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Unveiling host-genetic drivers of
caecal microbial communities in
chickens through genome-wide
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Sciences, Royal Veterinary College, Hatfield, United Kingdom, 5Department of Biosciences,
Biotechnologies and Environment, University of Bari “Aldo Moro”, Bari, Italy, 6Gujarat Biotechnology
Research Centre (GBRC), Department of Science and Technology, Government of Gujarat,
Gandhinagar, Gujarat, India, 7Department of Veterinary Biotechnology, College of Veterinary Science
and Animal Husbandry, Kamdhenu University, Anand, Gujarat, India
Enteric microbiota plays a crucial role in the health and productivity of poultry,

including influences on nutrient absorption, immune function, and pathogen

resistance. In this study, we conducted a genome-wide association study (GWAS)

to identify host genetic variants associated with selected bacterial genera found

in chickens. We used high-density 600K SNP Affymetrix DNA arrays for

genotyping, alongside 16S rRNA gene sequencing to profile caecal microbiota

from the same individual chickens. A commercial broiler line (Cobb400, n = 300)

and an indigenous (Kadaknath, n = 300) chicken breed from India were

investigated, allowing for a comprehensive cross-ecotype analysis. Our analysis

identified several host-genetic markers and candidate genes associated with the

presence and abundance of specific bacterial genera with known pathogenic or

commensal roles, and with specific caecal Enterotypes. Whole-genome

sequencing data were then used to further investigate candidate regions

around significantly associated variants from the high-density DNA array. Of

note, we found markers nearby the genes coding for classical complement

activation component C1q, ephrin receptors, and other immunity and

inflammatory responses as well as genes coding for products associated with

vitamin and co-factor metabolism. The results underscore the impact that host

genetics has on the regulation of the gut microbiota and highlights potential

pathways through which host genetic variation influences host-bacterial

crosstalk and potentially modulates microbial community structure. These

findings contribute to the growing understanding of the genetic basis of host-

microbiota interactions and offer new avenues for improving poultry health and

productivity through selective breeding strategies targeting the microbiome.
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1 Introduction

Chickens (Gallus gallus domesticus) are a cornerstone of global

agriculture, serving as one of the most widely consumed sources of

animal protein produced with a smaller environmental footprint

over other livestock species (OECD et al., 2024). As global demand

for poultry products continues to rise, maintaining the health and

productivity of chickens has become increasingly vital for food

security and economic stability. A key factor in ensuring the well-

being of poultry is the gut microbiome, particularly the caecal

microbiota, which plays a crucial role in several physiological

processes that impact the overall health and productivity of the

host (Sergeant et al., 2014). The chicken caeca harbour a diverse and

dynamic community of microorganisms composed of trillions of

bacteria, archaea, fungi, and viruses, all existing in a delicate

equilibrium. The caecal microbiota is integral to digestion and

absorption of nutrients, modulation of the immune responses,

and therefore protection against pathogens (Pandit et al., 2018).

In chickens, the caecal microbiota is primarily involved in the

fermentation of complex carbohydrates that escape digestion in the

upper gastrointestinal tract. Through this fermentation process, the

microbiota produces short-chain fatty acids (SCFAs) such as

acetate, propionate, and butyrate, which are absorbed by the host

and serve as significant sources of energy (Gilroy et al., 2021). In

addition to SCFAs, the microbiota synthesises essential vitamins,

including vitamin K and certain B vitamins, which are crucial for

multiple metabolic functions (Sergeant et al., 2014). These

microbial activities not only enhance the nutritional value of the

diet but also contribute to overall health and growth performance,

making the caecal microbiome a critical factor in poultry

production (Dittoe et al., 2022).

Beyond its nutritional contributions, the caecal microbiota

plays a pivotal role in protecting the host from infectious

organisms. The microbial community acts as a barrier by

competing with pathogens for nutrients and attachment sites,

producing antimicrobial compounds, and modulating the host’s

immune responses (Awad et al., 2009). However, the caeca are also

known reservoirs for zoonotic pathogens such as Campylobacter,

pathogenic Escherichia coli, Salmonella, and Helicobacter

(Kaakoush et al., 2014). These pathogens can persist in the caecal

environment and be transmitted to humans through the

consumption or handling of contaminated poultry products,

posing significant public health risks (Berry and Wells, 2016). The

caecal microbiota is also a potential reservoir of antimicrobial

resistance genes (ARGs) that can be transferred to pathogenic

bacteria, exacerbating the challenge of controlling infections in

animals and humans (Hedman et al., 2020).

The composition of the caecal microbiota is highly dynamic and

is influenced by a multitude of factors, including geographic location,

environmental conditions, diet and feed additives, age, and farming

practices (Kers et al., 2018). Among these, diet is a particularly

important determinant of microbial composition. The composition

and quality of feed, including the presence of prebiotics, probiotics,

other dietary supplements, and toxins, can significantly alter the

microbial ecosystem within the caeca (Li et al., 2020). In addition to
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environmental and dietary factors, host genetics also play a critical

role in shaping enteric microbial populations. Recent studies have

highlighted the significant impact of host genetic makeup on the

composition and function of gut microbiota (Benson et al., 2010).

Genetic variations in the host can influence several aspects of

microbiome structure, including the abundance of specific

microbial taxa, the overall diversity of the microbial community,

and the functional capabilities of the microbiota (Kurilshikov et al.,

2017). These findings suggest that the microbiome is, to some extent,

heritable and that selective breeding could be a potential strategy for

optimising gut health in poultry and thereby overall health, welfare

and productivity. Moreover, the relationship between host genetics

and the gut microbiota is bidirectional. Not only do host genetics

influence the microbiome, but the microbiome also affects the

expression of host genes, particularly those involved in immune

responses and metabolic processes (Kers et al., 2018). This intricate

host-microbiome crosstalk highlights the complexity of the gut

ecosystem and underscores the importance of considering both

genetic and environmental factors in the management of poultry

health. Understanding the genetic basis of these interactions will be

valuable when developing targeted interventions that can enhance the

health, productivity, and disease resistance of chickens.

In this study, we aimed to identify host genetic variation

associated with selected caecal bacterial genera that are known to

play either pathogenic, beneficial or commensal roles in the gut

microbiome of chickens. Leveraging a comprehensive approach, we

used host genotype data obtained through a genome-wide high-

density DNA array, alongside microbiota data derived from 16S

rRNA gene sequencing, both collected from the same individual

chickens (commercial broilers, Cobb400 and indigenous chickens,

Kadaknath from India). Our previous study that compared

microbiome composition in two indigenous Indian breeds

(Kadaknath and Aseel) and two commercial broiler lines

(Cobb400 and Ross 308) demonstrated comparatively greater

effects of location than breed/variety in shaping the chicken

caecal microbiome (Pandit et al., 2018). Nevertheless, in closer

examination of variation in microbiome structure between the

commercial broilers and indigenous breeds, several key

biomarkers associated with chicken varieties were identified,

indicating further scope for quantitative genetic analysis.

Moreover, the microbiome dataset used in this work was

previously described in our other work, which explored the

concept of caecal Enterotypes - a distinct state of microbiota

structure within the caeca (Hay et al., 2023). Originally proposed

in 2011, the concept of enterotypes arose from the finding that

human gut microbiomes could be assigned to one of a small number

of stable states (enterotypes) based on the relative proportions of

dominant bacterial taxa (Arumugam et al., 2011). The concept was

later applied to other animal and bird species including chickens

(Moeller et al., 2012; Wang et al., 2014; Mach et al., 2015; Ramayo-

Caldas et al., 2016; Yuan et al., 2020). Enterotypes are shaped over

time by dietary intake and demonstrate resilience to temporary

fluctuations in diet (Arumugam et al., 2011). In line with other

studies, our previous study observed the presence of 3 distinct

Enterotypes differing by the ratio of Firmicutes to Bacteroides with a
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decreasing ratio from Enterotype 1 to 3 (Hay et al., 2023). In the

current study, we extend this concept by using Enterotype as one of

the phenotypes for genome wide association studies (GWAS),

thereby linking specific host genetic variants to the shaping of

specific microbial community structures. Additionally, we analysed

host whole-genome sequencing (WGS) data at high coverage (40 X)

to delve deeper into candidate genomic loci that show strong

associations with the caecal microbiota or Enterotypes in the

GWAS. By focusing on the genetic determinants of caecal

microbial composition, this study aims to provide new insights

into the complex interactions between the host and the gut

microbiome that will advance understanding of how host genetic

variation influences the microbiome and exploration of the

potential for selective breeding strategies that leverage these

insights to improve the health and productivity of poultry.
2 Materials and methods

2.1 Ethical approval

The work was conducted with permission from the Ethical

Review Panel of Anand Agricultural University (AAU) (now

Kamdhenu University) and the Clinical Research Ethical Review

Board (CRERB) of the Royal Veterinary College under the reference

URN 2014 1280. Participating farmers were informed of the

objectives of the study and written consent was obtained.
2.2 Collection of samples

Two chicken lines, Cobb400 and Kadaknath, were selected for

the study due to their distinct genetic backgrounds and production

traits. Cobb400, a widely used commercial broiler in the study

region, has been intensively selected for rapid growth and feed

efficiency. In contrast, Kadaknath, an indigenous Indian slow

growing black-boned breed, is known for disease resilience

(Ramasamy et al., 2010). Samples from 600 chickens were

collected from the farms/backyard production systems in Gujarat,

a western state of India. The sampled chickens included 300

commercial Cobb400 broiler and 300 indigenous Kadaknath

chickens. The birds were sampled from farms rearing both lines

together (n = 30, 5 birds sampled of each line per farm), broiler-only

(n = 15, 10 birds sampled per farm) or Kadaknath-only farms (n =

15, 10 birds sampled per farm), The birds were sacrificed between

35 and 42 days of age and blood was collected onto NucleoSave

cards (Macherey-Nagel, Germany) for genomic DNA extraction.

