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Background: Pancreatic cancer (PC) is one of the most lethal types of cancer with
extremely poor diagnosis and prognosis, and the tumor microenvironment plays a pivotal
role during PC progression. Poor prognosis is closely associated with the unsatisfactory
results of currently available treatments, which are largely due to the unique pancreatic
tumor microenvironment (TME).

Methods: In this study, a total of 177 patients with PC from The Cancer Genome Atlas
(TCGA) cohort and 65 patients with PC from the GSE62452 cohort in Gene Expression
Omnibus (GEO) were included. Based on the proportions of 22 types of infiltrated immune
cell subpopulations calculated by cell-type identification by estimating relative subsets of
RNA transcripts (CIBERSORT), the TME was classified by K-means clustering and
differentially expressed genes (DEGs) were determined. A combination of the elbow
method and the gap statistic was used to explore the likely number of distinct clusters
in the data. The ConsensusClusterPlus package was utilized to identify radiomics clusters,
and the samples were divided into two subtypes.

Result: Survival analysis showed that the patients with TMEscore-high phenotype had
better prognosis. In addition, the TMEscore-high had better inhibitory effect on the immune
checkpoint. A total of 10 miRNAs, 311 DEGs, and 68 methylation sites related to survival
were obtained, which could be biomarkers to evaluate the prognosis of patients with
pancreatic cancer.

Conclusions: Therefore, a comprehensive description of TME characteristics of
pancreatic cancer can help explain the response of pancreatic cancer to
immunotherapy and provide a new strategy for cancer treatment.
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INTRODUCTION

Pancreatic cancer (PC) is one of the most lethal malignant tumors
in the world; more than half of pancreatic cancer patients are
diagnosed in the terminal stages due to the lack of effective
detection methods (Kommalapati et al., 2018; Lee et al., 2019).
Furthermore, many cases of PC show resistance to chemotherapy,
radiotherapy, and molecular targeted therapy, making the
situation more severe (Liu et al., 2019). Poor prognosis and
the unsatisfactory results of currently available treatments are
largely due to the unique pancreatic TME (Feig et al., 2012).

The tumor microenvironment (TME) is a complex
environment in which tumor cells are produced and inhabit
(Wu et al., 2019). It consists of a variety of substrates including
peripheral blood vessels, immune cells, fibroblasts, inflammatory
cells from bone marrow, various signal molecules, and
extracellular matrix (Quail and Joyce, 2013). The interaction
between tumor microenvironment and tumor cells mediates
the immune tolerance of tumor, thus affecting the clinical
effect of disease-free treatment (Villar et al., 2015; Savas et al.,
2018; Roma-Rodrigues et al., 2019). Drug resistance is a
characteristic of tumors, and acquired drug resistance is a
formidable challenge to antitumor therapy (Meador and Hata,
2020). Immune checkpoint refers to the intrinsic regulatory
mechanism of the immune system, which can maintain self-
tolerance and help avoid collateral damage during physiological
immune response (Lee et al., 2016; Marcelis et al., 2020). In the
TME, cancer cells have selective inhibitory ligands and their
receptors, which can regulate T-cell effector function, enhance
tumor tolerance, and avoid the eradication by the immune system.
Immune checkpoint inhibitors, such as CTLA-4 and PD-1/PD-
L1, have attracted worldwide attention in the past several years
(Ott et al., 2013). The expression of PD-1 by T cells in the tumor
microenvironment can reduce the immune effect mediated by
T cells, and the high expression of the PD-1 ligand (PD-L1) in
tumor cells can induce tumor cells to tolerate radiotherapy.

In this study, a total of 22 immune cell types and components of
cancer-related fibroblasts were estimated based on gene expression
profile annotations (Iacobuzio-Donahue, 2012). In the current
investigation, we developed a method to quantify the TME
penetration pattern (TMEscore) by calculating the TME invasion
pattern in 177 patients with PC and systematically correlated the TME
phenotype with the genomic and clinicopathological features of
pancreatic carcinoma. With the development of technology, the
complexity and diversity of TME and its influence on therapeutic
response were also deepening. Many studies have proved that it has
clinical significance in predicting prognosis and treatment (Zeng et al.,
2019; Zhang et al., 2020). TMEscore was a reliable prognostic
biomarker and predictor of immune checkpoint inhibitor response
in pancreatic cancer.

