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One prominent class of drugs is chemical small molecules (CSMs), but the majority of

CSMs are of very low druggable potential. Therefore, it is quite important to predict

drug-related properties (druggable properties) for candidate CSMs. Currently, a number

of druggable properties (e.g., logP and pKa) can be calculated by in silico methods; still

the identification of druggable CSMs is a high-risk task, and new quantitative metrics for

the druggable potential of CSMs are increasingly needed. Here, we present normalized

bond energy (NBE), a new metric for the above purpose. By applying NBE to the

DrugBank CSMs whose properties are largely known, we revealed that NBE is able

to describe a number of critical druggable properties including logP, pKa, membrane

permeability, blood–brain barrier penetration, and human intestinal absorption. Moreover,

given that the human endogenous metabolites can serve as important resources for drug

discovery, we applied NBE to the metabolites in the Human Metabolome Database.

As a result, NBE showed a significant difference in metabolites from various body

fluids and was correlated with some important properties, including melting point and

water solubility.

Keywords: drug, chemical small molecule, metabolites, druggable property, normalized bond energy

INTRODUCTION

Research and development of pharmaceuticals is a resource-consuming and long process with a
variety of challenging risks (Szewczak et al., 2020). Chemical small molecules (CSMs) represent a
big class of drugs which mainly function by binding with disease-related target molecules (Wishart
et al., 2018a). Given the huge space of target molecules and CSMs, evaluating the druggable
potential of both targets (Jung and Kwon, 2015; Liu et al., 2016; Floris et al., 2018; Sztuba-Solinska
et al., 2019) and CSMs (Sun et al., 2016; Ashenden et al., 2017; Chitre et al., 2019; Heitmeier et al.,
2019; Bhattacharjee et al., 2020) is thus one of the key points of drug discovery. For CSMs, it
is known that a number of drug-related properties (druggable properties) affect their druggable
potential, for example, human intestinal absorption (HIA), blood–brain barrier (BBB) penetration
(Blake, 2000), and some pharmacokinetic properties (Ferreira and Andricopulo, 2019). Therefore,
it is crucial to accurately predict druggable properties for an early-phase candidate CSM and
large-scale druggable CSM screening.

For the above purpose, a number of in silico methods or metrics have already been proposed.
For example, properties of logP, logD, logS, logW, and pKa can be calculated using the free
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online tool ALOGPS (Tetko and Tanchuk, 2002). ChemAxon,
a tool that provides solutions and services for chemistry and
biology (ChemAxon, 2020), can be used to predict druggable
properties such as water solubility, polar surface area (PSA),
H bond acceptor count, H bond donor count, and pKa. In
addition, given that CSM transport is a key attribute toward
better drug potential, several metrics have been presented to
evaluate CSM transport properties, including octanol/water
partition coefficient, molecular size and shape, hydrogen-
bonding capabilities, and topological PSA (van De Waterbeemd
et al., 1996; van de Waterbeemd, 1998; Winiwarter et al., 1998;
Ertl et al., 2000). These in silico methods or metrics provide
support for quickly quantifying CSM properties in order to
evaluate their druggable potential. However, due to the huge
complexity of both biology and chemistry, these methods or
metrics are still far from solving all problems in drug research and
development. For example, when chemical structures are diverse
and complex, the molecular-transport-related physicochemical
metric descriptors introduced above may not be reliable enough
to predict molecular transport properties (Artursson et al., 1996).
Thus, it is necessary to present new in silico methods or metrics
to quantify druggable properties of CSMs.

We previously revealed that the free energy of the RNA
secondary structure has a significant contribution to the
importance score of both protein-coding RNA molecules
(mRNAs) and noncoding RNAs (lncRNAs and miRNAs)
(Zeng et al., 2018; Song et al., 2019). Based on the above
observations, we hypothesized that the energy status of CSMs
could also represent some properties of these molecules. To
confirm this hypothesis, here, we present normalized bond
energy (NBE), a new metric. Moreover, we reveal here
that the NBE score can significantly represent some critical
druggable properties—such as logP, pKa, permeability, BBB
penetration, and HIA. Additionally, given that the human
endogenous metabolites could be explored as a resource for
drug discovery (Bofill et al., 2019), we calculated the NBE
scores for CSMs in the human metabolome and performed a
comprehensive bioinformatic analysis for the relations between
NBE score and other properties of these endogenous metabolic
small molecules.

