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Introduction: Climate change and plant biodiversity loss have large impacts on

terrestrial ecosystem function, with the soil microbiome being primary mediators of

these effects. The soil microbiome is a complex system, consisting of multiple

functional groups with contrasting life histories. Most studies of climate forces and

plant biodiversity effects onmicrobiome consider the perturbations and themicrobial

functional groups in isolation preventing us from understanding the full picture of the

relative and differential impacts of perturbations on microbial functional groups.

Methods: We measured changes in multiple microbial communities with

different functionality, including plant mutualists and pathogens, after three

growing seasons in a full-factorial experiment manipulating precipitation (50%,

150% of ambient), plant diversity, and plant composition. Using amplicon

sequencing to characterize the response of fungi, arbuscular mycorrhizal fungi,

bacteria and oomycetes, and we found that composition of all microbial groups

differentiated strongly between precipitation treatments.

Results:Oomycete and bacterial diversity increased with 150% precipitation, while

AM and saprotroph fungal diversity decreased. Microbial differentiation in response

to plant family and plant species composition was stronger after the third growing

season than observed after year one. However, microbial response to plant species

richness was weaker in year three. Microbiome response to plant composition was

largely independent of the response to precipitation, except for oomycetes, which

had greater response to plant composition in high precipitation.

Discussion: These findings build upon prior findings that these microbial

community members differentially respond to plant community compositional

treatments, by measuring the response over 3 years and with the addition of

precipitation treatments. We find that both changes in climate and plant

composition can drive major differences in soil microbiome composition,

which can feed back on plant community structure and alter ecosystem function.
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Introduction

Global climate change has large impacts on terrestrial

ecosystem function, where fluctuations in precipitation patterns

can range from extreme drought to high magnitude rainfall

events in ecosystems that are not adapted to these conditions. At

the same time, ecosystem function is threatened by rapid

biodiversity loss (Tilman et al., 2012). The possibility that climate

change and biodiversity have compounding effects on ecosystem

function highlights the necessity of considering both factors

simultaneously. Predictions of such impacts can be improved by

better understanding the potential mechanistic mediators of

biodiversity and climate change on ecosystem processes. Ample

research demonstrates how soil microorganisms play critical roles

in ecosystem function (Austin et al., 2014; Dubey et al., 2019;

Podzikowski et al., 2024) and biodiversity maintenance (Van Der

Heijden et al., 2008; Bever et al., 2015) and are therefore likely

candidates to mediate the joint impacts of biodiversity and climate

change effects on ecosystem function. Thus, it is essential to

understand how the soil microbiome, including functionally

distinct microbial groups, respond to climate perturbations, along

with changes in plant biodiversity and composition.

The soil microbiome has been shown to be highly responsive to

changes in precipitation (Barnard et al., 2013; Engelhardt et al.,

2018). The richness, abundance, and composition of bacteria and

fungi, including fungal pathogens (Coulhoun, 1973; Talley et al.,

2002, Delavaux et al., 2021a) and arbuscular mycorrhizal (AM)

fungi (House and Bever, 2018), and oomycetes (Van West et al.,

2003, Delavaux et al., 2021a), have been shown to change with

precipitation. Although both bacteria and fungi are responsive to

increased precipitation, fungi have been found to be more tolerant

of drought conditions than bacteria (Barnard et al., 2013;

Engelhardt et al., 2018). At the same time, some fungal pathogens

(e.g. rust, Froelich and Snow, 1986; root rot Wyka et al., 2018;

Bevacqua et al., 2023) and saprotrophs (Delavaux et al., 2021a) have

been found to proliferate in wetter conditions. In addition,

terrestrial oomycetes, which are often plant pathogens, have been

found to increase in diversity in wetter conditions (Delavaux et al.,

2021a), as might be expected from their water-dependent life cycle

(Thines, 2018). Thus, These differential responses to precipitation

have major implications for microbiome feedbacks on plant

communities, such as increased reliance on AM fungal partners

under drought conditions (Stahl and Smith, 1984; Schultz et al.,

2001; Auge, 2001; Marulanda et al., 2003) and potentially greater

impacts of pathogens in wetter condition. Thus, identifying the

relative sensitivities of functionally and taxonomically distinct soil

microbial groups to major precipitation changes is essential to

understanding how microbiome-driven functions might shift with

elongated drought periods and more drastic rainfall periods. No

study to date has measured the breadth of microbial functional

groups to experimental alteration of precipitation.