METHODS

Data Sources
177 mRNA expressions of spectrum data and clinical data were
downloaded from TCGA-PAAD from UCSC Xena (https://

xenabrowser.net/datapages/). After removing duplicates and
samples with no survival data, there were 177 transcriptome
samples used to verify the TMEscore. Of the 177 samples, 176
samples had CNV data and SNP data, and 177 samples had
miRNA data and methylation data. From the GEO (https://www.
ncbi.nlm.nih.gov/geo/) to download GSE62452 65 samples, the
expression of spectrum was used to validate data and clinical data
(Table 1).

Tumor Microenvironment Analysis
We used the immune cell proportion data parsed by CIBERSORT
combined with the square sum error in elbow (WSSE group, this
method was to find the best cluster number by finding “elbow
point”) and the fastest falling point of gap statistic (WK, the K
value corresponding to the maximum value of gap) to evaluate
the best class number K and used ConsensusClusterPlus R packet
to classify to get TMEcluster (k-means, euclidean, and ward. D).
In order to make the result more stable, 1000 iterations were
selected and combined with survival data to see whether this
classification is related to survival.

Analysis of Correlation Between TMEscore
and Prognosis
According to the above TMEcluster results, the clustering results
were mapped to RNAseq data, and the limma R package was used
to screen for different categories of samples (Ritchie et al., 2015).
The screening threshold was p. value <0.01 and | log2FC | >1.
Category-specific differential genes were selected, the random
forest method was used to remove redundant genes to get
signature genes, and the functional enrichment of these genes
were analyzed to see which pathways were mainly enriched. The
genes were divided into two categories by Cox regression model,
and the TMEscore was calculated by using the following formula,
according to GGI score (Sotiriou et al., 2006).

TMEscore � ∑ log2(X + 1) −∑ log2(Y + 1)  .
X is the expression value of the gene set with positive Cox
coefficient, and Y is the expression value of the gene set of
Cox coefficient

Using the maxstat R package to find the optimal breakpoint
for TMEscore, the samples can be divided into two subgroups:
TMEscore-high and TMEscore-low. The correlation between
these two types of samples and prognosis was further analyzed.

Survival R package was used for survival analysis to analyze the
correlation between TMEscore subtypes and clinical outcomes.
Survival curves were plotted using survimer R package. Based on
Cox regression model, prognosis-related miRNAs and mRNAs
were identified, and the survival analysis of these miRNAs and
mRNAs was performed.

Validate the TMEscore Model Using TCGA
and GEO Databases
The TMEscore was calculated by using I and II samples in the
TCGA database and 65 PC samples in the GSE62452 of GEO, and
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the best cutin point was found through the maximum selection
test. According to the value of TMEscore, the samples were
divided into TMEscore-high and TMEscore-low subgroups.

Analysis of Gene Mutation Characteristics
in TCGA-PAAD
A variety of mutation types occur in cancer, including six basic
mutation types: C > A, C > G, C > T, T > A, T > C, and T > G. The
frequencies of these 96 mutation types were different in different
cancers, and the combination of the frequencies of 96 mutation types
can be used as a fixed mutation pattern. At present, some mutational
signatures were included in the COSMIC database, and some of the
mutagenic conditions have been known, for example, the production
of signature 4, and signature 29was related to exposure to smoking. In
this article, we used maftools R package (https://bioconductor.org/
packages/release/bioc/html/maftools.html) and Somatic Signatures
(https://bioconductor.org/packages/release/bioc/html/
SomaticSignatures.html) to analyze the mutation of tumor samples,
and draw the mutation spectrum and characteristics.

Analysis of Chromosome Copy Number and
Tumor Purity in PAAD
The GISTIC method was used to detect the common copy number
variation regions in all samples, including the horizontal copy number
variation of chromosome arms and the minimum common region
between samples, according to the SNP6CopyNumber segment data.
The parameters of the GISTIC method were set as Q ≤ 0.05 as the
standard of change significance. When determining the peak interval,
the confidence level was 0.95, and when analyzing the horizontal
variation of the chromosome arm, the region was larger than the
length of the chromosome arm by 0.98 as the standard. The analysis
was carried out through the corresponding MutSigCV module of the
online analysis tool GenePattern (https://cloud.genepattern.org/gp/
pages/index.jsf) developed by Broad Institute.