Caecal pouches were surgically removed post-mortem to collect the

caecal content in Qiagen RNAprotect Bacteria reagent (1:1 ratio) for

microbiome analysis. At each farm/site, detailed metadata related to

location and farming/management practices was also collected to

control for environmental variation in the genetic studies. The

detailed description of the experimental design, including the

location of sites and the metadata for each site is outlined in

detail in our previous studies (Hinsu et al., 2018; Hay et al., 2023).
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2.3 Sample processing and data generation

2.3.1 DNA extraction and sequencing
Total DNA was extracted from caecal content using a Qiagen

DNeasy Stool Mini Kit (Qiagen, Germany) following the

manufacturer’s instructions with minor modifications (Pandit

et al., 2018). Briefly, 200 μl of sample was mixed with 1 ml

InhibitEX buffer and incubated at 80°C for 10 minutes. The

mixture was centrifuged and 600 μl of supernatant was processed

as per the protocol. Around 12.5 ng DNA was used to amplify V3-

V4 regions of the 16S rRNA gene using 341F and 785R primers and

prepare libraries as mentioned in the Illumina 16S library

preparation guide (Illumina Inc., USA). The libraries were

sequenced on the Illumina MiSeq platform using 300x2 paired-

end chemistry. A total of nine sequencing runs were set to

accommodate all the samples.

2.3.2 Host genotyping
Chicken’s genomic DNA was extracted from NucleoSave cards

using the GenSolve DNA kit (GenTegra, USA) as per the

manufacturer’s instructions. Genomic DNA from all 600 samples

was submitted to Edinburgh Genomics to genotype using the

Axiom Genome-wide Chicken Array (ThermoFisher Scientific,

USA). The Axiom Genome-wide Chicken Array contains around

620,000 SNP markers (Kranis et al., 2013).

2.3.3 Whole-genome sequencing (WGS)
A subset of 31 chicken DNA samples (Cobb400 = 13,

Kadaknath = 18) were selected based on specific genera

abundance such as Campylobacter and Escherichia.Shigella to

represent chickens in the extremes of the phenotypes for whole

genome sequencing. Libraries were prepared using Illumina TruSeq

DNA Nano kits (Illumina Inc., USA) and sequenced on the

Illumina HiSeq platform using 2x150 bp chemistry to generate

average 40x genome coverage per sample. The library preparation

and sequencing were outsourced to Edinburgh Genomics (UK).
2.4 Data analysis

2.4.1 16S rRNA sequencing data analysis
The 16S rRNA gene sequencing data was analysed using the

DADA2 package (Callahan et al., 2016). Briefly, the data was quality

filtered, denoised, paired reads were merged, and chimera-checked

to generate the final Amplicon Sequence Variants (ASV) table using

the default parameters as given in the DADA2 tutorial (https://

benjjneb.github.io/dada2/tutorial.html). In line with DADA2

recommendations, samples from each flow cell were processed

individually and then merged at a later stage before generating

the ASV table. ASVs were assigned taxonomy using SILVA v132

and phylogeny was generated within QIIME2 (Quast et al., 2013;

Bokulich et al., 2018; Bolyen et al., 2019). An additional step of

clustering sequences with 99% similarity was performed to reduce

the number of ASVs for taxonomic classification within QIIME2.

The ASV table, phylogenetic tree, taxonomy information and
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metadata were merged to generate a phyloseq object which was then

used for other downstream analysis (McMurdie and Holmes, 2013).

The samples were rarefied to 10,000 reads and samples with less

than 10,000 reads were removed from the analysis. The ASV table

was agglomerated at genus level to obtain genera level abundance.

From the detected genera, Bacillus, Campylobacter,Cloacibacillus,

Eisenbergiella, Enterococcus, Escherichia.Shigella, Helicobacter,

Lactobacillus, Parasutterella and Sutterella were selected as

phenotypes for GWAS. The choice of genera was made based on

their involvement and role in chicken caecal microbiota (Oakley et al.,

2014; Hiippala et al., 2016; Lim et al., 2017; Clavijo and Florez, 2018;

Zhang et al., 2021; Derqaoui et al., 2022; Chen et al., 2023; Ge et al.,

2023). For instance, Campylobacter and Helicobacter are common

zoonotic pathogens from chickens, while Bacillus and Lactobacillus

are key commensals/beneficial microbes for chicken.

Genera detected in 30%-60% of samples (Bacil lus ,

Campylobacter, Cloacibacillus, Enterococcus, Escherichia-Shigella

and Sutterella) were analysed as binary traits (present/absent),

while those detected in >60% of samples (Eisenbergiella,

Helicobacter, Lactobacillus and Parasutterella) were analysed as

continuous traits in subsequent genetic analysis. The relative

abundance of genera analysed as continuous traits was

normalised by rank-based inverse normal transformation using

the GenABEL package v1.8-0 in R (Aulchenko et al., 2007).

Additionally, the classified Enterotypes from our previous study

were also used as phenotypes for GWAS (Hay et al., 2023).

Enterotypes refer to the distinct clusters of enteric microbiota

based on the relative abundance of different bacterial species.

Enterotypes were classified by clustering the AIT distance matrix

of genus-level abundance using partition around medoids (PAM)

clustering algorithm. Please refer (Hay et al., 2023) for the detailed

methodology of Enterotype classification.

2.4.2 Genotypic data
PLINK v1.9 (https://www.cog-genomics.org/plink/) was used for

quality control of the genotypic data: minor allele frequency greater

than 5%, sample call rate greater than 90% and a Hardy-Weinberg

equilibrium p-value less than 10-6 (flags: –maf 0.005 –geno 0.1 –hwe

0.000001) (Purcell et al., 2007). The filtered variants were used to

generate genomic relationship matrix which was then used to

perform Principal Component Analysis and plotted using R. SNP

positions of the markers were remapped to the galGal6 (GRCg6a)

chicken genome assembly using the LiftOver remapping tool

(https://genome.ucsc.edu/cgi-bin/hgLiftOver). Updated SNP

positions on galGal6 were used for all downstream analysis.
2.4.3 Metadata information
Additional information for each farm/site was collected in the

form of detailed questionnaire. The questionnaire included detailed

information covering the farm description, farm location,

surrounding geographical features, farming practices and other

factors potentially affecting microbiota like other animals/

chickens on farms. More details are available from our previous

publication (Hay et al., 2023). Multiple correspondence analyses

(MCA) of bird and environmental farm variables were performed to
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identify key components explaining the phenotypic variance in

recorded metadata using FactoMineR package in R (Lê et al., 2008).

The first four MCA axes, which explained more than 70% of

variation, were taken as a covariates for SNP-based heritability

estimates and genome-wide association study (GWAS) analyses.

2.4.4 Heritability estimate & GWAS
QC filtered variants were used to estimate SNP-based

heritability for each selected genera and Enterotypes individually

using the genomic relatedness based restricted maximum-

likelihood method (GREML) implemented within GCTA

v.1.94.beta (Yang et al., 2011). The genomic relationship matrix

among individuals (GRM) was produced using ‘–make-grm’ flag as

ɡij =
1
No

N
v=1

(xiv − 2pv)(xjv − 2pv)

2pv(1 − pv)

in which gij represents the estimated genetic relationship

between chicken i and j; xiv and xjv are the counts of the reference

alleles in chicken i and chicken j, representatively; pv is the

frequency of the reference allele in the population; and N is the

total number of SNPs. SNP-based heritability, i.e. the proportion of

total phenotypic variance attributed to genetic variation, was

quantified using restricted maximum likelihood analysis (‘–reml’)

function in a model that included the first four MCA axes and breed

as covariates to account for potential environmental effects.

GWAS analyses were performed using the Genome-Wide

Efficient Mixed Model Association (GEMMA) algorithm v0.98

(Zhou and Stephens, 2012) for each selected genera and

Enterotype as a separate trait. GEMMA employs a linear mixed

model (LMM) framework that accounts for population structure

and relatedness by incorporating a genomic relationship matrix as a

polygenic random effect. This approach helps control for

confounding due to cryptic relatedness and population

stratification, thereby reducing false-positive associations. For

each GWAS, chicken breed and the first four MCA components

of environmental farm categorical variables were fitted as covariates

to account for potential environmental influences on microbial

composition. The Wald test, implemented within GEMMA, was

used to assess the significance of SNP associations. To control for

multiple testing, a Bonferroni correction was applied, setting the

genome-wide significance threshold at 1.19 × 10-7 (0.05/418,665)

and a suggestive genome-wide, counting for one false discovery per

genome scan, threshold of 2.39 × 10-6 (1/418,665). The GWAS

results were visualised using Manhattan plots and quantile-quantile

(Q-Q) plots produced using the rMVP R package (Yin et al., 2021).

