AUTHOR=Takakuwa Jade E. , Nitika , Knighton Laura E. , Truman Andrew W. TITLE=Oligomerization of Hsp70: Current Perspectives on Regulation and Function JOURNAL=Frontiers in Molecular Biosciences VOLUME=6 YEAR=2019 URL=https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2019.00081 DOI=10.3389/fmolb.2019.00081 ISSN=2296-889X ABSTRACT=

The Hsp70 molecular chaperone in conjunction with Hsp90 and a suite of helper co-chaperones are required for the folding and subsequent refolding of a large proportion of the proteome. These proteins are critical for cell viability and play major roles in diseases of proteostasis which include neurodegenerative diseases and cancer. As a consequence, a large scientific effort has gone into understanding how chaperones such as Hsp70 function at the in vitro and in vivo level. Although many chaperones require constitutive self-interaction (dimerization and oligomerization) to function, Hsp70 has been thought to exist as a monomer, especially in eukaryotic cells. Recent studies have demonstrated that both bacterial and mammalian Hsp70 can exist as a dynamic pool of monomers, dimer, and oligomers. In this mini-review, we discuss the mechanisms and roles of Hsp70 oligomerization in Hsp70 function, as well as thoughts on how this integrates into well-established ideas of Hsp70 regulation.