The soil microbiome is also highly responsive to plant

community composition. Increased plant species richness can

generate an increase in microbial diversity (Lamb et al., 2011;

Burrill et al., 2023), as plant species’ microbiomes often differ

depending on root architecture (Saleem et al., 2018), root
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exudates (Turner et al., 2013), and other functional traits such as

defense mechanisms (Gilbert and Parker, 2016). In particular, plant

pathogens often specialize on a plant host species to circumnavigate

different host traits, exudates, and defenses (Gilbert and Parker,

2016). Both fungal pathogen and oomycete diversity have been

shown to increase with plant species richness, and their community

composition has been shown to differentiate between plant families,

both suggesting host-specificity (Burrill et al., 2023). Additionally,

similar phylogenetic signals to those of plant pathogens have been

detected in saprotrophs (Malik et al., 2022; Kaplan et al., 2020), and

may be expected for AM fungi due to host-specific differentiation

(Mangan et al., 2010a; Bever, 2002). Furthermore, studies

demonstrate support for saprotrophic microbe mediation of the

positive relationship between decomposition rates and plant species

richness (Glassman et al., 2018; Podzikowski et al., 2024). Thus, the

functional breadth of the soil microbiome can be sensitive to plant

community composition.

The relative sensitivities of taxonomic and functionally distinct

groups of soil microorganisms to plant communities are

particularly important because they may have implications for

feedbacks on plant fitness, composition, and productivity (Bever

et al., 2012; Crawford et al., 2019; Wang et al., 2019). For example,

specialized pathogens can accumulate in plant communities with

low diversity (e.g. monoculture), driving negative plant-soil

feedbacks (Mills and Bever, 1998; Bauer et al., 2015), potentially

mediating plant species coexistence (Bever et al., 1997) and

productivity benefits of plant diversity (Wang et al., 2023; Collins

et al. 2020). These feedbacks have been shown to be strongest when

plant phylogenetic distance increases (Crawford et al., 2019),

consistent with phylogenetic signaling of pathogen specialization

on plant hosts (Parker et al., 2015; Gilbert and Webb, 2007; Gilbert

and Parker, 2016). Additionally, changes in microbiome

composition, particularly saprophytic microbes, with plant

composition and diversity can result in higher decomposition

rates (Mori et al., 2020; Veen et al., 2015; Hector et al., 2000)

(Glassman et al., 2018; Podzikowski et al., 2024), potentially feeding

back on productivity. Finally, diversity of mutualists – both rhizobia

and AMF – have been shown to contribute to greater

complementarity in plant productivity relationships via increasing

plant access to essential nutrients (Magnoli and Bever, 2023). The

differential sensitivities of these microbial groups to plant

composition and diversity have major implications for the

predominant direction of feedback on plant populations and

communities, however this range of microbial groups have rarely

been measured together.

To test the relative sensitivities of soil microbiome functional

and taxonomic components to plant composition, plant

biodiversity, precipitation and their interactions, we designed an

experiment that independently manipulates plant species richness,

plant family composition, and precipitation. While fungal

pathogens, saprotrophs, AM fungi, bacteria, and oomycetes have

all been shown to rapidly respond to gradients of plant community

composition and diversity in the first growing season of this

experiment (Burrill et al., 2023), it is unclear whether microbiome

shifts in diversity and composition are expected to continue in the

same direction over longer periods of time. In the current study, we
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re-sampled soils from this experiment to test whether the soil

microbiome differentiated with plant composition and diversity in

year three. In addition, here we test whether the microbiome

responds to 50% or 150% of ambient rainfall treatments, as well

as whether microbiome components respond to interactions

between precipitation and plant composition and diversity.
Methods

Study system and experimental design

This experiment took place within the 250-ha Nelson

Environmental Study Area (“NESA,” Kettle, 2016) at the

University of Kansas Field Station, north of Lawrence, KS

(39.052437, -95.191584). Historically, this land was inhabited by

the Kansa and Osage peoples, who were forcibly displaced by

European settlers. Many details of this piece of land history have

been lost and/or destroyed. Our understanding is that the land that

is now called NESA transitioned from native tallgrass prairie to

cropland and pasture, ~100 years prior to acquisition by KU

between 1970-1990. At the time of planting the experiment in

2018, the land was considered “post-agricultural,” dominated by

established early cool season grasses (Kettle et al., 2000). Roughly 5

years prior to planting the experiment, the area where planting

occurred had been abandoned following a rodent enclosure

experiment, with the existing vegetation composed mostly of

native warm season grasses. The mean annual cumulative

precipitation at this site is 990 mm with about 70% of

precipitation occurring during the growing season between April-

September, and mean annual temperature 12.7 C (University of

Kansas Field Station NEON).

