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Capsule endoscopy is a leading diagnostic tool for small bowel lesions which faces certain
challenges such as time-consuming interpretation and harsh optical environment inside
the small intestine. Specialists unavoidably waste lots of time on searching for a high
clearness degree image for accurate diagnostics. However, current clearness degree
classification methods are based on either traditional attributes or an unexplainable deep
neural network. In this paper, we propose a multi-task framework, called the multi-task
classification and segmentation network (MTCSN), to achieve joint learning of clearness
degree (CD) and tissue semantic segmentation (TSS) for the first time. In the MTCSN, the
CD helps to generate better refined TSS, while TSS provides an explicable semantic map
to better classify the CD. In addition, we present a new benchmark, named the Capsule-
Endoscopy Crohn’s Disease dataset, which introduces the challenges faced in the real
world including motion blur, excreta occlusion, reflection, and various complex alimentary
scenes that are widely acknowledged in endoscopy examination. Extensive experiments
and ablation studies report the significant performance gains of the MTCSN over state-of-
the-art methods.
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1 INTRODUCTION

Deep learning and convolutional neural networks have recently shown outstanding performances for
visual recognition and semantic understanding [Krizhevsky et al. (2012); Simonyan and Zisserman
(2014); He et al. (2016); Huang et al. (2017); Long et al. (2015)]. The representation learning capacity of
convolutional neural networks has also been successfully applied to medical image analysis and
recognition in gastrointestinal endoscopy [Ronneberger et al. (2015); Le et al. (2019); Hwang et al.
(2020)]. Crohn’s disease [Podolsky (1991); Baumgart and Sandborn (2012)] is an inflammatory bowel
disease (IBD), and its signs and symptoms range frommild to severe. It usually develops gradually but
sometimes will come on suddenly, without warning. While there is not a known cure for Crohn’s
disease, early detection and preventative therapies will greatly reduce its signs and symptoms and even
bring about long-term remission. Because the small intestine and colon can be affected by Crohn’s
disease, capsule endoscopy is the gold standard to examine the midsection of the gastrointestinal tract.

A major challenge in capsule gastroscopy is that the procedure will output a video of several hours
which suffers from complicated gastrointestinal environmental challenges, such as excreta occlusion,
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motion blur, and light scattering, wasting plenty of time for
professional gastroenterologists to find out the location of lesions
[Min et al. (2019)]. Although several software enhancements,
including Quick-View (Medtronic, Minneapolis, MN,
United States) and Express View (CapsoVision, Inc., Saratoga,
CA, United States), attempt to overcome these drawbacks, their
performance is insufficient for use in clinical practice because of
their limited accuracy and unexplicable output [Hwang et al.
(2020)]. To assist gastroenterologists to locate Crohn’s lesions
explicably and precisely, we introduce a dataset named the
Capsule-Endoscopy Crohn’s Disease dataset, a large-scale
Crohn’s gastrointestinal image dataset for clearness degree
(CD) and tissue semantic segmentation (TSS) which will
greatly help doctors understand the classification results. The
proposed dataset covers 467 images in real-world scenarios.

In the meanwhile, we propose a multi-task learning (MTL)
scheme, which combines pixel-level segmentation and global
image-level category classification. The proposed architecture
is based on a fully convolutional image-to-image translation
scheme, which enables efficient feature sharing between image
regions, and fast prediction. A novel cross fusion module is
proposed to mitigate the gap between different foci of
classification and segmentation tasks. We evaluate our model
on the proposed dataset, with clearness degree classification and
tissue segmentation with eight classes. We show that through
joint training, the model is able to learn shared representations
that are beneficial for both tasks. Our method can be seen as a
generalization of approaches relying on detection annotations to
pre-train the deep model for classification purposes. We show
that our joint training of classification and segmentation enables a
better cooperation between tasks.