The 50 kb upstream and downstream regions of the

significantly associated SNPs from GWAS results were considered

as the candidate region for further analysis. The threshold for

genomic regions was determined based on the values derived

from the LD decay in both breeds (see Results section). All the

genes located in the candidate regions were identified using the

BiomaRt R package using Galgal6a database from Ensembl v106

annotations (Durinck et al., 2009). The extracted gene list was used

as the input to perform enrichment analysis of KEGG pathways

using Clusterprofiler R package (Yu et al., 2012). The results were
frontiersin.org
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corrected using Benjamini-Hochberg correction with significance

threshold set at P< 0.1 to account for the smaller number of genes.

2.4.5 Whole genome sequencing data analysis
The quality of the sequencing reads was assessed with FastQC

v0.11.9 software (https://www.bioinformatics.babraham.ac.uk/

projects/fastqc) and QC was performed with Trimmomatic v0.39

(Bolger et al., 2014). QC-pass data was mapped to the galGal6

(GRCg6a) chicken genome assembly using the Burrows-Wheeler

Alignment tool (BWA v0.7.10) (Li and Durbin, 2009) and variant

calling was performed following the best practice for the Genome

Analysis Toolkit with GATK v4.1.6 (McKenna et al., 2010). The vcf

file was further filtered according to hard-filter thresholds suggested

within the GATK pipeline, and only bi-allelic SNPs were used for

downstream analysis. Linkage disequilibrium (LD) decay from

the WGS data was estimated by calculating r2 and plotted

for each population using PopLDdecay with default parameters

(Zhang et al., 2019).

All the variants within the candidate regions based on the

GWAS results were extracted from the WGS data using bcftools

v1.9 (Danecek et al., 2021). The extracted variants were annotated

using VEPv110 with chicken GRC6a assembly from Ensembl genes

106 (McLaren et al., 2016). Further, the variants with a predicted

‘HIGH or ‘MODERATE’ impact were filtered for further

interrogation (Vaser et al., 2016). These HIGH or MODERATE

impact variants included all variants with deleterious effects

predicted by SIFT. The variants were further removed if variant

only had a single genotype, or less than 3 samples were observed for

any genotype. The filtered variants were associated with respective

phenotype/trait using linear model in R (lm() function) and p-

values adjusted using Benjamini-Hochberg (BH). The phenotype/

trait was taken as dependent variable, and individual genetic

variants were tested as fixed effects while adjusting for the effects

of covariates (the first four MCA components of environmental

farm categorical variables and breed). The BH-adjusted p-value

threshold of 0.05 was considered as threshold for significance of

associations. The LD between all pairs of these tested variants were

calculated using GWLD package in R (Zhang et al., 2023).
3 Results

The study included 600 chickens: 300 Cobb400 broilers, bred for

meat production and 300 Kadaknath, a black-boned indigenous Indian

breed, farmed for meat and eggs. All chickens were sampled from

Gujarat, the Western-most state of India. While the two varieties have

different growth rates, birds were sampled at the same age range of 35-

42 days to avoid age bias. Data from both chicken breeds were analysed

together to identify genetic variation associated with microbiome

structure and genera abundance across chicken breeds.
3.1 Microbiome data

Each caecal microbiome was studied by sequencing the V3-V4

region of the 16S rRNA gene across nine separate Illumina
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sequencing runs. The data was analysed using the DADA2

pipeline, resulting in 9217 Amplicon Sequence Variants (ASVs)

from 600 samples. After rarefying at 10,000 reads and removing

samples failing QC in host genotype data, 6326 ASVs remained

from 559 chicken samples which included 292 Cobb400 and 267

Kadaknath chickens. Agglomerated abundance per genus was

considered as phenotypes for performing GWAS, which showed

Bacteroides and Faecalibacterium as the dominant genera

(Supplementary Figure S1). Ten genera were selected for their

beneficial/commensal or pathogenic/zoonotic roles and analysed

as binary or continuous traits in GWAS, depending on their

prevalence across the samples (Table 1). Additionally,

microbiome community state, or “Enterotype” was also used as a

phenotype. In our previous study using the same set of samples,

three distinct Enterotypes were defined in the caecal microbial

community (Hay et al., 2023). In line with other studies, these

Enterotypes differed by the ratio of Firmicutes to Bacteroides with a

decreasing ratio from Enterotype 1 to 3. As Enterotypes are stable-

states of community, they can provide a better measure for studying

host-microbiome crosstalk compared to individual taxa abundance/

prevalence. Details regarding the microbiome structure and

diversity, differences between Cobb400 and Kadaknath, as well as

the classification of Enterotypes, have been thoroughly covered in

our previous publications (Pandit et al., 2018; Hay et al., 2023).
3.2 Genotypic data quality control and
multidimensional scaling analysis

All 600 chicken samples were genotyped with the chicken 600K

single-nucleotide polymorphism (SNP) Affymetrix array (Kranis

et al., 2013). After quality control with PLINK v1.9, 418,665 high-

quality SNPs from 559 samples remained for further analysis. As

expected, multidimensional scaling analysis (MSA), based on the

SNP data, revealed population structure and showed a clear
TABLE 1 Genome-wide heritability estimated for colonisation by
selected bacterial genera and caecal enterotypes using GCTA-GREML.

Trait/Genera Trait type h2 (pve) P-Value

Bacillus Binary 0.000001 0.5

Campylobacter Binary 0.200407 0.000166

Cloacibacillus Binary 0.084353 0.12364

Eisenbergiella Continuous 0.211536 0.00301

Enterococcus Binary 0.332069 0.002271

Escherichia.Shigella Binary 0.028209 0.2102

Helicobacter Continuous 0.273572 8.68E-05

Lactobacillus Continuous 0.103375 0.10777

Parasutterella Continuous 0.138161 0.001808

Sutterella Binary 0.168451 0.000158

Enterotype Mutinomial 0.13 0.3
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separation between the two chicken breeds (Supplementary Figure

S2) (Psifidi et al., 2018).
3.3 Heritability estimates

Genetic heritability (h2) was estimated separately for each

selected genus and Enterotype. Heritability for the selected genera

ranged from 0 to 0.33, with 6 of the 10 genera exhibiting non-zero

estimates (likelihood ratio test, P < 0.05) (Table 1). Enterococcus (h2

= 0.33) and Helicobacter (h2 = 0.27) were the genera with the

highest heritability estimates from binary and continuous

phenotypes, respectively. Similarly to previous studies, species of

the zoonotic genus Campylobacter showed significant genetic

heritability (h2 = 0.20, P < 0.01) (Psifidi et al., 2016b; Banos et al.,

2020; Psifidi et al., 2021), while very low genetic heritability was

observed for Escherichia.Shigella (h2 = 0.03, P = 0.21). Interestingly,

for the most prevalent genus Lactobacillus (present in 92% of the

samples) the heritability was close to zero. For the Enterotypes, a

low genetic heritability was estimated (h2 = 0.13, P < 0.3).
3.4 GWAS

Genotypes and phenotypes were compared from 559 birds

using a linear mixed model with GEMMA v0.9.8 (Zhou and

Stephens, 2012). The GWAS studies identified 7 significant (p <

1.19 × 10-7) and 28 suggestive significant (p < 2.39 × 10-6) genome-

wide level associations between SNPs and the presence of specific

gut microbial genera (Table 2; Supplementary Figures S3–S12).

Genome-wide significant associations were identified for

Campylobacter (GGC4: ~39.2Mb, GGC8:~26.9Mb, GGC10:

~2.5Mb, GGC25:~2.6Mb), Sutterella (GGC1:~180.3Mb) and

Parasutterella (GGC1:~90.6Mb) abundance on Gallus gallus

Chromosomes (GGC) 1, 4, 8, 10 and 25 (Table 2). The most

significant association (p = 6.28x10-13) was observed between

Campylobacter abundance and a SNP located at 26,982,059 bp on

GGC8, which was close to HOOK1 (Hook Microtubule Tethering

Protein 1) gene. Overall, the greatest number of associations were

observed for Campylobacter and Cloacibacillus (9 SNPs, each),

followed by Parasutterella (5 SNPs) and Enterococcus (4 SNPs).

There were no significant associations with genera Bacillus and

Lactobacillus, the two most common commensals, which is in

accordance with the zero heritability estimated for them.

Moreover, we also identified five suggestive genome-wide

associations between SNPs and caecal Enterotypes, four of which

were closely located on GGC5 (Table 2; Figure 1). Two sets of

associations were observed on GGC5 separated by approximately

74 kb distance. Interestingly, the candidate regions for Enterotypes

included genes coding three chains of complement component 1q

(i.e.C1qA, C1qB and C1qC).

50 kb upstream/downstream windows around the significant

SNPs were considered as candidate regions to search for genes and

genetic variants of interest for each of the phenotypes under

investigation. The selection of 50 kb windows was based on

Linkage Disequilibrium (LD) analysis as described below.
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Combined, all the candidate regions contained a limited number

of protein-coding genes (n = 82) and non-coding RNAs (n = 33)

(Supplementary Table S1). Consistent with the number of identified

associations, most protein-coding genes were observed within the

candidate regions for Campylobacter abundance (n = 25) followed

by Cloacibacillus abundance (n = 15) and Enterotype (n = 9).