The experiment was planted in 2018 and the soil microbiome was

enriched by inoculation with soil from a nearby unplowed native

prairie (Welda, KS) at the time of planting to reintroduce native

microbes. A total of 240 plots were designed to include equal

representation of 18 prairie plant species (6 from each plant family

Asteraceae, Fabaceae, Poaceae). See Supplementary Table S1 for more

plant species names and life histories. The plant species richness

treatment includes monoculture, 2, 3, and 5/6 species plots. In

addition, these plots were either planted in phylogenetic under-

dispersed (all within one plant family) or over-dispersed (plants

from more than one family). The species combinations selected for

each mixed plot were chosen at random without replacement, with the

condition that each species was equally represented in every treatment

combination (richness*phylogenetic dispersion*precipitation), yielding

36 monocultures, 36 two species plots, 24 three species plots and 24 six

species plots within each of two precipitation treatments. This original

design was then modified when one of the grass species failed to

establish, yielding a final design of 38 monocultures, 36 two species

plots, 20 three species plots, 8 five species pltos and 16 six species plots

in each precipitation treatment. Finally, all plot combinations were

replicated in paired shelters that received 50% or 150% ambient rainfall

each growing season (Supplementary Figure S1). We prioritized a high

level of replication and full factorial design, therefore the additional
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50% resources to establish an ambient precipitation treatment was not

feasible. We include each species in every treatment combination

within each of two complete “blocks”, each of which are made up of

three “subblocks” composed of paired rain exclusions that were

randomly assigned to the two precipitation treatments. For more

detailed information on the experimental design, refer to the

supplemental document and Supplementary Figure S1.

In July 2020, 0.1 m x 0.1 m biomass strips were collected using

electric shears from a standardized area in each plot. All species

were keyed out, biomass dried, and weighed. Realized plant species

proportions for all planted species were calculated for all plots by

dividing the dried biomass of each planted species by the total plant

dried biomass for each plot.
Soil collection

In 2020, three soil cores taken to a depth of 20 cm were

homogenized for each plot for analyses of the soil microbiome.

Between plots, coring devices were rinsed and scrubbed of dirt in a

water bucket, then sterilized in a bucket with 80% diluted ethanol.

Samples were immediately placed in a large cooler with ice packs,

then at the end of the day moved to a -20°C freezer (Delavaux et al.,

2020). A subset of soil and roots (kept together, not separated) from

each sample was weighed out to 0.25 g and placed into DNA

extraction tubes. We extracted DNA from these samples using the

Qiagen DNeasy PowerSoil kit. As we planned to compare 2020

samples to samples taken in 2018, our protocols mimicked those

from our 2018 sampling, with two exceptions: in 2018, plots with

identical species richness and composition treatments across sub-

blocks were pooled and homogenized before DNA extraction, as the

precipitation treatment was not fully operational until spring 2019

(Burrill et al., 2023), and roots and soil were sampled separately. For

analyses that include both 2018 and 2020 data, we use soil DNA

sequences from 2018 sampling.
Microbial community library preparation

We sequenced amplicons targeting bacterial, fungal, oomycete,

and AM fungal communities. For all communities, we used a two-

step PCR process, with the first PCR reactions amplifying

community-specific primers, and the second PCR binding unique

barcode combinations using Nextera XT Index Kit v2 (Illumina,

San Diego, CA, USA). Following each PCR step, sample products

were checked on 1.5% (w/v) agarose gel to estimate the quality of

PCR products and confirm the correct base pair length were

amplified. Then, we performed a clean-up step for each PCR

sample, using AMPure XP beads (Beckman Coulter, Brea, CA,

USA). Prior to sending samples for sequencing, we measured PCR

product concentration using an Invitrogen Qubit 3.0 Fluorometer

(Thermo Fisher Scientific, Waltham, MA, USA). Adaptor ligation

and sequencing was performed by an Illumina MiSeq v3 PE300

Next-Gen Sequencer at the Genome Sequencing Core (GSC), the

University of Kansas.
frontiersin.org

https://doi.org/10.3389/frmbi.2025.1460319
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Burrill et al. 10.3389/frmbi.2025.1460319
For fungi, AM fungi, and bacteria, the first PCR used a mixture

of 1 ml sample DNA, 10.5 ml ddH2O, 0.5 ml each of forward and

reverse primer and 12.5 ml of Master Mix Phusion (Thermo Fisher

Scientific, Waltham, MA, USA), for a total PCR volume of 25 ml. For
these communities the second barcoding PCR used 5 ml cleaned up

sample DNA from the first PCR, 10.5 ml ddH2O, 2.5 ml each of

forward and reverse barcode primers, and 25 ml of Master Mix

Phusion, for a total volume of 45 ml.
The primers used for fungi targeted the internal transcribed

space r ( ITS) reg ions fo rward f ITS7 (5 ’ -GTGAGTC

ATCGAATCTTTG-3’) and reverse ITS4 (5’-TCCTCCGCTTATT

GATATGC-3’) (Ihrmark et al., 2012). The first PCR cycle for fungi

began at 94°C for 5 min, followed by 35x (94°C for 30 sec, 57°C for

30 sec, 72°C for 30 sec), 72°C for 7 min, ending on 4°C until

retrieved from the thermocycler. The barcode PCR cycle began at

98°C for 30 sec, followed by 10x (98°C for 10 sec, 55°C for 30 sec,

72°C for 30 sec), 72°C for 5 min, ending on 4°C until retrieved from

the thermocycler.

