed

CID 451668 hsa-miR-320a 26198104 CID 451668 hsa-miR-124-1 unconfirmed

CID 451668 hsa-miR-30c-1 unconfirmed CID 451668 hsa-miR-26b unconfirmed

CID 451668 hsa-miR-328 unconfirmed CID 451668 hsa-miR-128-1 27705931

CID 451668 hsa-let-7e 22053057 CID 451668 hsa-let-7a-1 unconfirmed

CID 451668 hsa-miR-10b unconfirmed CID 451668 hsa-miR-218-1 unconfirmed

CID 451668 hsa-let-7f-1 23220571 CID 451668 hsa-miR-200c 23626803

CID 451668 hsa-miR-221 unconfirmed CID 451668 hsa-miR-26a-1 unconfirmed

CID 451668 hsa-miR-182 23220571 CID 451668 hsa-miR-338 unconfirmed

CID 451668 hsa-let-7i 23220571 CID 451668 hsa-miR-93 23220571

CID 451668 hsa-miR-195 23333942 CID 451668 hsa-miR-139 unconfirmed

CID 451668 hsa-miR-27a 23220571 CID 451668 hsa-miR-145 26198104

CID 451668 hsa-miR-204 unconfirmed CID 451668 hsa-miR-107 23220571

CID 451668 hsa-miR-25 23220571 CID 451668 hsa-let-7d 26802971

CID 451668 hsa-miR-23a unconfirmed CID 451668 hsa-miR-19b-1 unconfirmed

CID 451668 hsa-let-7f-1 23220571 CID 451668 hsa-miR-22 23220571

CID 451668 hsa-miR-17 23220571 CID 451668 hsa-miR-197 unconfirmed
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et al., 1999; Rachoń et al., 2002). The first type of case studies’ results

show that 6, 14 and 29 out of the top 10, 20 and 50 potential E2-

associated miRNAs are confirmed in other literature or databases

(See Table 7). The second type of case studies’ results show that 4,

11 and 29 out of the top 10, 20 and 50 potential E2-associated

miRNAs are confirmed in other literature or databases (See Table 8).

For example, hsa-miR-23a could be negatively regulated by E2 in

both myocardium and cultured cardiomyocytes. Moreover, hsa-

miR-23a could directly down-regulate peroxisome proliferator-

activated receptor γ coactivator-alpha (PGC-1α) expression in

cardiomyocytes via binding to its 3′-untranslated regions, which

implied that hsa-miR-23a could be critical for the down-regulation

of PGC-1α under E2 deficiency (Sun et al., 2014).

4 Discussion

Deep learning offers a wide range of applications in major areas

of computer science, such as computer vision, natural language

processing and machine translation. More effective models can be

obtained by adding hidden layers to standard neural networks. Deep

learning also contributes to medication development and precision

medicine by predicting potential SM-miRNA associations.

Furthermore, deep learning models have more hidden layer

nodes than conventional neural networks. The number of hidden

layers can even reach ten for extremely complex problems. After

multiple layers of calculation, the results of deep learning-based

algorithms are often closer to the actual situation than those of

traditional machine learning-based algorithms. Initially, we utilized

matrix decomposition to reduce noise from known SM-miRNA

associations. Then, the layer attentionmechanismwas introduced to

the deep learning model, which significantly improved the

performance of our model by integrating the SM-miRNA

association feature vectors used for calculation.

GCNLASMMA is a model of a neural network with

numerous hidden layers. Multiple layers computations allowed

the results to completely consider known features and avoid

overfitting. The attention mechanism extracted vital information

from each layer of the neural network. Besides, the matrix

decomposition module reduced the noise of known SM-

miRNA associations, significantly enhancing GCN’s

performance. GCNLASMMA was an attempt to identify

TABLE 7 Validation of the top 50 miRNAs associated with E2 in the first type of case studies. The first column records the top 1–25 related miRNAs.
The second column records the top 26–50 related miRNAs.