2 RELATED WORK

2.1 Image Classification
Since AlexNet [Krizhevsky et al. (2012)], deep convolutional neural
networks have dominated image classification. With this trend,
research has shifted from engineering handcrafted features to
engineering network architectures. VGG-Net [Simonyan and
Zisserman (2014)] proposes a modular network design strategy,
stacking the same type of network blocks repeatedly, which
simplifies the workflow of network design and transfer learning for
downstream applications. Built on the success of this pioneeringwork,
He et al. (2016) introduced an identity skip connection which
alleviates the difficulty of vanishing gradient in the deep neural
network and allows for network learning deeper feature
representations. Reformulations of the connections between
network layers [Huang et al. (2017)] have been shown by
DenseNet to further improve the learning and representational
properties of deep networks. DenseNet has become one of the
most successful CNN architectures which has been adopted in
various computer vision applications.

2.2 Semantic Segmentation
With the great success of deep learning in high-level vision tasks,
numerous semantic segmentation approaches [Long et al. (2015);

Ronneberger et al. (2015); Zhao et al. (2017); Chen et al. (2018)]
are beneficial for CNNs. Long et al. (2015) first introduced fully
convolutional networks (FCNs) for semantic segmentation which
conduct pixel-wise classification in an end-to-end fashion. While
U-Net was introduced by Ronneberger et al. (2015), which
concatenates the up-sampled feature maps with feature maps
skipped from the encoder.

Due to the precise pixel-level representation, deep
learning–based semantic segmentation has been widely
adopted in lesion and tumor segmentation, helping doctors get
an accurate and explicable diagnosis. Li et al. (2018) proposed
H-DenseUNet for liver and liver tumor segmentation. A
modification to U-Net was proposed by Zhou et al. (2019),
named UNet++, which is applied to a variety of medical
datasets for segmentation tasks.

2.3 Multi-Task Learning
Multi-task learning [MTL, Caruana (1997)] is often applied when
related tasks can be performed simultaneously. Many MTL methods
[Jalali et al. (2010); Misra et al. (2016); Gebru et al. (2017); Strezoski
et al. (2019)] have achieved great success in a variety of computer
vision tasks. In the medical domain, some recent works also focus on
combining classification and segmentation into a joint framework.
Yang et al. (2017) proposed amulti-task DCNNmodel for skin lesion
analysis. Multi-task classification and segmentation was proposed by
Le et al. (2019) for diagnostic mammography. In the recent COVID-
19 pandemic, multi-task learning was applied in CT imaging analysis
by Amyar et al. (2020). MTL schemes are based on the assumption
that the difficulty of classification and segmentation tasks is the same.
But in the real scenes, especially in the small intestine, classification is
much simpler than segmentation tasks. Some pioneers have proposed
a weighted loss design [Kendall et al. (2018)] and attention module
[Liu et al. (2019)] to balance different types of tasks. As shown in
Figure 1, the evolution ofMTL tends to bringmore precise control on
fusion between different tasks. We dive into this problem and
introduce our solution to it.

3 PROPOSED METHOD

To assist the gastroenterologists in capsule endoscopy
examination, both precision and interpretability are necessary.
Following the previous methods [Le et al. (2019)], we model the
precision and interpretability tasks into classification and
segmentation tasks. Our proposed multi-task framework shows
that joint training of classification and segmentation enables a
better cooperation between tasks.

In the following, we first describe the overall framework of our
proposed multi-task classification and segmentation network
(MTCSN), shown in Figure 2. Specifically, a backbone is
adopted to extract the representations of the input image
which are further used to generate the class label and
segmentation map. Next, we introduce the cross fusion
module, the key elements of the MTCSN, to alleviate the
misalignment between classification and segmentation. Finally,
we dive into the inherent problem in the multi-task learning
training strategy and introduce our object function.
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3.1 Network Architecture
As shown in Figure 2, the proposed multi-task classification and
segmentation network first utilizes a backbone to extract local
features. The backbone we adopted includes different depths of
ResNet or DenseNet. Following feature extraction, we design two
multi-task branches which are the classification branch for image
clearness degree measuring usability and the segmentation branch
for tissue segmentation producing explicable visualization to help
doctors understand the whole image. The classification branch is
mainly constructed by fully connected layers, and the segmentation
branch is based on an image-to-image scheme enabling efficient
feature computation in each region but also sharing computation
from all regions in the whole image in a single forward pass. In
addition, we can still process input images with high spatial
resolution.