We used forward fLROR (5’-ACCCGCTGAACTTAAGC-3’)

and reverse FLR2 (5’- TCGTTTAAAGCCATTACGTC-3’) primers

to target the large subunit (LSU) region of AM fungi (House and

Bever, 2018; Delavaux et al., 2022). The first PCR cycle for AM fungi

began at 94°C for 5 min, followed by 35x (94°C for 30 sec, 48°C for

30 sec, 72°C for 30 sec), 72°C for 10 min, ending on 4°C until

retrieved from the thermocycler. The barcode PCR cycle was the

same as for fungi.

For bacteria, we used primers that targeted the V4 region of 16S

small subunit (SSU) of ribosomal RNA, forward 515F (5’-

GTGYCAGCMGCCGCGGTAA-3’) and reverse 806R (5’-

GGACTACNVGGGTWTCTAAT-3’) (Parada et al., 2016). The

first PCR cycle and the barcode PCR cycles were the same for

bacteria as for fungi.

For oomycetes, we targeted ITS using forward ITS300 (5’-

AGTATGYYTGTATCAGTGTC-3 ’) and reverse ITS4 (5’-

TCCTCCGCTTATTGATATGC-3’). The first PCR used a

mixture of 1 ml sample DNA, 17 ml ddH2O, 1 ml each of forward

and reverse primer and 5 ml of HOT FIREPol (Solis Biodyne, Tartu,

Estonia), for a total volume of 25 ml. We use HOT FIREPol, as it has

been successful in amplifying oomycete DNA (Hunter et al., 2023),

whereas we have had little success using Phusion to amplify

oomycete DNA. The first PCR cycle for oomycetes began at 95°C

for 15 min, followed by 35x (95°C for 30 sec, 55°C for 30 sec, 72°C

for 1 min), 72°C for 10 min, ending on 4°C until retrieved from the

thermocycler. The second barcoding PCR used 1 ml cleaned up

sample DNA from the first PCR, 18 ml ddH2O, 0.5 ml each of

forward and reverse barcode primers, and 5 ml of HOT FIREPol, for

a total volume of 45 ml. The oomycete barcode PCR cycle began at

95°C for 15 min, followed by 35x (95°C for 30 sec, 55°C for 30 sec,

72°C for 1 min), 72°C for 10 min, ending on 4°C until retrieved

from the thermocycler.
Bioinformatics

We used the QIIME2 pipeline to process raw FASTQ data

(Bolyen et al., 2019), including steps to demultiplex and remove
Frontiers in Microbiomes 04
primers, filter chimeras for quality control, de-noise and merge

using dada2 (Callahan et al., 2016). For quality control, we filtered

out ASVs that only appeared 5 times or fewer across all samples. All

communities were either open-reference clustered or blasted against

taxonomic databases to identify ASVs. Taxonomy was assigned to

all ribosomal sequence variants in QIIME2 using a feature classifier

trained with the SILVA 99% database for bacteria (Quast et al.,

2013) and the UNITE 99% database for fungi (Version 18.11.2018).

For AM fungi LSU amplicons, we excluded non-AM fungi

sequences by building a phylogenetic tree using the curated

database of AM fungi (Krüger et al., 2012) using Mortierella

elongata sequences as the outgroup in RAxML v8 (Stamatakis,

2014; House and Bever, 2018, Delavaux et al., 2021b, Delavaux et al.,

2022). For oomycetes, we checked the identity of resulting ASVs

against the NCBI oomycote ITS2 sequence database using the Basic

Local Alignment Search Tool, BLAST v. 2.6.0 (Altschul et al., 1997),

using default parameters. For the purposes of this study, we make

the generalization that terrestrial oomycetes primarily act as

parasites of vascular plants and analyses are interpreted as though

oomycetes in our plots likely function as plant pathogens (Oliverio

et al., 2020; Rojas et al., 2019).