The purity and ploidy of the tumor were analyzed by
ABSOLUTE of R package (https://software.broadinstitute.org/
cancer/cga/absolute_download), according to the results of
CNV. ABSOLUTE mainly used three submodels—SCNA
(CNV data), predesigned cancer karyotype, and somatic
mutation frequency to score, and then integrated; the highest
score was the optimal model and inferred tumor purity and
ploidy.

Analysis of the Correlation Between TME
Models and Gene Expression
The specifically expressed genes in different subsets were
identified by the gene expression profile (mRNA and miRNA),
and the functional enrichment analysis of specifically expressed
genes was carried out to study the biological function differences
of different TME model subpopulations.

Survival Analysis
The DEGs andmiRNAwere analyzed to see if they were related to
survival. Survival R package was used for survival analysis to

analyze the correlation between TMEscore subtypes and clinical
outcomes. The Kaplan–Meier method was used to analyze the
overall survival (OS) stratified by TME score. Statistical
significance was defined as two-tailed p values <0.05.

Explore the Relationship Between
TMEscore Model and Prognosis of Immune
Checkpoint Therapy
Researchers from Harvard developed a TIDE (http://tide.dfci.
harvard.edu/) tool to evaluate the clinical efficacy of
immunosuppressive therapy. Higher tumor TIDE
predictive scores were associated with poor efficacy of
immunosuppressive therapy and have a poor prognosis.
Because of the five types of tumors with tumor immune
dysfunction and rejection characteristics that the
researchers were able to calculate, only melanoma had
publicly available data on patients treated with anti-PD1
or anti-CTLA4 therapy. Therefore, the prognosis
prediction of immune checkpoint therapy for PAAD was
completed by TIDE score.

Statistical Analysis
All statistical analyses were conducted using R (https://www.r-
project.org/) or SPSS software (version 25.0), and the p values
were two-sided. p values of less than 0.05 were considered
statistically significant.

RESULT

TMEscore Subtypes Were Associated With
the Prognosis of PC
A total of 22 types of infiltrated immune cell subpopulations
were calculated from the RNAseq data of 177 pancreatic
cancer samples (Figure 1A). There were correlations
between immune cell subpopulations, such as mast cells
resting and mast cells activated, NK cells resting, and NK
cells activated, and T-cell CD4 memory activated. Through
analysis of 22 kinds of immune cells and patient survival data,
it was found that macrophage M1 cells were most correlated
with prognosis (p � 0.000782, 296) (Figure 1B,
Supplementary table S1, S2).

Based on the proportions of immune cells, the elbow method
and consensus clustering were applied to identify the optimal K
value to classify TME patterns, and as a result, three clusters were
determined.WhenK � 3, the drop of the elbow curve slows down,
which was the best clustering K value (K � 3) (Supplementary
figure S1, Figure 1C). The result was iterated 1000 times by the
ConsensusClusterPlus function (K � 1:10) to stabilize the
classification and get three clusters (Cluster 1-Cluster 3)
(Supplementary table S3) (Monti et al., 2003). The
classification of TMEcluster was mapped to the ratio map of
immune cells. There was a certain difference in the composition
and proportion of immune cells between different TMEclusters
(Figure 1D). The differential immune cells in cluster 1 were
T-cell CD4 memory resting and macrophage M2, cluster 2 was
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B cells native, and cluster 3 composed of macrophages M0
(Figure 1E). Combined with the correlation analysis between
the final classification results and survival data, it was found that
there was a significant difference in the survival time between
cluster 1, clusters 2, and clusters 3 (log-rank test, p � 0.038)
(Figure 1F).

According to the TMEcluster classification (K � 3), 1594 DEGs
were screened by limma R package (p < 0.01, | log2fc|>1)
(Supplementary table S4). The PC samples were divided into
four categories by unsupervised clustering based on the
differential genes (Figure 2B, Supplementary figure S2,
Supplementary table S5). The Random Forest algorithm was

FIGURE 1 | Classification of infiltrating cells and tumor microenvironment. (A) The proportion of 22 types of immune cells in the PC sample. (B) The relationship
between the 22 types of immune cells and their survival (the size of the point represents the correlation between the cell and survival and the thickness of the line
represents the correlation between the cells). (C) Consensus matrix heat map. (D) The proportion of immune cells in different TMEcluster. (E) Heat map of different
TMEcluster immune cells. (F) Different TMEcluster survival analysis.
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used to de-redundant the DEGs, and in total, 59 signature genes
was screened out (Supplementary table S6).

