AUTHOR=Zhang Yuanfeng , Wang Zheyi , Zhang Yue , Tong Hongxuan , Zhang Yiling , Lu Tao TITLE=Potential Mechanisms for Traditional Chinese Medicine in Treating Airway Mucus Hypersecretion Associated With Coronavirus Disease 2019 JOURNAL=Frontiers in Molecular Biosciences VOLUME=7 YEAR=2020 URL=https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2020.577285 DOI=10.3389/fmolb.2020.577285 ISSN=2296-889X ABSTRACT=Background

The rapid development of coronavirus disease 2019 (COVID-19) pandemic has become a great threat to global health. Its mortality is associated with inflammation-related airway mucus hypersecretion and dysfunction of expectoration, and the subsequent mucus blockage of the bronchioles at critical stage is attributed to hypoxemia, complications, and even death. Traditional Chinese medicine (TCM) has rich experience in expectorant, including treatment of COVID-19 patients with airway mucus dysfunction, yet little is known about the mechanisms. This study is aiming to explore the potential biological basis of TCM herbal expectorant for treating COVID-19.

Objective

To get core herbs with high used frequency applications in the actions of expectoration by using association rule algorithm and to investigate the multitarget mechanisms of core herbs in expectorant formulae for COVID-19 therapies.

Methods

Forty prescriptions for expectorant were retrieved from TCM Formulae. The ingredient compounds and targets of core herbs were collected from the TCMSP database, Gene-Cards, and NCBI. The protein interaction network (PPI) was constructed by SRING, and the network analysis was done by Cytoscape software. Bioconductor was applied for functional enrichment analysis of targets.

Results

The core herbs of expectorant could regulate core pathways (MAP kinase activity, cytokine receptor binding, G-protein-coupled receptor binding, etc.) via interactions of ingredients (glycyrol, citromitin, etc.) on mucin family to eliminate phlegm.

Conclusion

TCM herbal expectorant could regulate MAPK and cytokine-related pathways, thereby modulating Mucin-family to affect mucus generation and clearance and eventually retarding the deterioration of COVID-19 disease.