SM miRNA Evidence SM miRNA Evidence

CID 5757 hsa-miR-183 unconfirmed CID 5757 hsa-miR-181b-1 unconfirmed

CID 5757 hsa-let-7g 23220571 CID 5757 hsa-miR-19b-1 unconfirmed

CID 5757 hsa-miR-181a-2 unconfirmed CID 5757 hsa-miR-141 unconfirmed

CID 5757 hsa-miR-125a 21914226 CID 5757 hsa-miR-15a unconfirmed

CID 5757 hsa-miR-107 23220571 CID 5757 hsa-miR-17 23220571

CID 5757 hsa-miR-26b 24735615 CID 5757 hsa-miR-10b 23220571

CID 5757 hsa-miR-19a 29416771 CID 5757 hsa-miR-30a 29331043

CID 5757 hsa-miR-195 unconfirmed CID 5757 hsa-let-7f-1 23220571

CID 5757 hsa-miR-128-2 23220571 CID 5757 hsa-miR-302b 23220571

CID 5757 hsa-miR-181a-1 unconfirmed CID 5757 hsa-miR-199b unconfirmed

CID 5757 hsa-miR-128-1 23220571 CID 5757 hsa-miR-181c unconfirmed

CID 5757 hsa-miR-130a unconfirmed CID 5757 hsa-miR-106b 28422740

CID 5757 hsa-miR-338 22996663 CID 5757 hsa-miR-23a 23220571

CID 5757 hsa-let-7e 23220571 CID 5757 hsa-miR-9-2 23220571

CID 5757 hsa-miR-20a 21914226 CID 5757 hsa-miR-182 28678802

CID 5757 hsa-miR-200c 23220571 CID 5757 hsa-miR-139 unconfirmed

CID 5757 hsa-miR-27a 23220571 CID 5757 hsa-let-7b 23220571

CID 5757 hsa-miR-200b 23220571 CID 5757 hsa-miR-25 unconfirmed

CID 5757 hsa-miR-221 21057537 CID 5757 hsa-miR-218-1 unconfirmed

CID 5757 hsa-miR-151a unconfirmed CID 5757 hsa-miR-22 24715036

CID 5757 hsa-miR-204 29789714 CID 5757 hsa-miR-15b 23220571

CID 5757 hsa-miR-106a unconfirmed CID 5757 hsa-miR-130a unconfirmed

CID 5757 hsa-miR-205 unconfirmed CID 5757 hsa-miR-23b 23220571

CID 5757 hsa-miR-92a-1 unconfirmed CID 5757 hsa-miR-26a-1 unconfirmed

CID 5757 hsa-miR-130b unconfirmed CID 5757 hsa-miR-30c-1 23220571
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potential SM-miRNA associations using deep learning. The

advantages above enabled GCNLASMMA to accurately

anticipate potential SM-miRNA associations.

Deep learning’s spectacular performance is contingent on a

vast number of known SM-miRNA associations. The number of

known SM-miRNA associations utilized in this investigation was

apparently insufficient to fulfill GCNLASMMA. Therefore, the

performance of GCNLASMMA was still unsatisfactory. In

addition, the parameters used in GCNLASMMA may not be

ideal. Moreover, the construction of heterogeneous networks will

yield better results if other biological information, such as long

non-coding RNA or disease, is utilized. These factors will

motivate researchers to develop more effective deep learning

models to predict potential SM-miRNA associations using more

trustworthy biological datasets.
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TABLE 8 Validation of the top 50miRNAs associatedwith E2 in the second type of case studies. The first column records the top 1–25 relatedmiRNAs.
The second column records the top 26–50 related miRNAs.

SM miRNA Evidence SM miRNA Evidence

CID 5757 hsa-miR-183 unconfirmed CID 5757 hsa-miR-19a 29416771

CID 5757 hsa-miR-30c-1 23220571 CID 5757 hsa-miR-19b-1 unconfirmed

CID 5757 hsa-miR-15a unconfirmed CID 5757 hsa-miR-125a 21914226

CID 5757 hsa-miR-181a-1 unconfirmed CID 5757 hsa-miR-15b 23220571

CID 5757 hsa-let-7f-1 23220571 CID 5757 hsa-miR-128-2 23220571

CID 5757 hsa-miR-181b-1 unconfirmed CID 5757 hsa-miR-20a 21914226

CID 5757 hsa-miR-205 unconfirmed CID 5757 hsa-miR-26b 24735615

CID 5757 hsa-miR-181a-2 unconfirmed CID 5757 hsa-miR-10b 23220571

CID 5757 hsa-miR-9-2 23220571 CID 5757 hsa-miR-181c unconfirmed

CID 5757 hsa-miR-23a 23220571 CID 5757 hsa-miR-22 24715036

CID 5757 hsa-miR-128-1 23220571 CID 5757 hsa-miR-139 unconfirmed

CID 5757 hsa-let-7e 23220571 CID 5757 hsa-miR-106a unconfirmed

CID 5757 hsa-let-7b 23220571 CID 5757 hsa-miR-141 unconfirmed

CID 5757 hsa-miR-130a unconfirmed CID 5757 hsa-let-7g 23220571

CID 5757 hsa-miR-338 22996663 CID 5757 hsa-miR-107 23220571

CID 5757 hsa-miR-30a 29331043 CID 5757 hsa-miR-23b 23220571

CID 5757 hsa-miR-302b 23220571 CID 5757 hsa-miR-195 unconfirmed

CID 5757 hsa-miR-130b unconfirmed CID 5757 hsa-miR-27a 23220571

CID 5757 hsa-miR-106b 28422740 CID 5757 hsa-miR-25 unconfirmed

CID 5757 hsa-miR-199b unconfirmed CID 5757 hsa-miR-204 29789714

CID 5757 hsa-miR-200b 23220571 CID 5757 hsa-miR-221 21057537

CID 5757 hsa-miR-182 28678802 CID 5757 hsa-miR-151a unconfirmed

CID 5757 hsa-miR-26a-1 unconfirmed CID 5757 hsa-miR-218-1 unconfirmed

CID 5757 hsa-miR-17 23220571 CID 5757 hsa-miR-130a unconfirmed

CID 5757 hsa-miR-200c 23220571 CID 5757 hsa-miR-92a-1 unconfirmed
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