Using the cluster profiler package of R to analyze the
functional enrichment of these 59 signature genes, we can see
that these significant genes were mainly enriched in the cellular
response to extractable stimulus, ras protein signal transmission,
and other pathways (Supplementary figure S3, Supplementary
table S7). We used the Cox regression model to determine the
relationship between these DEGs and the survival of the sample.
According to the coefficient value of the gene, the genes were
divided into two categories, and the samples were divided into
two categories using TMEscore breakpoints. Here, the maxstat R
package was used to calculate the best data breakpoints (0.657) so
that the samples were divided into TMEscore-high and
TMEscore-low subgroups (Supplementary table S8).

As shown in Figure 2, patients had a better prognosis in the
TMEscore-high group than those in the TMEscore-low group
(p < 0.0001). It shown that clustering samples based on immune
cell components combined with TMEscore calculation can well-
represent the prognosis of samples.

Due to the small number of phase III samples (only 3
samples) and phase IV samples (only 5 samples) in TCGA-
PAAD database, the TMEscore model can only be applied to
TCGA-PAAD phase I, TCGA-PAAD phase II, and GSE62452.
In TCGA-PAAD phase I, TCGA-PAAD phase II, and
GSE62452 database samples, the survival time of the
TMEscore-high group was significantly longer than that of
the TMEscore-low group (p � 0.006, p � 0.02 and p � 0.001,
correspondingly) (Figures 3A–C; Supplementary table S9).
According to the results, patients in the TMEscore-high

FIGURE 2 | TMEscore value calculation and survival analysis. (A) Venn analysis for DEG. (B) Cluster analysis of samples based on DEGs. (C) The sample was
analyzed by TMEscore for survival. (D) The alluvial diagram of TMEcluster and the TMEscore group.
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group had a better prognosis than those in the TMEscore-low
group (p � 0.00004) (Figure 3D).

Genetic Characteristics of TMEscore-high
and TMEscore-low Subtypes in PC
We made statistical analysis on the mutation data of 176 tumor
samples, including the type of mutation annotation, the
proportion of different types of base changes, and top 10
mutation genes. In PAAD, missense mutation was the main
mutation form, followed by del and ins. Among them, C > T
was the most common type of SNP mutation (Supplementary
figure S4).

According to the union of top 20 mutated genes in the
TMEscore-high and TMEscore-low groups of PAAD samples,
more than 40% of the samples were mutated in FRG1B and
KRAS. Further analysis of the mutation frequency differences of
mutated genes in the two groups of high and low TMEscore, it
revealed significant differences in the mutated genes of TP53 (p �
0.00000053), KRAS (p � 0.00000013), TTN9 (p � 0.0000047),
MAGEC1 (p � 0.00047), MAML3 (p � 0.04517), and CDKN2A
(p � 0.02959) (Figure 4).

“Mutation fingerprint” of tumor cells and the mutational
signatures can be combined with the existing database
information to find out which risk factors were mainly
responsible for the gene mutation. In order to determine the
relationship between the mutation frequency distribution of
PAAD tumor samples and the signature included in COSMIC,
we decomposed the frequency matrix of 176 samples in row and
96 mutation types in column by nonnegative matrix factorization
(NMF) (Figures 5A,B). Three and four distinct somatic mutant
signatures were detected in the TMEscore-high and TMEscore-
low groups, respectively. Then, we analyzed the similarity
between the seven mutation signatures and the signatures
collected in COSMIC. We found that TMEscore-high group
distinct mutation signatures were mainly related to signature
6, signature 5, and signature 15, while the TMEscore-low group
were mainly related to signature 18, signature 1, signature 15, and
signature 14. Signature 6 was mainly related to defective DNA
mismatch repair, and signature 1 was related to the spontaneous
deamination of 5-methylcytosine.