Enrichment analysis of the gene lists in the candidate regions

revealed enrichment for 14 KEGG pathways (Benjamini-Hochberg

(BH) adjusted p < 0.05) (Figure 2). The most significantly enriched

KEGG pathway was efferocytosis (BH adjusted p = 0.0009), related

to the Enterotype phenotype. Other pathways with enrichment

were part of signal transduction, amino acid metabolism and

metabolism of cofactors and vitamins. Specifically, thiamine

metabolism (BH adjusted p = 0.035) for Enterotype; apelin

signalling pathway (BH adjusted p = 0.044), tyrosine metabolism

(BH adjusted p = 0.018), tryptophan metabolism (BH adjusted p =

0.018), valine, leucine and isoleucine degradation (BH adjusted p =

0.018), nicotinate and nicotinamide metabolism (BH adjusted p =

0.018), and retinol metabolism (BH adjusted p = 0.018) for

Helicobacter abundance; beta-alanine metabolism (BH adjusted p

= 0.0096) and pantothenate and CoA biosynthesis (BH adjusted p =

0.0096) for Escherichia.Shigella abundance; ErbB signalling pathway

(BH adjusted p = 0.105) for Eisenbergiella abundance; lysine

degradation (BH adjusted p = 0.079) for Cloacibacillus

abundance; and alanine, aspartate and glutamate metabolism (BH

adjusted p = 0.006) for Parasutterella abundance.
3.5 Whole genome sequencing

High coverage (40x) WGS data from 31 selected chickens

(Cobb400 = 13, Kadaknath = 18) was processed through the

Genome Analysis Toolkit (GATK) v4.1.6 variant-calling pipeline

(McKenna et al., 2010), identifying around 20 million variants. Of

these, around 17 million biallelic variants were used to calculate LD

decay. The LD plot showed r2 value below 0.2 at ~ 50 kb distance,

wherein it started to flatten (Figure 3). The LD decay curve showed

higher levels for Cobb400 compared to Kadaknath, which was

consistent with the higher selection pressure on commercial

broilers. Based on these results, 50 kb was considered the most

appropriate window for candidate genomic regions.

To identify genetic variants of interest in these candidate

regions we used the variants called from the WGS data. The

variants were extracted and annotated with VEP v110 (McLaren

et al., 2016) to specifically look for variants with a predicted HIGH

and MODERATE impact on the encoding proteins which will

include non-synonymous changes. A total of 55,269 variants

spanning 108 genes were analysed from 36 regions (Table 3). As

expected, most of these variants were present in intronic (45.8%),

intergenic (36.2%) and untranslated regions (1.2%), while a very

small proportion can be considered true non-synonymous exonic

variants (0.6%) (Figure 4). HIGH impact variants (n = 5) included

variants at splice-donor/acceptor sites (n = 2) or which result in

stop gain (n = 2) or start loss (n = 1), while 348 variants were

predicted with MODERATE impact resulting from missense

variation. Moreover, 71 of these variants had deleterious effects
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TABLE 2 Significant SNPs identified by GWAS and candidate genes associated with colonisation by the selected bacterial genera and
caecal enterotypes.

Trait/Genera Chr Positiona EAFb
Minor/
major
allele

Effect
size (SE)c

P-value
Variant present
in genesd

Closest
genese

Association
typef

Campylobacter 2 8,757,131 0.133 A/G -0.241 (0.046) 1.90E-07 DNAJB6 suggestive

Campylobacter 3 89,087,094 0.052 G/A 0.342 (0.069) 1.02E-06 suggestive

Campylobacter 4 39,239,123 0.094 C/A 0.313 (0.053) 4.91E-09 UFSP2 significant

Campylobacter 4 72,869,912 0.345 T/C 0.163 (0.03) 5.50E-08 significant

Campylobacter 8 26,982,059 0.133 C/T 0.312 (0.042) 6.28E-13 HOOK1 significant

Campylobacter 10 2,544,683 0.212 C/T 0.176 (0.032) 6.24E-08 NEO1 significant

Campylobacter 11 7,485,068 0.098 G/A 0.244 (0.05) 1.60E-06 PHKB suggestive

Campylobacter 14 8,668,181 0.118 T/C 0.214 (0.043) 9.92E-07 XYLT1 suggestive

Campylobacter 25 2,654,283 0.108 G/T 0.296 (0.051) 9.01E-09 BCAN significant

Cloacibacillus 1 54,516,046 0.358 T/C -0.2 (0.039) 5.06E-07 CHST11 suggestive

Cloacibacillus 1 63,705,229 0.494 A/T -0.15 (0.029) 4.72E-07 suggestive

Cloacibacillus 1 103,639,532 0.444 T/C -0.161 (0.032) 8.72E-07 MRPL39 suggestive

Cloacibacillus 1 131,150,262 0.383 G/A -0.167 (0.031) 1.37E-07 SHOX suggestive

Cloacibacillus 1 154,591,459 0.468 T/A -0.151 (0.029) 4.19E-07 RBM26 suggestive

Cloacibacillus 3 25,624,886 0.085 C/T -0.301 (0.06) 6.85E-07 CAMKMT suggestive

Cloacibacillus 4 52,281,030 0.079 T/A -0.28 (0.059) 2.23E-06 suggestive

Cloacibacillus 24 1,638,713 0.233 T/C -0.151 (0.031) 1.85E-06 ZBTB44 suggestive

Cloacibacillus 27 3,611,030 0.138 G/A -0.228 (0.047) 1.51E-06 MEIOC suggestive

Eisenbergiella 14 9,822,602 0.118 A/T -0.463 (0.097) 2.10E-06 GRIN21 suggestive

Eisenbergiella 15 8,521,076 0.398 T/C 0.298 (0.059) 7.43E-07 TBX6 suggestive

Enterococcus 2 72,334,120 0.434 A/C -0.151 (0.031) 1.35E-06 suggestive

Enterococcus 2 73,947,651 0.238 T/A 0.185 (0.038) 1.34E-06 suggestive

Enterococcus 12 19,220,163 0.408 T/C -0.155 (0.032) 1.99E-06 GRM7 suggestive

Enterococcus 18 8,716,929 0.216 A/T -0.177 (0.037) 2.23E-06 SOX9 suggestive

Escherichia.Shigella 8 12,964,841 0.123 A/T -0.250 (0.05) 7.67E-07 DPYD suggestive

Escherichia.Shigella 23 4,347,551 0.119 C/A 0.256 (0.053) 1.95E-06 AGO1 suggestive

Helicobacter 1 72,755,120 0.064 C/T 0.536 (0.103) 2.84E-07 PTHLH suggestive

Helicobacter 7 11,184,189 0.094 T/C 0.397 (0.082) 1.55E-06 ENSGALG00000045898 suggestive

Helicobacter 23 2,780,356 0.354 C/G 0.273 (0.053) 3.54E-07 EPB41 suggestive

Parasutterella 1 90,647,255 0.465 A/G -0.285 (0.049) 9.01E-09 EPHA3 significant

Parasutterella 1 90,659,508 0.394 A/G 0.269 (0.051) 1.97E-07 EPHA3 suggestive

Parasutterella 1 188,921,900 0.115 T/C 0.392 (0.074) 1.47E-07 NAALAD2 suggestive

Parasutterella 3 103,077,236 0.452 C/G -0.257 (0.05) 3.41E-07 suggestive

Parasutterella 4 80,610,041 0.379 G/A -0.254 (0.053) 2.06E-06 AFAP1 suggestive

Sutterella 1 180,309,157 0.264 G/C -0.209 (0.038) 5.83E-08 GJB6 significant

Enterotype 5 46,699,728 0.209 T/C -0.298 (0.061) 1.12E-06 PAPOLB suggestive

Enterotype 5 46,718,518 0.207 G/A -0.291 (0.061) 2.07E-06 PAPOLB suggestive

(Continued)
F
rontiers in Microbio
mes
 07
 frontiersin.org

https://doi.org/10.3389/frmbi.2025.1539923
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Hinsu et al. 10.3389/frmbi.2025.1539923
according to SIFT score. Overall, around 1/5 of variants (n = 75)

were novel (without rsID) with a predicted HIGH or

MODERATE impact.

Linear regression analysis revealed that out of 282 tested

variants, 149 showed significant association (F-test BH corrected p

< 0.05) with the respective phenotype (Table 4). This included 87

variants associated withHelicobacter, 47 variants with Cloacibacillus,

8 variants with Enterotype, 3 variants with Sutterella, and 2 variants

each with Campylobacter and Eisenbergiella. The significant

associations spanned 28 genes across all phenotypes. The higher

number of variants associated with Helicobacter and Cloacibacillus

were observed to have high LD among each other (Supplementary

Figures S13–S16) potentially corresponding to the same haplotype.
4 Discussion

We have investigated the relationship between host genetic

variation and the abundance or presence of specific microbial

genera within the chicken caecal microbiota, providing insights

into host-microbiome interactions.

We observed that 6 out of 10 microbial genera exhibited non-

zero heritability estimates, indicating that while some microbial

genera show a measurable genetic component, others do not. This is

in line with previous studies, which also demonstrated that genetic

variation in abundance or occurrence of microbes is not present for

all (Goodrich et al., 2016a; Feng et al., 2022). Interestingly, studies

comparing human and mouse microbiomes have reported higher

heritability estimates in mice, which were sampled in controlled

laboratory settings (Goodrich et al., 2016b). Similar factors could

impact the current study as samples were collected from natural

settings such as poultry farms. Despite these limitations, heritability

trends were consistent with relevant prior field studies. For instance,

our study showed a significant heritability of 0.2 for Campylobacter

which is comparable with previous studies (0.11 and 0.25) (Psifidi

et al., 2016b; Psifidi et al., 2021), while similar levels of heritability

were also observed for Escherichia and Lactobacillus (Mignon-

Grasteau et al., 2015). The low heritability of some microbial taxa

could also stem from the inability of current short-read sequencing

technologies to reliably achieve species-level resolution (Deng et al.,

2021). This limitation hinders reliable heritability estimates and
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complicates cross-study comparisons, as true genetic influences are

obscured by methodological inconsistencies.