3.2 Cross Fusion Module
Our network mainly focuses on two tasks, classification and
segmentation. In the prevailing pattern of MTL, two branches

have been trained separately for these tasks following the shared
backbone for feature extraction [Figure 1]. Because the
classification task and segmentation task place different
emphasis on feature extraction, performance degeneration is
foreseeable and needs to be resolved.

Instead of designing two parallel backbones [Misra et al.
(2016)], we set our sights on efficiently exploiting the
interaction between the two tasks’ branches. We introduce a
novel non-linearity cross fusion module which learns the extent
of sharing, as illustrated in Figure 3.

After global average pooling, the classification branch feature’s
usual shape is [C1, 1, 1], where C1 denotes the number of
channels. While the segmentation branch feature’s shape is
[C2, H, W], C2 is usually not the same as C1. First, we mold
the classification feature into the same shape of segmentation.
Then, we utilize a sharing parameter non-linearity
transformation matrix M to learn the joint representations and
extent of fusion automatically. In our experiment setting, M is
formulated as a parameter matrix of the convolution layer. More

FIGURE 1 | Evolution routing map of the multi-task network structure. Blue rectangles represent the shared layers, like the backbone. Green and yellow ones
denote the different task branches. The orange block is the cross fusion module introduced by us in this work.

FIGURE 2 | Multi-task classification and segmentation network (MTCSN) architecture.
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precisely, the process of the cross fusion module can be
formulated as

̃Xcls � Xcls + Pool M Xseg( )( ),
̃Xseg � Xseg +MT Pad Xcls( )( ),{ (1)

where Xcls and Xseg denote the classification and segmentation
feature inputs to cross fusion. M denotes the non-linearity
transformation matrix, and MT’s dimension order is
different. The output of cross fusion is ̃Xcls and ̃Xseg . The
network can automatically decide to make certain layers
task-specific by setting a lower weight to the matrix or
choosing a more shared representation by assigning a higher
value to it.

3.3 Object Functions
In general multi-task learning with K tasks, input X, and task-
specific labels Yi, i � 1, 2, . . . , K, the loss function is defined as

Lall � ∑K
i�1

λiLi(X,Yi). (2)

With task weightings λi, Lall is the linear combination of task-
specific losses Lall . We study the effect of different weighting

methods on our multi-task learning approaches. The overall
object function of the MTCSN is composed of two parts:

• For the classification task, we apply a class-wise cross-entropy
loss for each predicted class label from a softmax classifier:

Lcls � ΦCE Xcls′ ,Xcls( ) + αLconsistency, (3)

where

Lconsistency � ∑ΦMSE Xi′ ,Xi( ). (4)

Here, Xcls′ is the predicted classification category. Xi′ and Xi are the
features before and after cross fusion in the classification branch.
ΦCE and ΦMSE are the cross-entropy loss and MSE loss functions,
respectively. We empirically set the weight α � 0.1 in network
training.

• For the segmentation task, we apply a pixel-wise cross-
entropy loss for each predicted class label from a softmax
classifier:

Lseg � ΦCE Xseg′ ,Xseg( ), (5)

where Xseg′ represents the predicted segmentation maps.

4 EXPERIMENTS AND DISCUSSION

4.1 Datasets and Tasks
Though Crohn’s disease diagnosis is reliable using capsule endoscopy,
there is no such open-sourced image dataset for further study so far.
So, we build the first Capsule-Endoscopy Crohn’s Disease dataset
which includes 15 patients and 164 video clips. The dataset will
improve the efficiency and accuracy of gastrointestinal endoscopy and
help gain a better understanding of this disease.

We divide the annotation process into three stages, and the
gastroenterologists are divided into three teams corresponding to
these three stages, as shown in Figure 4.

In the first stage, gastroenterologists collect the source capsule
endoscopy videos from the database center of the hospital, and all
the 15 patients’ capsule endoscopy videos are filmed by MOMO

FIGURE 4 | Labeling pipeline we adopted. (A) In stage I, we invite several senior gastroenterologists to pick up the video clips of interest, and then we transform
them into frames. (B) In stage II, we further invite another two gastroenterologists to label the clearness degree of the frames and semantic masks for each part. Cross
validation is performed at the same time. (C) In stage III, a senior expert checks the labeling and makes the final decision on the annotations.