MATERIALS AND METHODS

Datasets of CSMs
We obtained the structural data in SDF format for CSMs from
the DrugBank database (Wishart et al., 2018a) (Version 5.0),
which include approved small molecule drugs and experimental
drugs. Biological macromolecular drugs were excluded from the
dataset. We obtained the structural data in SDF format for small
molecule metabolites from the Human Metabolome Database
(HMDB) (Wishart et al., 2018b) as well. Experiment-derived
property (e.g., melting point, logP, and pKa) data of CSMs were
also curated from the DrugBank and HMDB. For the property
of water solubility, CSMs with terms like “insoluble,” “almost
insoluble,” “low soluble,” “mostly insoluble,” “non-soluble,” “not
soluble,” and “poorly soluble” were assigned as the insoluble
group, whereas CSMs with terms like “soluble,” “easily soluble,”

“completely soluble,” “freely soluble,” “highly soluble,” and “very
soluble” were assigned as the soluble group. In addition, we
obtained the Caco-2 monolayer permeability data of 690 CSMs
from the study done by van De Waterbeemd et al. (van De
Waterbeemd et al., 1996; Palm et al., 1998; Pham The et al.,
2011), the BBB penetration data of 1,638 CSMs from the study
reported by Kelder et al. (Kelder et al., 1999; Shen et al.,
2010), and the HIA data of 598 CSMs from the study done
by Shen et al. (Palm et al., 1997; Shen et al., 2010). The
structure files of these CSMs in SMILES format were obtained
as well.

Calculation of NBE
For a representative CSM, we first extracted its bonds from
its molecular structure using the RDKit library (Floris et al.,
2018) (Version 2017.09.1, 2017) and then determined the energy
(kJ/mol) of each bond by matching it with the bond energy
table (Supplementary Table 1) through the bond type and the
atom type. The bond type here includes single bond, double
bond, and triple bond, which denotes the number of shared
electron pairs between the two corresponding atoms. Bond
energy is defined as a parameter that physically quantifies
the strength of a chemical bond and can be measured by
the amount of energy required to break a bond. In general,
bond energy is the average value of bond dissociation energy
of a mole of molecule in the gas phase, typically at a
temperature of 298K. Given that the bigger molecules usually
have more bonds and thus would have larger bond energy,
we next defined NBE. Here, the original bond energy is
normalized using molecular weight (MW), which was calculated
using RDKit. The algorithm for the procedure is shown in
Figure 1.

Then, NBE can be calculated using the following equation.

NBE =

∑n
i=1 Bond Energy(i)

MW
(1)

where Bond Energy (i) is the bond energy of bond i, n is the
number of bonds, andMW is the molecular weight of the CSM.

Statistical Computation
We implemented the algorithm of NBE (http://www.cuilab.cn/
nbe/nbe.zip) using Python. Spearman’s correlation analysis, t-
test, and Wilcoxon test were performed using R studio.

RESULTS

Global Distribution of NBE Scores
The whole framework of this study is shown in Figure 2. We
calculatedNBE scores for 10,426 CSMs (2,444 are approved drugs
and 7,982 are experimental drugs) from DrugBank and 113,878
human metabolic CSMs from HMDB. The distributions of the
DrugBank NBE scores are shown in Figure 3A. The approved
drugs have greater NBE scores than the unapproved drugs (p-
value= 1.17e−13, Wilcoxon test; Figure 3B).
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FIGURE 1 | The flowchart of NBE algorithms.

Correlations of NBE Scores With
Experimentally Identified Properties of
CSMs in DrugBank
As a result, we found that NBE score is significantly associated
with a number of experimentally identified properties of CSMs

in DrugBank. First, we evaluated if there is a difference in
NBE scores of the soluble CSMs and the insoluble ones. The
results showed that the soluble CSMs have smaller NBE scores
compared to the insoluble ones (mean: 53.3 vs. 56.7, p-value =
0.009, t-test; Figure 4A). Further, we investigated the relations
of NBE score with the melting point, logP, and pKa. We found
that NBE score shows a significantly negative correlation with
melting point (Rho = −0.19, p-value = 1.89e−13, Figure 4B)

but shows a positive correlation with logP (Rho= 0.36, p-value=
1.25e−47, Figure 4C) and pKa (Rho= 0.38, p-value= 9.08e−19,
Figure 4D).

NBE Is Correlated With Permeability, BBB
Penetration, and HIA
Permeability, BBB penetration, and HIA are the three critical
properties which greatly affect the transport properties of a CSM.
We observed significant correlations between NBE and Caco-2
monolayer permeability (Rho= 0.80, p-value= 0.01, Figure 5A;
Rho = 0.71, p-value = 0.003, Figure 5B; Rho = 0.22, p-value
= 9.186e−09, Figure 5C), between NBE and HIA (Rho = 0.44,
p-value = 0.05, Figure 5D, Rho = 0.12, p-value = 3.567e−03,
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FIGURE 2 | The framework of the whole study.

FIGURE 3 | Distributions (A) and values (B) of the NBE scores of approved chemical small molecules (CSMs) and unapproved ones in DrugBank.

Figure 5E), and between NBE and BBB penetration (Rho= 0.55,
p-value = 9.39e−05, Figure 5F). Moreover, using the FA% value
(the oral drug absorption in humans) threshold of 30%, we divide
CSMs of the HIA dataset into absorbable (HIA+) terms and
nonabsorbable (HIA–) terms. We observed that HIA+ CSMs
have bigger NBE scores than the HIA– CSMs (mean: 57.0 vs.