GWAS analysis across bird ecotypes revealed multiple novel

genetic associations with the abundance of different genera.

However, we didn’t observe any overlaps in candidate regions

between across-ecotype (current study) GWAS and within-

ecotype-GWAS (Dai et al., 2022) even though both displayed

similar levels of heritability. These findings suggest that while

genetic influence on microbiome composition may be consistent

across ecotypes, the specific genetic architecture of such traits may

vary significantly. In addition, the present study demonstrated the

usefulness of joint analysis, since the bigger sample size made it

possible to reveal further genetic associations common between

different chicken ecotypes. This is in accordance with previous

chicken genetic studies (Banos et al., 2020). While multiple

associations were observed on the same chromosomes, we did not

observe any overlapping candidate regions between different

genera/studied traits. Campylobacter and Cloacibacillus showed

the highest number (n = 9) of significant SNP-genera associations.

Interestingly, Cloacibacillus exhibited low heritability (h² = 0.084),

emphasising that environmental factors play a much more

important role than genetic ones. Such findings align with prior

microbiome GWAS studies, which frequently report significant

associations despite low heritability estimates (Rothschild et al.,

2018; Grieneisen et al., 2021). The significant associations with

Campylobacter were distributed over GGC2-4, GGC8, GGC10,

GGC11, GGC14, and GGC25. However, this study did not

identify any of the previously reported associations with

Campylobacter in broiler chickens and the Barred Rock breed

(Connell et al., 2013; Psifidi et al., 2021). Overall, a higher number

of associations were observed on GGC1 (n = 9) across multiple

genera. Of note, Cloacibacillus (5 out of 9) and Parasutterella (3 out

of 5) had the most significant associations on GGC1.

Host-microbiome crosstalk is a complex, bidirectional process

with multiple factors influencing them including immunological/

inflammatory, regulatory/hormonal, signalling and metabolic

processes (Sun et al., 2017; Zheng et al., 2020; Maciel-Fiuza et al.,

2023). Several markers linked with candidate genes identified in this

study are implicated in immune pathways and host-microbiome

interactions. For instance, genes associated with Campylobacter

abundance [cytochrome P450 family2 subfamily J (CYP2J), sorting
TABLE 2 Continued

Trait/Genera Chr Positiona EAFb
Minor/
major
allele

Effect
size (SE)c

P-value
Variant present
in genesd

Closest
genese

Association
typef

Enterotype 5 46,792,605 0.208 T/G -0.295 (0.061) 1.38E-06 VRK1 suggestive

Enterotype 5 46,795,872 0.212 C/T -0.296 (0.06) 1.26E-06 VRK1 suggestive

Enterotype 21 6,091,049 0.141 A/G -0.348 (0.072) 1.88E-06 C1QA suggestive
aPosition were derived from remapping to Galgal6 by using LiftOver remapping tool.
bThe estimated allele frequency calculated using the data from both breeds.
cLinear regression coefficient beta and standard error (SE) of the minor allele.
dThe gene covering the variant from the Ensembl by using the new remapped position from Galgal6. If no gene was covering the variant, the closest gene is mentioned in the next column.
eThe physically closet genes were derived from the Ensembl by using the new remapped position from Galgal6. Empty values represent no nearby genes in 250 kb upstream/downstream region.
fSuggestive = GWAS suggestive SNP based on the P-value threshold of 2.39 × 10-6. Significant = GWAS significant SNP based on the P-value threshold of 1.19 × 10-7.
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nexin 25 (SNX25), and UFM1 specific peptidase 2 (Ufsp2)] are

involved in immune regulation. CYP2J genes metabolise arachidonic

acid, a precursor for inflammatory mediators in several immune-

related disorders (Clarke et al., 2010). SNX25 regulates TGF-b
signalling, enhancing receptor degradation, and Ufsp2 suppresses

responses to interferon-g (IFN-g) and lipopolysaccharides (LPS), key

microbial interaction molecules (Balce et al., 2021; Nishimura et al.,

2021). A gene associated with Eisenbergiella abundance [T-box 6

(TBX6)] modulates Notch1 signalling, which is linked to bacterial

infection responses (Yasuhiko et al., 2006; Gallenstein et al., 2023).

Similarly, genes associated with Cloacibacillus abundance, such as

calmodulin-lysine N-methyltransferase (CAMKMT), prolyl

endopeptidase-like (PREPL), and solute carrier family 3 member 1

(SLC3A1), have roles in immune response modulation and were

implicated in high IFN-g levels in cattle exposed to avian tuberculin

purified protein derivative (Badia-Bringue et al., 2023). Moreover,

WGS data analysis revealed specific candidate variants in CAMKMT,

PREPL, SLC3A1, and TBX6 genes that may be involved in genera

abundance modulation.

Another noteworthy association was the potential involvement of

the C1qA, C1qB, and C1qC genes in Enterotype shaping. C1q is the

recognition component of the C1 complex which initiates the classical

pathway of complement activation by binding with and sensing

immunological complexes like antigen-antibody complex, and non-

immunological components like bacterial LPS (Mellors et al., 2020).

Various studies have highlighted the role of the C1q molecule against

microbial infections, describing how C1q deficiency leads to increased

host susceptibility to various bacterial infections, and conversely

showing the over-expression of C1q genes post bacterial infection

(Lu et al., 2008; Rychlik et al., 2014). Moreover, studies in humans

have shown that mutations in C1q genes lead to deficiency or lower

levels of C1q and are strongly associated with clinical presentation in

the form of encapsulated bacterial infections and systemic lupus

erythematosus (SLE) (van Schaarenburg et al., 2016). The significant

association in the current study was observed to be downstream of the

C1qA gene and we observed 3 novel variants in WGS analysis

(GGC21:6,073,737; GGC21:6,073,941; and GGC21:6,074,132) in

C1qB gene showing significant association with Enterotype. All

these taken together point towards potential interactions among gut
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microbiome members, components of the host complement system,

and efferocytosis mechanisms, the outcome of which could shape the

overall microbiota structure in the caeca. Efferocytosis is a process by

which phagocytic cells remove dead and apoptotic cells, and has been

previously linked with the inflammatory response and inflammatory

disorders (Ge et al., 2022). Previous studies have reported that the gut

microbiome, through its diverse array of metabolites, exerts a

regulatory influence on efferocytosis in peripheral tissues, facilitating

immune resolution and tissue repair while maintaining systemic

homeostasis, as evidenced by its impact on macrophage polarisation

and apoptotic cell clearance in inflammatory contexts (Li et al., 2021;

Saavedra et al., 2022; Gorreja et al., 2023; Traughber et al., 2024).

The candidate region for Enterotype association also harboured

two Ephrin (Eph) receptor genes (EPHA8 and EPHB2), while in the

candidate region for Parasutterella abundance another Ephrin

receptor gene EPHA3 was located. Eph receptors are receptor

tyrosinase kinases that are involved in transducing extracellular

signals inside the cells through ligand-induced activation (Lisabeth

et al., 2013). Several EPH receptors and their ligands are also

involved in immunological processes. For instance, EPHB2

mutations and expression have been linked with colorectal

cancer, while EPHA2 and EPHA3 are shown to have roles as viral

entry receptors for herpesvirus and Epstein-Barr virus (Genander

et al., 2009; Darling and Lamb, 2019). Other studies also report that

Eph receptors are manipulated by bacteria for immune evasion,

while other studies have described their involvement in the

activation of immune cells (Funk and Orr, 2013; Yu et al., 2014).

Moreover, a significant association (GGC21:6,119,830) from WGS

analysis with Enterotype trait further underscores the importance of

these genes in host-microbiome interactions. However, further

studies are needed to confirm this speculation and establish

detailed interactions and mechanisms.

The current study also identified several other genes in the

candidate regions of association which code for proteins found in

the extracellular matrix (ECM) that interact with membrane

receptors. Gut bacteria engage in intricate interactions with the

ECM and produce a variety of enzymes and metabolites that can

degrade ECM components, influencing tissue architecture and

permeability (Derkacz et al., 2021). ECM components can serve
FIGURE 1

Manhattan plot (left) and QQplot (right) depicting -log10(p-value) from the GWAS results with caecal Enterotypes as trait.
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as signalling molecules that affect bacterial behaviour, including

biofilm formation and virulence. The ability of gut microbes to

interact with the ECM also highlights the bidirectional

communication between host tissues and the microbiota, which is

crucial for maintaining gut homeostasis (Franchi et al., 2024).

Notably, BCAN (brevican, associated with Campylobacter) and

HAPLN2 (hyaluronan and proteoglycan link protein 2, associated
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with Campylobacter) proteins involved in the binding of hyaluronic

acid; G-protein coupled receptors GRM7 (glutamate metabotropic

receptor 7, associated with Enterococcus abundance) and TACR3

(tachykinin receptor 3, associated with Campylobacter); glutamate

receptor GRIN2A (associated with Eisenbergiella); heat-shock

protein binding genes CHORDC1 (cysteine and histidine rich

domain containing 1, associated with Parasutterella abundance),
FIGURE 2

Dot plot showing enriched KEGG pathways from over enrichment analysis. The size of dots corresponds to the number of genes observed for the
respective category and the dots are coloured by -log10 of the nominal p-value. * represents the categories which are also significant as per
adjusted p-value < 0.05. The top facet shows results from the over enrichment with all the genes taken together.
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FIGURE 3

Linkage disequilibrium (LD) decay in Cobb400 (broiler) and Kadaknath chickens calculated from the variants predicted from WGS data. Left plot
shows decay in the distance less than 300 kb, right plot shows the same data in the distance 2 Mb.
TABLE 3 Details of variants from the WGS data in the candidate regions.