FIGURE 3 | Details of the cross fusion module.
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Wireless Capsule Endoscopy JS-ME-I. Then, we invite several
gastroenterologists to pick up the video clip of interest from the
full examined videos whose length normally lasts 3–4 h. Finally,
we take screenshots from these video clips by a fixed frame rate
and get images for follow-up stages.

In the second stage, two gastroenterologists are introduced to
label the previous screenshots, respectively, at the pixel level and
image level. They first classify the image into three clearness
degrees according to adequacy assessment [Brotz et al. (2009)]
and then segment the scenes into given categories. In the
meantime, one gastroenterologist’s annotations will be
annotated by another doctor without knowing it, and
divergence will be handed over to the third stage’s chief to decide.

In the third stage, all revised images are submitted to the chief
and expert gastroenterologist in stage III for final-checking. All
the data are anonymized for privacy protection.

Here are the statics of the two tasks in our dataset:

1) Task 1: Clearness degree classification
2) Task 2: Tissue segmentation for precise understanding of

the image

The total number of annotation images is 467, and we split the
dataset into training, validation, and testing datasets strictly by
stratifying the sampling in the clearness categories. There are 372
images in the training dataset, 47 images in the validation dataset,
and 47 images in the testing dataset. The statistic of basic attribute
of our proposed datasets have been shown in Tables 1, 2.

4.2 Evaluation Metrics
The classification results are evaluated by accuracy, precision,
recall, and F1 score. A classic classification problem has four
possible outcomes, true positive (TP), false positive (FP), false
negative (FN), and true negative (TN). Accuracy is the fraction of
predictions our model got right. Precision measures the
proportion of actually correct positive identifications, and
recall answers the proportion of actual positives identified
correctly. F1 is an overall measure of a model’s accuracy that
combines precision and recall:

Accuracy � TP + TN
TP + TN + FP + FN

,

Precision � TP
TP + FP

,

Recall � TP
TP + FN

,

F1 � 2 × Precision∗Recall
Precision + Recall

.

(6)

The segmentation results are evaluated using the Jaccard
index, also known as Intersection-over-Union (IoU). The IoU
is a measure of overlap between the area of the automatically
segmented region and that of the manually segmented region.
The value of IoU ranges from 0 to 1, with a higher value implying
a better match between the two regions. Pixel-wise accuracy is
also used for evaluation.

4.3 Experimental Results
In this section, we first evaluate several baselines in our Capsule-
Endoscopy Crohn’s Disease dataset, respectively, on classification
and segmentation tasks. Then, we evaluate our proposed method
on two types of tasks. The implementation of our method was
done using PyTorch. The model was performed on an Nvidia
RTX 2080Ti GPU with 11 gb. The batch size is set to 8, and all
images are resized to 240 p 240 to speed up training.

4.3.1 Baselines Results
• Single Task, Classification Task. We evaluate two different
types of models on our classification problem. Table 3 shows
that existing CNN-based classification models already have
an acceptable accuracy, precision, and recall score. On account
of the scale of datasets and shape of the input image, a simpler
and shallower classification model is preferred.

• Single Task, Segmentation Task. We evaluate four different
models on our segmentation problem. Under the same
backbone, Table 4 shows that the state-of-the-art
segmentation model can achieve competitive results on
the CECD dataset. But as shown in Figure 5, the

TABLE 1 | Details about the classification category distribution.

Category Number

Clearness 323
Blur 101
Invisible 42

TABLE 2 | Statistics of segmentation annotation in the dataset.

Category Number Category Number

Clear tissue 361 Invisible by bubble 196
Blur tissue 128 Invisible by excreta 212
Lesion 91 Clear bubble 46
Hole 153

TABLE 3 | Three-class clearness degree baseline classification results in the
CECD dataset.

