AUTHOR=Cayona Ruel , Creencia Evelyn TITLE=Phytochemicals of Euphorbia hirta L. and Their Inhibitory Potential Against SARS-CoV-2 Main Protease JOURNAL=Frontiers in Molecular Biosciences VOLUME=8 YEAR=2022 URL=https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2021.801401 DOI=10.3389/fmolb.2021.801401 ISSN=2296-889X ABSTRACT=

Euphorbia hirta L. is a medicinal plant widely used in the Philippines and across tropical Asia against various diseases, including respiratory disorders. In this study, the phytochemical components of E. hirta were investigated in silico for their potential to inhibit the severe acute respiratory syndrome-coronavirus-2 main protease (SARS-CoV-2 Mpro), a coronavirus disease 2019 (COVID-19) drug target that plays a critical role in the infection process of SARS-CoV-2. Phytochemical mining in tandem with virtual screening (PM-VS) was the strategy implemented in this study, which allows efficient preliminary in silico assessment of the COVID-19 therapeutic potential of the reported phytochemicals from the plant. The main rationale for considering E. hirta in the investigation was its reported efficacy against respiratory disorders. It is very promising to investigate the phytochemicals of E. hirta for their potential efficacy against diseases, such as COVID-19, that also target the respiratory system. A total of 298 E. hirta phytochemicals were comprehensively collected from the scientific literature. One hundred seventy of these phytochemicals were computed through molecular docking and were shown to have comparable or better binding properties (promising inhibitors) toward SARS-CoV-2 Mpro than known in vitro inhibitors. In connection to our previous work considering different medicinal plants, antiviral compounds were also rediscovered from the phytochemical composition of E. hirta. This finding provides additional basis for the potential of the plant (or its phytochemicals) as a COVID-19 therapeutic directly targeting drug targets such as SARS-CoV-2 Mpro and/or addressing respiratory-system-related symptoms. The study also highlights the utility of PM-VS, which can be efficiently implemented in the preliminary steps of drug discovery and development.