52.4, p-value = 0.0064, t-test; Figure 5G). Whether CSMs can
penetrate the BBB has been recognized as one of the most critical
issues for designing drugs targeting the central nervous system.
We also observed that BBB penetrable (BBB+) CSMs have bigger
NBE scores than the impenetrable (BBB–) CSMs (mean: 58.7 vs.
54.2, p-value= 1.08e−15, t-test; Figure 5H).
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FIGURE 4 | Correlations of the NBE scores of CSMs in DrugBank with druggable properties including water solubility (A), melting point (B), logP (C), and pKa (D).

NBE Is Correlated With Properties of
Human Metabolites
Natural products represent one important class of CSMs with
high druggable potential. The human endogenous metabolites—
a type of natural product—could be explored as a resource
for drug discovery. It is thus important to investigate whether
NBE can describe some properties of human metabolites. We
previously revealed biased subcellular distributions for miRNA
target genes and sex-biased genes. We found that miRNAs
prefer to target genes located within the inner cellular space
compared to genes located in the outer cellular space (Cui
et al., 2006). Female-biased genes are enriched in the outer
cellular space, whereas male-biased genes are enriched in the

inner cellular space (Guo et al., 2018). It was considered of
much interest to investigate whether there exists a difference
in NBE for metabolites in different cellular spaces. The results
showed that metabolites in the outer cellular space (metabolites
in the extracellular space and/or membrane) have greater NBE
scores than those in the inner cellular space (metabolites in
the cytoplasm and/or nucleus) (p-value = 0, Wilcoxon test;
Figure 6A). Moreover, metabolites derived from different body

fluids showed a significant difference in NBE scores (p-value

= 0.0, ANOVA, Figure 6B). Metabolites from feces and saliva
showed the highest NBE scores (Figure 6B). In addition, NBE
scores of metabolites were correlated with melting point (Rho
= −0.29, p-value = 7.11e−138; Figure 6C) and water solubility
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FIGURE 5 | Correlations of the NBE scores of CSMs with some druggable properties, including Caco-2 monolayer permeability from van De Waterbeemd et al.

(1996) (A), Palm et al. (1998) (B), and Pham The et al. (2011) (C); HIA from Palm et al. (1997) (D) and Shen et al. (2010) (E); and BBB penetration from Kelder et al.

(1999) (F). Values of the NBE scores of HIA+ CSMs and HIA– ones from Shen et al. (2010) (G). Values of the NBE scores of BBB+ CSMs and BBB– ones from Kelder

et al. (1999) (H).
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FIGURE 6 | Distributions of the NBE scores of metabolites in different cellular locations (A) and metabolites from different body fluids (B) and correlation of the NBE

scores with melting point (C) and with water solubility (D) in HMDB.

(Rho = −0.29, p-value = 1.11e−51; Figure 6D), which is
consistent with the results on CSMs in DrugBank.

DISCUSSION

In this study, we presented a new in silico metric, NBE, for
quantifying some properties of CSMs. The results showed that
NBE is able to describe some critical druggable properties of
CSMs. We found that the NBE is correlated with some drug
features including logP and pKa, membrane permeability,
BBB penetration, and HIA. These metrics are usually used for
quantifying the druggable properties of small molecules. For
example, logP (octanol–water partition coefficient) is used in
drug design as a measure of molecular hydrophobicity, and
pKa is related to lipophilicity and the rate/extent of membrane
penetration. And other properties including membrane

permeability, BBB penetration, and HIA are also utilized for
presenting permeability of small molecules.

The BBB separates the brain from the systemic blood
circulation and maintains the homeostasis of the central nervous
system. Thus, the blood–brain distribution of a CSM is a key
characteristic for determining whether it is potentially druggable
for the central nervous system or not. HIA is related to the
rate of a particular compound crossing the intestinal wall to
reach the portal blood circulation. The significant correlated
relationships between NBE and BBB penetration and between
NBE and HIA provide a simple but efficient metric to quickly
judge the potential of a CSM to move into the brain from
the circulation and the potential of a CSM to move into the
circulation from the intestine.

In addition, we have similar and consistent observations for
human metabolites. Interestingly, NBE distributions have a bias
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for different cellular locations and for different body fluids, which
could provide some valuable clues toward metabolite-based drug
discovery. However, we found that NBE is not a metric that
can be used to judge the druggable potential of candidate small
molecule only by a threshold. To use this metric to quantify
the druggable potential, researchers of pharmaceuticals need to
compare more small molecules with their NBE scores to draw
conclusions. In addition, due to the limitation of data sources,
the number of CSMs in some datasets used in this study is
small and may introduce bias in the accuracy of the results. In
summary, this study presented a simple but efficient metric to
describe druggable properties of CSMs. The utility of NBEmay be
improved by combining it with other in silicomethods or metrics
in the future.
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