Genera
Number of
variants from
WGS data

Number of
genes (protein-
coding genes)

Number of
deleterious
variants (including
low confidence)

Number of
MODERATE OR
HIGH impact
variants (genes)

Genes detected in
the regions

Campylobacter 14070 32 (25) 17 77 (18)

UBE3C, DNAJB6, UFSP2,
LRP2BP, SNX25, HOOK1,
ENSGALG00000054726,
ENSGALG00000050045, CYP2J23,
XYLT1, SH2D2A, PRCC,
METTL25B, ISG20L2,
LOC425431,
BCAN, HAPLN2, RHBG

Cloacibacillus 13808 22 (14) 8 58 (10)
SLC3A1, PREPL, CAMKMT,
ST14, ADAMTS8, NSF, MEIOC,
CCDC43, DBF4B, ADAM11

Eisenbergiella 3648 7 (5) 1 5 (4)
GRIN2A, CABIN1,
TBX6, KLHL22

Enterococcus 4986 9 (2) 11 28 (5)

ENSGALG00000048821,
ENSGALG00000052411,
GRM7,
ENSGALG00000048988,
ENSGALG00000040705

Escherichia.Shigella 2468 10 (7) 5 35 (3) AGO4, CLSPN, C1orf216

Helicobacter 4595 9 (8) 27 107 (8)
PTHLH, SPATS2L, KCTD18,
SGO2, AOX1, CTGFL, EPB41,
TMEM200B

Parasutterella 4731 5 (4) 2 24 (3) CHORDC1, NAALAD2, FOLH1

Sutterella 1956 5 (5) 0 4 (2) ENSGALG00000048789, GJA3

Enterotype 5007 9 (9) 2 20 (6)
AK7, PAPOLB, VRK1, C1QB,
C1QA, EPHA8
F
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Candidate regions are defined by 50 kb upstream/downstream regions of significant GWAS associations.
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DNAJB6 (DnaJ heat shock protein family (Hsp40) member B6,

associated with Campylobacter abundance), and LOC425431 (dnaJ

homolog subfamily A member 1-like, associated with

Campylobacter abundance) were observed in the candidate

regions. Of these, many genes have been previously shown to

interact with bacteria and viruses in the gut. For instance, the

GRM7 gene was identified as a candidate gene in GWAS with

antibody titres for Salmonella enterica serovar Gallinarum in

chicken (Psifidi et al., 2016a). The CHORDC1 gene was observed

to be upregulated post-infection from Reovirus, Hepatitis B virus,

and Newcastle disease virus in chickens (Walugembe et al., 2020;

Fogel et al., 2021). Transcription of the gene DNAJB6 was observed

to be significantly upregulated by porcine circovirus type 2 infection

in porcine cell lines (Han et al., 2020) and also observed

to be significantly overexpressed in chicken cell lines after

treatment with Salmonella enterica serovar Typhimurium derived

lipopolysaccharide (Slawinska et al., 2016).

The current study identified associations between bacterial

abundance or occurrence and genes involved in the metabolism

of Retinol (Vitamin A1), Thiamine (Vitamin B1), Vitamin B6,

Nicotinamide (Vitamin B3) and Folate. These micronutrients serve

as essential cofactors for microbial metabolic pathways, influencing

bacterial growth and survival. For instance, B vitamins, particularly

B12 and folate, are critical for microbial metabolism and have been

shown to impact the microbiota (Guetterman et al., 2022), while

Vitamin A, through its active form, retinoic acid, affects gut

immune responses, which in turn modulates the microbial

environment (Pham et al., 2021). In our study, the AOX1

(aldehyde oxidase 1) gene was observed in the candidate region

forHelicobacter association. AOX1 is involved in the oxidation of 9-

cis and all-trans retinal (active form of Vitamin A) into the

corresponding retinoic acid; conversion of 1-Methylnicotinamide
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(a primary metabolite of nicotinamide and shown to have roles in

immune modulation of T cells in cancer) to 1-methyl-2-pyridone-

5-carboxamide or 1-methyl-4-pyridone-5-carboxamide; and

oxidation of Pyridoxal (the vitamin B6 precursor) to 4-pyridoxic

acid (Terao et al., 2016; Kilgour et al., 2021). Another gene, AK7

(adenylate kinase 7) (associated with Enterotype), is involved in the

conversion of thiamine diphosphate, the most abundant

physiological form of thiamine and vital coenzyme for enzymatic

reactions, to thiamine triphosphate (Bettendorff, 2021). Both in

AK7 and AOX1 we identified variants significantly associated with

Enterotype and Helicobacter, respectively. FOLH1 (folate hydrolase

1) and NAALAD2 (N-acetylated alpha-linked acidic dipeptidase 2),

which are involved in cellular transport and absorption specifically

related to folate metabolism, were also observed to be associated

with Parasutterella (belonging to proteobacterial phylum). Several

Proteobacteria organisms in the gut are known to modulate folate

bioavailability and in turn regulate the host expression of receptors

(Rais et al., 2016; Engevik et al., 2019).

Interplay between host genetics and gut microbiota reflects a co-

evolutionary process in which hosts and microbes have adapted to

one another over time. While certain genetic variants are clearly

associated with alterations in the gut microbiome, the precise

mechanisms remain an area of active investigation, tackled by

many across humans and animals/birds studies (Spor et al., 2011;

Bonder et al., 2016; Kurilshikov et al., 2017). Genetic variation,

particularly in immune-related genes, play a pivotal role in shaping

the gut environment by promoting the growth of specific microbial

communities while inhibiting others. However, the microbiome is

highly breed-specific, as genetic differences may influence gut

morphology, immune function, and metabolic processes, leading

to distinct microbial compositions between breeds (Pandit et al.,

2018; Cao et al., 2020; Paul et al., 2021; Davies et al., 2022).
FIGURE 4

Pie chart representing genetic location of variants from WGS data present in GWAS candidate regions annotated with Variant Effect Predictor (VEP).
The proportion represented is from 50,262 variants detected in candidate regions.
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TABLE 4 Variants from WGS data showing significant (BH adjusted p-value < 0.05) associations with respective trait/genera.

Trait/
genera SNPa p-value

BH corrected
p-value Gene

Gene
Symbol

Existing
variation

Amino acid
changes

Campylobacter 25_2669833_C/T 0.0091 0.0205 ENSGALG00000045469 BCAN rs313794230 P/L

Campylobacter 25_2672688_C/T 0.0091 0.0205 ENSGALG00000013234 HAPLN2 rs734604429 R/H

Cloacibacillus 3_25589082_T/G 0.0046 0.0129 ENSGALG00000009973 SLC3A1 D/E

Cloacibacillus 3_25605238_C/T 0.0046 0.0129 ENSGALG00000009981 PREPL R/Q

Cloacibacillus 3_25605251_T/C 0.0072 0.0175 ENSGALG00000009981 PREPL rs16240366 T/A

Cloacibacillus 3_25605305_A/G 0.0072 0.0175 ENSGALG00000009981 PREPL rs317010384 C/R

Cloacibacillus 3_25606137_C/T 0.0124 0.0261 ENSGALG00000009981 PREPL rs313991750 E/K

Cloacibacillus 3_25606433_G/A 0.0057 0.0147 ENSGALG00000009981 PREPL rs731329903 A/V

Cloacibacillus 3_25606528_A/T 0.0004 0.0014 ENSGALG00000009981 PREPL rs316589833 H/Q

Cloacibacillus 3_25606546_G/C 0.0046 0.0129 ENSGALG00000009981 PREPL rs312958834 H/Q

Cloacibacillus 3_25611805_G/A 0.0129 0.0269 ENSGALG00000009981 PREPL rs317078462 R/C

Cloacibacillus 3_25616880_T/C 0.0057 0.0147 ENSGALG00000009981 PREPL rs14329070 I/M

Cloacibacillus 3_25618988_G/A 0.0114 0.0245 ENSGALG00000009981 PREPL rs312463147 P/L

Cloacibacillus 3_25619078_T/C 0.0114 0.0245 ENSGALG00000009981 PREPL rs732499220 H/R

Cloacibacillus 3_25620636_G/A 0.0046 0.0129 ENSGALG00000035800 CAMKMT G/S

Cloacibacillus 3_25624531_A/G 0.0121 0.0257 ENSGALG00000035800 CAMKMT rs317444190 I/V

Cloacibacillus 24_1611093_A/G 0.0034 0.0099 ENSGALG00000001331 ST14 rs312708670 K/R

Cloacibacillus 24_1612920_G/A 0.0075 0.0177 ENSGALG00000001331 ST14 rs1059426179 V/I

Cloacibacillus 24_1687884_C/T 0.0007 0.0021 ENSGALG00000001370 ADAMTS8 rs13604433 V/M

Cloacibacillus 24_1688084_C/G 0.0069 0.0174 ENSGALG00000001370 ADAMTS8 G/A

Cloacibacillus 24_1688135_T/G 0.0018 0.0054 ENSGALG00000001370 ADAMTS8 rs315837753 K/T

Cloacibacillus 27_3610195_G/T 0.0016 0.0050 ENSGALG00000045889 MEIOC rs315286505 A/S