To filter fungal ASVs into putative functional guilds, we used the

FungalTraits database (Pölme et al., 2021). Fungal pathogens were

filtered out if the ASVs “primary_lifestyle” was “plant_pathogen” or

“unspecified_pathogen.” Fungal saprotrophs had “primary_lifestyle”

of “litter_saprotroph,” “soil_saprotroph,” “wood_saprotroph,” and

“unspecified_saprotroph.” Of 5346 identified fungal ASVs, 626 were

putative pathogens and 1357 were putative saprotrophs. To filter

rhizobial N-fixing bacteria, we subset out genera that typically act as

N-fixers from the Silva taxonomy matches: Bradyrhizobium, Ensifer,

Mesorhizobium, and those in the Allorhizobium-Neorhizobium-

Pararhizobium-Rhizobium and Burkholderi-Callabelleronia-

Paraburkholderia groups. From our original table with 3881

bacteria ASVs, 236 were subset out as rhizobia.
Statistical analyses, 2020 sequencing data

All statistical analyses were done in R version 4.3.1. For both

univariate and multivariate responses, we used two approaches to

analysis: 1) using the full model enabled by our full factorial design and

2) using model selection approaches to identify the best model nested

within that full factorial design. Generally these two approaches yielded

similar interpretations, we note the few occasions where this was not

true. We report the best model in the main text and the full model in

the electronic appendix. For fungal pathogens and saprotrophs, we

calculated relative abundance for each by the proportion of sequencing

reads over total fungal sequencing reads. Relative abundance of

rhizobium was similarly calculated as the proportion of rhizobium

sequencing reads over total bacterial reads per sample. For each

community, we calculated microbial diversity (H’) using the vegan

package (Oksanen et al., 2019). We used the Shannon-wiener index, as

it accounts for both richness and evenness, so that rare ASVs are more

fully incorporated into the analyses. For both diversity and relative

abundance response variables, we used glmulti to run Akaike

Information Criterion (AIC) model comparisons (Calcagno, 2020)
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for generalized linear models with the following explanatory variables:

block (see Supplementary Figure S1), the interaction of plant family

composition, plant species richness, and precipitation treatments,

and the proportion of each of the 17 plant species as covariates. We

allowed the model comparisons to iterate 1000 times, at which point, a

best model was selected with main effects. Finally, we ran linear mixed-

effect models using lme (Bates et al., 2015) for each response variable

using the selected models, with the interaction of subblock and

precipitation as a random variable. To confirm that response to

realized species proportions are not different from the response to

the designed proportions, we also ran the full model for each microbial

response using realized plant species proportions. We tested the

correlation between residuals of both models for each microbial

community (Supplementary Table S2).

To calculate microbial community composition, we first used

the transform function with “robust center log-ratio”

transformation for all ASV tables (Martino et al., 2019). Then, we

used the vegdist function from the vegan package (Oksanen et al.,

2019) to calculate the Aitchison distance between samples (Gloor

et al., 2017; Martino et al., 2019). We did extensive literature review

to select the most appropriate distance metric for these analyses. We

found that microbial analyses are moving towards using robust

center log ratio transformation in combination with Aitchison

distances, rather than the previous methods of rarefying and

Bray-Curtis distances, due to the inherent biases and statistical

errors that arise with the large number of 0’s in ASV sequencing

data (Martino et al., 2019). We first performed a redundancy

analysis for each microbial community composition response to

block, the interaction of plant family composition, plant species

richness, and precipitation treatments, with the proportion of each

of the 17 plant species as covariates, using a permutational

multivariate analysis of variance (permanova) via the rda function

in the vegan package (Oksanen et al., 2019). Similar to the linear

responses, we then used the ordistep function (Oksanen et al., 2019)

with 200 permutations to select the best fit model for each microbial

group. We then report the main effects using adonis2 (Oksanen

et al., 2019). To measure the spread of each microbial community

composition within samples, we ran the betadisper function

(Oksanen et al., 2019) for precipitation and plant family

treatments when there was a significant community response to

those factors in the permanova. We then tested the differences in

beta dispersion using an anova (Supplementary Table S3).
Divergence from 2018 sampling

In order to visualize changes in microbial community

composition between 2018 and 2020 soil communities, we re-

ran bioinformatics pipelines for each community (fungi,

oomycetes, all bacteria, rhizobia, and AM fungi) on the

combined raw sequencing reads for both years. We then

performed the same robust central log ratio transformation and

calculated Aitchison distances for combined datasets by

community, which were used to calculate principal component

analyses. We emphasize here that we are not comparing these

sampling years in statistical tests; we ran the bioinformatics and
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distance metrics together in pursuit of visualizing the differences

on the principal component axes (Figure 1).
Principal component analyses

For 2020 sampling data alone, we used the prcomp function to

calculate principal component axis coordinates for each microbial

community with center=T. We ran a generalized linear model on

the first ten axes to identify axes that could illustrate significant

differences in the permanova model output; predictor variables

were the same in this glm as in permanova. The first two axes that

differ significantly in the plant family composition and precipitation

treatments were used to plot those communities (Figure 2). For

2018 and 2020 combined data, we used the same principal

component calculations and plotted the variables using axes that

had been significantly different for the 2020 data alone.
Results

Diversity

We found the Shannon-Weiner diversity of fungal saprotrophs

(p=0.016) and AM fungi (p<0.001) to respond significantly to

precipitation manipulation (Table 1). Fungal saprotroph and AM

fungal diversities were higher in the 50% ambient precipitation

treatment (Figures 3A, F, respectively), while bacteria and oomycete

diversities were higher in the 150% ambient precipitation treatment

(Figures 3C, D, p>0.05, Figure 3E, p>0.05, respectively). Fungal

pathogen diversity did not differ between precipitation treatments,

but did between plant family composition (p<0.05 =, Table 1;