Classification method Accuracy Precision Recall

ResNet-50 84.0 72.57 72.81
ResNet-101 81.9 69.67 71.41
DenseNet-121 86.7 73.48 73.72

TABLE 4 | Benchmark results in our dataset for the segmentation task.

Segmentation method Backbone Iteration mACC mIoU

FCN ResNet-50 30 k 59.5 49.29
PSPNet ResNet-50 30 k 65.37 54.11
GCNet ResNet-50 30 k 62.96 53.29
DeepLabv3 ResNet-50 30 k 67.17 54.98
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prediction of DeepLabv3 which performs best among them
still has huge room for improvement.

4.3.2 Multi-Task Results
We employ the method described in Section 3.1 and compare it
with two widely used multi-task learning methods, and the results
are shown in Table 5. Besides, we discuss some structure details
when constructing the cross fusion module. We can see from
Table 6 that the GAP pooling method in the cross fusion module
performs better than GMP. The reason is that the global max
pooling may introduce outliers while emphasizing the maximum
in cross features.

Table 6 shows that our proposed multi-task classification and
segmentation network, described in Section 3, achieved the highest
performance in both tasks. Because of the imbalance between the two
tasks, if we simply apply a multi-task framework, the promotion of
segmentation capacity is at the cost of classification performance. Our
proposed cross fusion module elegantly fixes the imbalance between
them. The qualitative segmentation can also be seen from Figure 5,
and the proposed method achieved the best performance.

To the best of our knowledge, no one has previously attempted to
utilize segmentation at the pixel level to assist the image-level clearness
degree and provide explicable visual results for specialists in clinical
practice. In practice, our proposedmethodwill have inference on every

FIGURE 5 | Visualization of the segmentation result in our proposed Capsule-Endoscopy Crohn’s Disease dataset.

TABLE 5 | Detailed analysis of our proposed MTCSN in comparison with others.

Our multi-task method Backbone Iteration Accuracy Precision Recall mACC mIoU

Hard parameter sharing ResNet-50 30 k 88.41 80.96 78.93 84.92 77.55
Hard parameter sharing ResNet-101 30 k 83.3 77.43 77.31 83.08 77.46
Hard parameter sharing DenseNet-121 30 k 87.5 77.66 78.12 82.08 73.79
Cross stitch ResNet-50 30 k 80.21 68.92 67.71 81.22 73.33
Cross stitch ResNet-101 30 k 78.13 73.32 72.51 77.94 69.98
Cross stitch DenseNet-121 30 k 83.3 72.8 73.09 81.31 74.5
MTCSN ResNet-101 30 k 84.75 77.78 77.91 83.27 75.43
MTCSN DenseNet-121 30 k 88.3 78.7 79.64 84.49 73.75
MTCSN ResNet-50 30 k 89.23 81.54 80.14 85.50 77.62

Bold values represents our experiment results suppress all the previous methods.

TABLE 6 | Ablation studies of the cross fusion module. The global max pooling (GMP) and global average pooling (GAP) denote the different implementation of the cross
fusion module on the class fusion branch.

Segmentation method Accuracy Precision Recall mACC mIoU

Global max pooling 85.1 73.52 76.1 84.04 72.9
Global average pooling 88.3 78.7 79.64 84.49 73.75
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frame of the entire output video of capsule endoscopy. The high
clearness frames or frames mostly occupied by tissue or lesions will be
marked by our framework. In fact, themarked frames only account for
10% of all frames which significantly reduces the heavy work of
gastroenterologists. Our pixel-level semantic segmentation results
also provide an explicable reference for gastroenterologists to
determine the confidence of the output.

5 CONCLUSION

In this work, we propose a multi-task learning framework named
the multi-task classification and segmentation network (MTCSN).
This framework combines tissue semantic segmentation and
clearness degree classification for capsule endoscopy diagnosis.
Our MTCSN achieves high performances on both clearness
classification tasks and explicable tissue segmentation offering
gastroenterologists visualization to understand the whole image.
With explicable tissue segmentation, our framework significantly
reduces the workload of gastroenterologists and provides steps
forward for deep learning–based methods assisting
gastroenterologists in clinical practice.
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