Cloacibacillus 27_3612103_C/G 0.0016 0.0050 ENSGALG00000045889 MEIOC rs315588936 D/E

Cloacibacillus 27_3612228_T/C 0.0052 0.0137 ENSGALG00000045889 MEIOC rs314843968 V/A

Cloacibacillus 27_3612372_G/A 0.0029 0.0085 ENSGALG00000045889 MEIOC rs318122260 S/N

Cloacibacillus 27_3612887_G/A 0.0029 0.0085 ENSGALG00000045889 MEIOC rs313147053 G/S

Cloacibacillus 27_3613232_A/G 0.0096 0.0216 ENSGALG00000045889 MEIOC rs317340940 S/G

Cloacibacillus 27_3613350_A/C 0.0111 0.0244 ENSGALG00000045889 MEIOC rs318153894 N/T

Cloacibacillus 27_3627316_C/T 0.0052 0.0137 ENSGALG00000001022 CCDC43 D/N

Cloacibacillus 27_3639248_T/C 0.0070 0.0174 ENSGALG00000035814 rs738917549 L/P

Cloacibacillus 27_3639482_A/T 0.0049 0.0135 ENSGALG00000035814 rs738986282 S/C

Cloacibacillus 27_3640321_G/A 0.0075 0.0177 ENSGALG00000035814 rs317977273 R/H

Cloacibacillus 27_3640350_A/C 0.0065 0.0166 ENSGALG00000035814 rs732723155 T/P

Cloacibacillus 27_3640608_C/T 0.0071 0.0175 ENSGALG00000035814 rs739102177 A/V

Cloacibacillus 27_3640826_A/C 0.0156 0.0314 ENSGALG00000035814 rs733982035 T/P

Cloacibacillus 27_3640836_T/C 0.0133 0.0274 ENSGALG00000035814 rs741616962 V/A

Cloacibacillus 27_3640904_G/A 0.0227 0.0445 ENSGALG00000035814 rs738750878 G/R

Cloacibacillus 27_3641084_G/A 0.0114 0.0245 ENSGALG00000035814 rs739858911 V/M
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TABLE 4 Continued

Trait/
genera SNPa p-value

BH corrected
p-value Gene

Gene
Symbol

Existing
variation

Amino acid
changes

Cloacibacillus 27_3641126_C/T 0.0054 0.0142 ENSGALG00000035814 rs735080961 R/W

Cloacibacillus 27_3641677_T/G 0.0075 0.0177 ENSGALG00000035673 ADAM11 W/G

Cloacibacillus 27_3641732_G/A 0.0012 0.0039 ENSGALG00000035673 ADAM11 rs313453668 R/Q

Cloacibacillus 27_3641847_C/T 0.0052 0.0137 ENSGALG00000035673 ADAM11 rs1060067070 R/C

Cloacibacillus 27_3641860_T/C 0.0133 0.0274 ENSGALG00000035673 ADAM11 rs314790078 I/T

Cloacibacillus 27_3642091_A/G 0.0139 0.0282 ENSGALG00000035673 ADAM11 E/G

Cloacibacillus 27_3642096_C/G 0.0085 0.0198 ENSGALG00000035673 ADAM11 R/G

Cloacibacillus 27_3642279_C/T 0.0114 0.0245 ENSGALG00000035673 ADAM11 P/S

Cloacibacillus 27_3644302_G/A 0.0090 0.0205 ENSGALG00000035673 ADAM11 rs737876624 G/S

Cloacibacillus 27_3645349_C/A 0.0052 0.0137 ENSGALG00000035673 ADAM11 rs1057892493 L/I

Cloacibacillus 27_3645523_G/A 0.0074 0.0177 ENSGALG00000035673 ADAM11 rs1058886917 R/Q

Eisenbergiella 14_9800969_G/A 0.0043 0.0125 ENSGALG00000007278 GRIN2A rs316241099

Eisenbergiella 15_8535646_G/C 0.0045 0.0129 ENSGALG00000006374 TBX6 rs14092889 S/T

Enterotype 5_46665025_T/C 0.0219 0.0431 ENSGALG00000011093 AK7 rs737231517 F/L

Enterotype 5_46705202_A/G 0.0237 0.0461 ENSGALG00000033099 PAPOLB rs740228499 N/S

Enterotype 5_46806229_T/G 0.0110 0.0244 ENSGALG00000011116 VRK1 rs316371207 I/R

Enterotype 5_46809527_A/G 0.0251 0.0484 ENSGALG00000011116 VRK1 rs317850778 M/V

Enterotype 21_6073737_T/C 0.0260 0.0491 ENSGALG00000004771 C1QB M/V

Enterotype 21_6073941_C/T 0.0260 0.0491 ENSGALG00000004771 C1QB V/I

Enterotype 21_6074132_G/A 0.0260 0.0491 ENSGALG00000004771 C1QB P/L

Enterotype 21_6119830_G/A 0.0194 0.0386 ENSGALG00000021567 EPHA8 T/M

Helicobacter 1_72755936_T/C 0.0001 0.0003 ENSGALG00000017295 PTHLH rs13997156 Y/C

Helicobacter 7_11147457_T/A 0.0002 0.0006 ENSGALG00000008152 SPATS2L rs316608554 C/S

Helicobacter 7_11149713_A/G 0.0002 0.0006 ENSGALG00000008152 SPATS2L rs740737513 N/S

Helicobacter 7_11175092_T/A 0.0001 0.0003 ENSGALG00000008155 KCTD18 rs315734161 E/D

Helicobacter 7_11175142_T/C 0.0001 0.0006 ENSGALG00000008155 KCTD18 rs740199772 K/E

Helicobacter 7_11175328_G/T 1.19E-05 0.0003 ENSGALG00000008155 KCTD18 rs315522429 R/S

Helicobacter 7_11175453_G/A 1.19E-05 0.0003 ENSGALG00000008155 KCTD18 rs736999343 S/L

Helicobacter 7_11184247_C/A 0.0003 0.0009 ENSGALG00000045898 rs16583427 P/T

Helicobacter 7_11184254_C/A 0.0001 0.0004 ENSGALG00000045898 rs16583428 A/D

Helicobacter 7_11184266_C/T 0.0001 0.0003 ENSGALG00000045898 rs14606992 P/L

Helicobacter 7_11184269_C/T 0.0002 0.0008 ENSGALG00000045898 rs16583429 P/L

Helicobacter 7_11186981_C/T 2.10E-05 0.0003 ENSGALG00000045898 rs316081641 A/V

Helicobacter 7_11187944_C/T 3.60E-05 0.0003 ENSGALG00000045898 rs314367404 P/S

Helicobacter 7_11188145_G/A 0.0002 0.0006 ENSGALG00000045898 rs16583439 V/I

Helicobacter 7_11188398_T/C 8.75E-06 0.0003 ENSGALG00000045898 rs314125300 V/A

Helicobacter 7_11188446_A/G 8.75E-06 0.0003 ENSGALG00000045898 rs315014497 N/S

Helicobacter 7_11188577_C/G 0.0001 0.0003 ENSGALG00000045898 rs317892365 L/V
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TABLE 4 Continued
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genera SNPa p-value

BH corrected
p-value Gene

Gene
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Existing
variation

Amino acid
changes

Helicobacter 7_11188625_T/C 0.0001 0.0003 ENSGALG00000045898 rs313958299 Y/H

Helicobacter 7_11188656_A/G 0.0001 0.0003 ENSGALG00000045898 rs734152116 E/G

Helicobacter 7_11188659_G/A 0.0001 0.0003 ENSGALG00000045898 rs738961881 S/N

Helicobacter 7_11188674_T/C 0.0001 0.0003 ENSGALG00000045898 rs736320705 L/S

Helicobacter 7_11188683_T/C 0.0001 0.0003 ENSGALG00000045898 rs738401633 V/A

Helicobacter 7_11188713_G/A 0.0001 0.0003 ENSGALG00000045898 rs312743552 S/N

Helicobacter 7_11188722_A/G 0.0001 0.0003 ENSGALG00000045898 rs312312117 N/S

Helicobacter 7_11188890_A/C 0.0001 0.0003 ENSGALG00000045898 rs315716018 K/T

Helicobacter 7_11188939_C/G 0.0001 0.0003 ENSGALG00000045898 rs315229324 N/K

Helicobacter 7_11188992_A/T 3.60E-05 0.0003 ENSGALG00000045898 rs316877223 N/I

Helicobacter 7_11188999_A/G 3.60E-05 0.0003 ENSGALG00000045898 rs732721600 I/M

Helicobacter 7_11189090_A/G 8.75E-06 0.0003 ENSGALG00000045898 rs316141263 S/G

Helicobacter 7_11189121_C/G 0.0001 0.0003 ENSGALG00000045898 rs317637097 P/R

Helicobacter 7_11189168_G/T 1.10E-05 0.0003 ENSGALG00000045898 rs737345480 D/Y

Helicobacter 7_11189316_C/T 9.21E-06 0.0003 ENSGALG00000045898 rs317012808 S/L

Helicobacter 7_11189562_T/C 4.15E-05 0.0003 ENSGALG00000045898 rs317439407 F/S

Helicobacter 7_11189660_A/T 3.58E-05 0.0003 ENSGALG00000045898 rs318185039 I/F

Helicobacter 7_11189685_G/A 0.0001 0.0003 ENSGALG00000045898 rs316960167 R/K

Helicobacter 7_11189756_A/G 3.16E-05 0.0003 ENSGALG00000045898 rs734098887 I/V

Helicobacter 7_11189757_T/C 3.33E-05 0.0003 ENSGALG00000045898 rs736755810 I/T

Helicobacter 7_11189840_T/A 3.58E-05 0.0003 ENSGALG00000045898 rs14607000 S/T

Helicobacter 7_11191962_C/T 3.60E-05 0.0003 ENSGALG00000045898 rs316014568 S/F

Helicobacter 7_11201136_C/G 0.0001 0.0003 ENSGALG00000008185 AOX1 rs735036820 S/C