Figure 3B). Oomycete diversity was higher in Fabaceae single-

family and mixture plots, and lowest in Asteraceae single-family

plots, with Poaceae single-family plots intermediate (p<0.05,

Table 1, Supplementary Figure 1C). Plant species richness did not

have a direct effect on diversity of any individual microbial group

(Table 1). In the full model (Supplementary Table S2), there was a

significant difference of fungal pathogen diversity to plant family

(p=0.03, Figure 3B). Additionally, in the full model oomycete

diversity differed between the interaction of plant family and

precipitation (p=0.01, Figure 3E).
Relative abundance

The relative abundance of fungal saprotrophs was highest in the

150% ambient precipitation plots (p<0.05 =, Table 2, Figure 4A).

Fungal pathogen relative abundance did not differ between

precipitation treatments alone, however there was a significant

differences in pathogen relative abundance between plant family

treatments, highest in Asteraceae only plots in 50% precipitation

and Poaceae only plots in 150% (p<0.01, Table 2, Figure 4B), as well

as an interaction between plant family and precipitation in the full

model (p<0.01, Supplementary Table S3, Figure 4B). Rhizobial

bacteria relative abundance was highest in plots with only
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Fabaceae and lowest in plots with only Asteraceae (p<0.05, Table 2,

Figure 4C), though there was no significant difference between

precipitation treatments.
Composition

All components of the soil microbial community, including

fungal saprotrophs, fungal pathogens, oomycetes, bacteria, and AM

fungi, differentiated with precipitation (p<<0.05, Table 3). In

addition, bacteria and AM fungal composition differentiated

between plant family composition treatments (p <0.05). Fungal

pathogen composition differed between plant family treatments in

the full model (p<0.01, Supplementary Table S4, Figure 2B), but not

oomycetes. Fungal saprotrophs were the only group to differentiate

between plant species richness treatments (p=0.02 in full model

Supplementary Table S4, but p>0.05 in reduced model, Table 3).

Fungal pathogen, saprotroph, and oomycete compositions did not

differ between planted species. Bacterial composition differed with
Frontiers in Microbiomes 06
two grass species and an aster, and surprisingly rhizobial bacteria

composition had no significant response to any individual legume

species. AM fungal composition differed significantly with one

legume species. There were no significant differences in

microbiome composition for any community in response to

interactions of precipitation, plant species richness or family

composition; though oomycetes had a marginal difference between

interaction of plant family and precipitation treatments

(p=0.06, Table 3).

Overall, the greatest differences in beta dispersion were between

plant family treatments for fungal saprotrophs, where Asteraceae-only

plots had the most similar composition (p=0.024, Supplementary Table

S3, Supplementary Figure S2). Differences in beta dispersion of fungal

pathogens and saprotrophs was not detected in response to precipitation,

however, oomycete beta dispersion was marginally different between

precipitation treatments (p=0.06, Supplementary Table S2,

Supplementary Figure S2). Beta dispersion in composition of AM

fungi (p=0.04) and rhizobial bacteria (p=0.037), but not all bacteria,

were also significantly different between precipitation treatments.
FIGURE 1

Microbial composition shifts from year 1 to year 3. Microbial composition among plant family treatments for year one (2018), with year three (2020)
in grey (left); year three, with year one in grey (middle); composition between precipitation treatments in year three, with year one in grey (right).
Right column shows 50% precipitation in red, 150% precipitation in blue, and 2018 data in grey for all. Fungal saprotrophs (A), fungal pathogens
(B), bacteria (C), rhizobia (D), oomycetes (E), and AM fungi (F).
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Discussion