Copy number variation (CNV) was a common form of
genomic structural change, which was closely related to the
occurrence and deterioration of tumors. GISTIC software was

FIGURE 3 | TMEscore model was verified in TCGA and GSE databases. (A) Survival analysis of phase I in TCGA-PAAD. (B) Survival analysis of phase II in TCGA-
PAAD. (C) GSE62452 database survival analysis validation. (D) Validation and model evaluation were performed using TCGA-PAAD and GSE62452 samples.
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used to analyze the copy number variation of TMEscore-high and
TMEscore-low subgroups in PC samples. The amplification of 7p,
7q in the TMEscore-high group was the most significant, and no

significant deletion region was found, while the amplification of
7p, 1q and the deletion of 6q, 6p in the TMEscore-low group were
the most significant.

FIGURE 4 | Gene mutation landscape of TMEscore-high and TMEscore-low samples and significant DEGs. (A) Distribution and phenotype of common gene
mutations in tumor samples of high/low TMEscore groups. (B) Analysis of frequency difference of sample gene mutation in TMEscore high/low groups.
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FIGURE 5 | Analysis of mutation characteristics in TMEscore-high and TMEscore-low models. (A) Frequency distribution of 96 mutant types of tumors in the high
TMEscore group. (B) Frequency distribution of 96 mutant types of tumors in the low TMEscore group. (C) Mutation signatures of the TMEscore-high group were
compared with the similarity of COSMIC dates. (D)Mutation signatures of TMEscore-low group were compared with the similarity of COSMIC dates. (E) TMEscore-high/
low chromosome arm amplification. (F) TMEscore-high/low chromosome arm amplification. (G) Deletion of chromosome arm level in low TMEscore group. (H)
Prognosis prediction of immune checkpoint treatment. (I) Relationship between MSI risk and TMEscore.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6450248

Zhang et al. Tumor Microenvironment Characteristics of Pancreatic Cancer

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Immunosuppressive checkpoint inhibitors were widely used in
cancer. By using TIDE to evaluate the clinical effect of
immunosuppression treatment of TMEscore-high or
TMEscore-low samples, we can see that the TIDE score of the
TMEscore-high group was significantly lower than that of the
TMEscore-low group (T. test, p � 0.0001, Figure 5H,
Supplementary table S18). Among them, the higher tumor
TIDE prediction score was associated with poorer

immunological checkpoint inhibitory efficacy and poorer
prognosis.

Studies have shown that patients with MSI-H have better
prognosis (PMID: 29531926), and MSI was analyzed in
combination with the better prognosis of high TMEscore
samples in this analysis (Zeinalian et al., 2018). The MSI score
results predicted by TIDE were divided into two groups of MSI-
high and MSI-low (R maxstat package prediction best breakpoint

FIGURE 6 | Analysis of signal pathway, partial genes, and prognosis of DEGs in TMEscore-high and TMEscore-low group. (A) Enrichment of DEGs by GO. (B)
Survival analysis of MYEOV gene. (C) Survival analysis of LY6D gene. (D) Survival analysis of WNT7A gene. (E) Survival analysis of hsa-mir-196b. (F) Survival analysis of
the methylation site of HOXA7.
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was 0.7, MSI-high:111; MSI-low:66). TMEscore between the two
groups of MSI-high and -low had no significant difference (t-test,
p � 0.5) (Figure 5I).

Verification of TMEscore Model in Multiplex
of Pancreatic Cancer
The miRNA differential expression of TMEscore-high and
TMEscore-low groups was analyzed by using the limma R
package. The threshold of screening was adj. p < 0.05 and the
value of | log FC | > 1. A total of 30 miRNAs with differential
expression (Supplementary figure S5, Supplementary table
S13) were identified. Using the above method, a total of 815
DEGs were obtained (Supplementary figure S6, Supplementary
table S14). These DEGs were significantly different between the
two clusters (Supplementary figure S7). Using R cluster profiler
package to annotate DEGs, we can see that these DEGs were
enriched in immune-related pathways such as leukocyte
migration and humoral immune response (Figure 6A,
Supplementary table S15).

We downloaded the methylation CHIP data of TCGA-PAAD
from https://xenabrrowser.net/datapages/and identified the
different methylation sites of high/low TMEscore samples (177
samples) with limma R package. A total of 85 significantly
different methylation sites (adj. p < 0.05) were detected
(Supplementary table S16).