Helicobacter 7_11201777_C/A 0.0001 0.0006 ENSGALG00000008185 AOX1 rs740659172 T/N

Helicobacter 7_11206191_C/A 0.0002 0.0006 ENSGALG00000008185 AOX1 rs16583520 D/E

Helicobacter 7_11206457_C/T 0.0002 0.0008 ENSGALG00000008185 AOX1 rs317893303 R/C

Helicobacter 7_11208224_G/A 2.98E-05 0.0003 ENSGALG00000008185 AOX1 rs316077433 V/I

Helicobacter 7_11214194_C/T 4.55E-05 0.0003 ENSGALG00000008185 AOX1 P/S

Helicobacter 7_11217194_C/G 4.62E-05 0.0003 ENSGALG00000008185 AOX1 rs733756210 Q/E

Helicobacter 7_11217213_G/A 0.0001 0.0005 ENSGALG00000008185 AOX1 rs312867661 R/K

Helicobacter 7_11218059_A/G 0.0002 0.0006 ENSGALG00000008185 AOX1 rs732046936 K/R

Helicobacter 7_11220766_A/G 0.0001 0.0003 ENSGALG00000008185 AOX1 rs313890332 T/A

Helicobacter 7_11220787_A/G 0.0001 0.0006 ENSGALG00000008185 AOX1 I/V

Helicobacter 7_11220838_A/G 0.0002 0.0006 ENSGALG00000008185 AOX1 rs314774615 I/V

Helicobacter 7_11221826_A/G 0.0002 0.0006 ENSGALG00000008185 AOX1 rs16583544 K/R

Helicobacter 7_11222992_A/G 0.0002 0.0006 ENSGALG00000008185 AOX1 rs733522999 T/A

Helicobacter 7_11223404_C/T 0.0001 0.0003 ENSGALG00000008185 AOX1 rs738494931 R/C

Helicobacter 23_2738339_A/G 0.0001 0.0006 ENSGALG00000034756 rs739929788 K/R
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Helicobacter 23_2740678_G/A 3.67E-05 0.0003 ENSGALG00000034756 rs317304529 E/K

Helicobacter 23_2741265_C/T 4.18E-05 0.0003 ENSGALG00000034756 rs316958545 R/C

Helicobacter 23_2741529_A/G 4.56E-05 0.0003 ENSGALG00000034756 rs736685773 T/A

Helicobacter 23_2743115_G/T 0.0001 0.0004 ENSGALG00000001329 EPB41 rs737893868 E/*

Helicobacter 23_2743116_A/T 0.0001 0.0004 ENSGALG00000001329 EPB41 rs731614152 E/V

Helicobacter 23_2743121_C/A 0.0002 0.0006 ENSGALG00000001329 EPB41 rs1059519464 H/N

Helicobacter 23_2743133_C/A 0.0001 0.0006 ENSGALG00000001329 EPB41 rs735026334 R/S

Helicobacter 23_2743197_G/C 0.0001 0.0005 ENSGALG00000001329 EPB41 rs1059721572 G/A

Helicobacter 23_2743352_C/G 5.81E-06 0.0003 ENSGALG00000001329 EPB41 L/V

Helicobacter 23_2743386_G/C 0.0001 0.0004 ENSGALG00000001329 EPB41 R/P

Helicobacter 23_2743388_C/T 0.0001 0.0004 ENSGALG00000001329 EPB41 P/S

Helicobacter 23_2743472_G/A 8.08E-06 0.0003 ENSGALG00000001329 EPB41 G/S

Helicobacter 23_2743572_T/C 4.87E-05 0.0003 ENSGALG00000001329 EPB41 L/P

Helicobacter 23_2743673_C/T 4.87E-05 0.0003 ENSGALG00000001329 EPB41 R/W

Helicobacter 23_2743694_G/A 0.0003 0.0010 ENSGALG00000001329 EPB41 rs1058972837 G/S

Helicobacter 23_2776735_C/T 1.41E-05 0.0003 ENSGALG00000001329 EPB41 rs313348793 A/V

Helicobacter 23_2792624_C/T 0.0002 0.0006 ENSGALG00000001329 EPB41 rs314369122 A/V

Helicobacter 23_2810511_G/A 0.0001 0.0003 ENSGALG00000001329 EPB41 R/H

Helicobacter 23_2810580_C/T 0.0002 0.0006 ENSGALG00000001329 EPB41 rs315620767 A/V

Helicobacter 23_2810625_C/T 1.49E-06 0.0003 ENSGALG00000001329 EPB41 rs739930131 A/V

Helicobacter 23_2810660_G/A 0.0002 0.0006 ENSGALG00000001329 EPB41 rs733380008 E/K

Helicobacter 23_2810662_A/T 0.0001 0.0006 ENSGALG00000001329 EPB41 rs314995393 E/D

Helicobacter 23_2823181_T/C 0.0001 0.0003 ENSGALG00000024318 TMEM200B rs316289949 S/G

Helicobacter 23_2823275_G/T 0.0001 0.0004 ENSGALG00000024318 TMEM200B rs735947939 S/R

Helicobacter 23_2823502_A/C 1.83E-05 0.0003 ENSGALG00000024318 TMEM200B rs733254337 Y/D

Helicobacter 23_2823570_C/T 0.0002 0.0006 ENSGALG00000024318 TMEM200B rs312912847 G/D

Helicobacter 23_2824111_G/A 1.87E-05 0.0003 ENSGALG00000024318 TMEM200B rs316556149 R/*

Helicobacter 23_2824129_T/C 0.0001 0.0003 ENSGALG00000024318 TMEM200B rs315330603 T/A

Helicobacter 23_2824224_C/T 0.0001 0.0003 ENSGALG00000024318 TMEM200B rs14289505 S/N

Helicobacter 23_2824285_G/A 0.0001 0.0006 ENSGALG00000024318 TMEM200B rs733720106 L/F

Helicobacter 23_2824359_C/T 0.0001 0.0004 ENSGALG00000024318 TMEM200B rs316435782 R/H

Helicobacter 23_2824360_G/A 0.0002 0.0007 ENSGALG00000024318 TMEM200B rs14289507 R/C

Sutterella 1_180296047_G/A 0.0138 0.0282 ENSGALG00000048789 rs316343115 L/F

Sutterella 1_180296227_G/A 0.0086 0.0200 ENSGALG00000048789 rs15522683 R/C

Sutterella 1_180313529_A/G 0.0160 0.0319 ENSGALG00000017137 GJA3 rs315165625 S/G
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Additionally, environmental factors such as diet significantly

influence the gut microbiota, making more challenging to dissect

the genetic contribution (Spor et al., 2011). While birds were

sampled from farms that provided standard poultry feed, diet-

related microbiome variations can still arise due to differences in

feed formulation, storage conditions, and microbial contamination

(Benson et al., 2010). Moreover, geographical location further

contributes to microbiota diversity, as climate, humidity, and

altitude affect microbial colonisation and gut health (Kers et al.,

2018). To reduce the noise, the farms sampled in this study were

selected from a single state of India, thereby restricting to smaller

geographic area. The selected farms were following similar

managemental practices, and half of the selected farms reared

both chicken lines simultaneously reducing the environmental

noise. Moreover, we have incorporating environmental and

farming variables into our statistical models, a strategy supported

by previous research to reduce environmental noise in the analysis

(Awany et al., 2018). Additionally, the use of high-dimensional

genotyping arrays, while providing broad coverage, may still miss

rare or structural variants contributing to microbiota variation, a

limitation highlighted in GWAS studies on complex traits (Awany

et al., 2018). Nevertheless, the interaction between the identified

SNP-containing genes and symbiotic microorganisms provides

crucial insights into host-microbiome relationships that can

support breeding and selection strategies. Understanding how

specific genetic variants modulate microbial composition and

function can enable targeted breeding approaches that enhance

beneficial microbial colonisation, indirectly improving disease

resistance, nutrient utilisation, overall growth performance and

reducing zoonotic burden. Future research integrating whole-

genome sequencing and multi-omics approaches will be essential

for a more comprehensive understanding of host-microbiota

genetic interactions. By integrating microbiome-informed

selection into genetic improvement programs, poultry breeding

can move toward optimising gut health alongside other important

health, production and sustainability traits.
Conclusion

This study identifies candidate genes that provide a foundation

for further exploration into the intricate interactions between host

genetic polymorphisms and the chicken caecal microbiome. These

findings offer valuable insights into how specific host genetic variants

may modulate microbial composition and subsequently impact

health outcomes. However, given the complex interplay between

genetic and environmental factors including diet, these results must

be interpreted cautiously and validated in larger populations under

controlled conditions. Future studies integrating functional genomics,

transcriptomics, and metabolomics will help establish causal

relationships between host and the gut microbiota. Additionally,

exploring host genetic-microbe interactions in multiple chicken

breeds and production systems will help refine microbiome-based
Frontiers in Microbiomes 17
selection strategies and ensure their broader applicability in poultry

breeding programs.
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