Across all functionally distinct groups of soil bacteria, fungi, and

oomycetes, we found highly significant responses of diversity and/or

composition to precipitation treatments, with precipitation explaining

more variation than plant composition for both bacteria and oomycetes

(see R² in permanova Table 2). We saw shifts in microbial diversity, as

AM fungal and fungal saprotroph diversity decreased with precipitation,

while diversity of oomycetes and bacteria generally increased. Fungal

saprotroph and AM fungal composition differentiated significantly

between plant family composition treatments, with marginal

differences in bacterial composition (Table 2). In general, both plant

family composition and species richness in combination with

precipitation treatments had independent impacts on microbiome

composition. The one exception is oomycetes, which have moisture

dependent life history stages and, interestingly, showed stronger

differentiation between families in high precipitation. These plant

composition effects on microbial composition likely feed back on

plant community structure and function, as was observed in year one

(Wang et al., 2023). The contrasting sensitivities of microbial groups to

variation in precipitation suggest that there could be critical shifts in

microbial functions with climate change.
Guild responses to plant
community composition

Mutualists
Of the two mutualist microbial groups we measured, both AM

fungi and rhizobia were responsive to the planting design. First, AM

fungal communities differentiated with plant family composition in

the third year sampling, despite finding no difference in year one

(Burrill et al., 2023). This suggests that AMF response to host plant

species takes more time than other microbiome components. Our

findings support that host specificity of AM fungal growth rates

found in greenhouse studies (Bever et al., 1997, Mangan et al., 2010a)

also apply to the field, but that it takes greater than 4 months, and up

to three years for such divergence to be detected. AM fungal

community compositional differences between plant family

treatments also suggest a substantial phylogenetic component of

AM fungal response to host species. Of all microbial components,

AM fungal composition was most sensitive to the planted

proportions of individual species (Table 3), indicating host specific

differences in AM fungal growth rates. Accumulating research on AM
TABLE 1 Mixed effects model outputs for each microbial Shannon-
Weiner diversity response to the planting design.

Diversity

Saprotrophs Std. Error p-value

intercept 0.069 0.000E+00

Precip 0.091 0.016

ELYCAN 0.094 0.040

BOUGRA 0.092 0.106

DALPUR 0.092 0.053

Pathogens Std. Error p-value

intercept 0.163 0.000E+00

Block 0.098 0.177

PlntFamFAB 0.078 0.174

PlntFamMIX 0.075 0.0003

PlntFamPOA 0.090 0.397

BOUGRA 0.078 0.125

PANVIR 0.083 0.227

Oomycetes Std. Error p-value

intercept 0.116 0.000E+00

PlntFamFAB 0.089 0.003

PlntFamMIX 0.085 0.0004

PlntFamPOA 0.095 0.019

Precip 0.143 0.104

ANDGER 0.088 0.148

Bacteria Std. Error p-value

intercept 0.149 0.000E+00

Block 0.089 5.828E-06

Precip 0.089 0.233

AMOCAN 0.046 0.060

DALCAN 0.046 0.051

Rhizobia Std. Error p-value

intercept 0.004 0

Block 0.003 6.05E-09

Precip 0.003 0.608

BOUGRA 0.002 0.692

DALPUR 0.002 0.008

AMF Std. Error p-value

intercept 0.275 0.000E+00

Block 0.165 0.347

Precip 0.165 0.014

(Continued)
TABLE 1 Continued

Diversity

AMF Std. Error p-value

AMOCAN 0.118 0.867

DALCAN 0.117 0.234
Predictors are from best fit model for each group. “PlntFamFAB” is plant family composition
with Fabaceae only, “PlntFamMIX” are mixtures, and “PlntFamPOA” are Poaceae only. “Precip”
is precipitation treatment 50% ambient rainfall. Full model outputs in Supplementary Table S2.
P values <0.1 are in bold to emphasize significant and marginally significant responses.
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fungi shows that, while they often have low specificity in association

with plant hosts, they can have high specificity in their impact on and

response to individual plant species (Bever et al., 1997, Bever, 2002;

Mangan et al., 2010a; Martıńez-Garcıá and Pugnaire, 2011, Koziol

and Bever 2016). Additionally, four of the six plant species exerting

detectable impacts on AM fungal composition are late successional

plants, which have been found to be more sensitive to AM fungal

identity than early successional species (Cheeke et al., 2019, Koziol

and Bever 2016). This could feedback on host fitness, potentially

influencing plant species coexistence or succession (Bever, 1999,

2002; Koziol and Bever, 2019), though further work is required to

test these possibilities.
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Rhizobia bacteria were also responsive to the planting design,

particularly in relative abundance, which was highest in Fabaceae

only plots, as expected due to the legume-rhizobia symbiosis. Prior

work found significant positive feedback among the legume species

used in this experiment, likely driven by rhizobial mutualists (Wang

et al., 2023). However, despite known specificity in legume-rhizobia

associations (Andrews and Andrews, 2017), we did not detect

composition or diversity responses to legume species or legume-

only plots (Tables 1, 3). There is surprisingly little work on the

relationship between legume and rhizobial diversity, with a general

lack of knowledge of rhizobia communities outside of nodules

(Miranda-Sánchez et al., 2016). Further work on drivers of
FIGURE 2

Microbial composition among plant family and precipitation treatments in year 3. Precipitation community differences in the left column, plant family
differences on the right. Top row fungal saprotrophs (A, B), fungal plant pathogens (C), oomycetes (D), bacteria (E, F), rhizobial bacteria (G), and AM
fungi (H, I).
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rhizobial diversity is needed to form better predictions about how

these microbial communities may respond to changes in plant

diversity and composition.