According to the above differential miRNAs, DEGs, and
differential methylation sites, the samples were divided into high
and low expression groups. The log-rank test was used to detect
whether differential mRNA, miRNA, and methylation sites were
related to survival. According to the threshold of p < 0.05, a total
of 10 miRNA, 311 DEGs, and 68 methylation sites related to survival
were obtained (Supplementary table S17). We selected the top three
genes with the highest significance from the mRNA, and the most
significant microRNA and methylation sites for the survival diagram
(Figure 6 B, C,D, E, F). The differentially expressedmRNA,miRNA,
and methylation sites can be used as interesting biomarkers to
evaluate the prognosis of patients with pancreatic cancer.

DISCUSSION

The TMEscore index developed according to the TCGA-PAAD
database was a new tool for the comprehensive evaluation of
TME. Our results suggested that the assessment of the immune
checkpoint through the TME signaling model provides a strong
predictor of survival in patients with PC. Macrophage (M1)
activates inflammation by activating inflammatory cytokines and

reactive oxygen species (Landis et al., 2018). In PC, the
relationship between macrophage M1 and prognosis was found to
be the closest. At the same time, the TMEscore model was used to
predict the prognostic effect, and the prognosis of stage I patients was
more significant than that of stage II patients (stage I, p � 0.006; stage
II, p � 0.02). In the previous results, the TMEscore-high group had a
better prognosis than the TMEscore-low group. Corresponding to the
result of TIDE evaluation, patients in theTMEscore-high group have a
good prognosis and the effect of immunosuppression treatment.

Microsatellite instability (MSI) has been proved to be related
to the efficacy of immunotherapy (van Velzen et al., 2020).
Predicting whether advanced cancer was suitable for
immunosuppressive checkpoint inhibitors has almost become
a factor that every oncologist must consider, andMSI is one of the
important indicators (Pietrantonio et al., 2020). In this study, we
did not find a significant difference in MSI risk between the
TMEscore-high and TMEscore-low subgroups (Figure 5I).

Using the TMEscore model, we found a large number of
potentially important molecular targets in the RNAseq,
methylation, and miRNA database of PC. We selected the most
differential genes or methylation sites between TMEscore-high and
TMEscore-low groups for prognostic analysis. By partially controlling
the proliferation of MMC, MYEOV gene expression was used as a
prognostic factor in patients with multiple myeloma (Moreaux et al.,
2010). In non–small-cell lung cancer, upregulation of the MYEOV
transcript was associated with poor prognosis of the disease (Fang
et al., 2019). LY6D was a drug-resistant marker gene and therapeutic
target for laryngeal squamous cell carcinoma. In addition, the
expression of LY6D was associated with pathological T and clinical
staging as well as cervical lymph node metastasis (Wang et al., 2020).
In cancers with high LY6K expression that were difficult to treat, such
as cervical, pancreatic, ovarian, head and neck, lung, stomach, and
triple-negative breast cancer, inhibition of LY6K expression through
small-molecule binding can be used to inhibit the growth of cancer
cells (Newell et al., 2020). Overexpression of the HOXA7 gene can
increase the proliferation of liver cancer, breast cancer, and granulosa
cells, whichwas expected to become an importantmolecular target for
the diagnosis and treatment of liver cancer (Zhang et al., 2010; Zhang
et al., 2013; Li et al., 2015).

The TMEscore model can be effectively used to predict the
prognosis of patients with PC and the prognosis of immune
checkpoint therapy. Since not all patients with high TME can get
greater benefits from immunotherapy, more clinical factors should be
included in the predictive model to improve the accuracy of prediction.
In the current study, this comprehensive evaluation of cellular,
molecular, and genetic factors associated with TME infiltration
patterns helps explain the response of PC to immunotherapy and
may provide new strategies for the treatment of pancreatic cancer.

TABLE 1 | Pancreatic cancer sample information.

Series accession
number

Platform used No. of input
patients

AJCC_Stage Survival
overcome

TCGA-PAAD Illumina RNAseq 177 I: 21 II: 145 III: 3 IV: 5 OS
GSE62452 [HuGene-1_0-st] affymetrix human gene 1.0 ST array [transcript (gene)

version]
65 I: 4 II: 45 III: 10 IV: 6 OS
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