Pathogens
While both fungal pathogen and oomycete diversity responded to

plant species richness in year one (Burrill et al., 2023), by the third year

both pathogenic groups’ diversity had greater responses to the plant

family composition treatment. Fungal pathogen diversity was highest

in plant family mixtures (Figure 3B), suggesting the presence of

multiple family-specific pathogens. These results are consistent with

phylogenetic structure of plant pathogen specialization (Gilbert and

Webb, 2007). Moreover, this host-specialization of pathogens can drive

negative plant-soil feedbacks (Crawford et al., 2019) and plant species
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coexistence (Bever et al., 2015). Pathogen specialization can also

generate pathogen dilution in mixture, as was found for fungal

pathogens year one, with direct consequences for productivity gains

with plant diversity (Burrill et al., 2023; Wang et al., 2023). Further

support for dilution of fungal pathogens is observed, with their relative

abundance being highest in single-family Asteraceae and Poaceae plots,

compared to Fabaceae or family-mixtures (Table 2, Figure 4B).

Despite their pathogenic functionality in terrestrial systems, these

data show a more complicated response of oomycetes than general

host specificity. Oomycete diversity was relatively lower in plots

with only Asteraceae (Table 1, Supplementary Figure S1C),

which resonates with the first year pattern, in which oomycete

diversity did not differ between Asteraceae-only plots and mixtures

(Burrill et al., 2023). In the first year, oomycete composition had the

greatest divergence in Fabaceae single-family plots, but two years

later this pattern was muted. Here we find oomycete composition

did not significantly differentiate between plant family composition

treatments, despite differences with planted proportion of two aster

and one grass species (Table 3). However, there was a noteworthy

response to the interaction of precipitation and plant family

composition treatments, with single-family divergence appearing to

be stronger in the 150% precipitation treatment (Supplementary

Figure S3B). The dependence of oomycete composition and

diversity on the plant composition-precipitation interaction is

consistent with expectations that oomycete pathogen specialization

on their hosts would be enhanced by high precipitation treatments

due to their life history. Differences in oomycete composition

between monoculture plots have been shown to predict negative

pairwise feedback and overyielding in mixture (Wang et al., 2023),

which complements evidence of oomycete pathogens driving

negative feedbacks that mediate plant species coexistence (Mills

and Bever, 1998; Mangan et al., 2010b; Bever et al., 2015).

Saprotrophs
Fungal saprotroph and bacteria – major drivers of plant litter

decomposition – both differed in composition between plant family

composition treatments. Though we lack information to assign

saprotrophic functionality to bacteria, many soil bacteria contribute

to decomposition, so we consider their response here to potentially

follow similar expectations as for fungal saprotrophs. Fungal

saprotroph composition was particularly different in Poaceae and

Asteraceae only plots (Figure 4A), but significant differences were

also detected with three Fabaceae species (Table 3). Such

differentiation of saprotrophs with plant family and species

composition is consistent with these groups contributing to

phylogenetic structure of home field advantage in decomposition,

as observed by Podzikowski et al. (2024). We see stronger plant

compositional impacts on soil saprotroph composition over time,

suggesting the additional development of stronger home field

advantage. Differences between bacterial community composition

amongst plant family treatments were detected in the roots in

year one (Burrill et al., 2023), and we continued to see this in year

three. However, the significance of plant family was dampened in

the third year, perhaps due to higher variation explained by

precipitation treatment effects (Table 3). In the 50% precipitation

treatment, bacterial diversity had a positive response to plant
TABLE 2 Relative abundance of functional guilds. Generalized linear
model response of relative abundance for fungal saprotrophs,
pathogens, and rhizobial bacteria to the full planting model.

Relative Abundance

Saprotrophs Std. Error p-value

intercept 0.010 4.665E-11

Block 0.006 0.096

PlntSpRich 0.002 0.026

Precip 0.006 0.017

ANDGER 0.007 0.087

ELYCAN 0.007 0.0002

DALPUR 0.007 0.021

DESILL 0.007 0.001

CORTIN 0.008 0.001

Pathogens Std. Error p-value

intercept 0.005 0.000E+00

PlntFamFAB 0.007 0.023

PlntFamMIX 0.006 0.049

PlntFamPOA 0.007 0.314

BOUGRA 0.007 0.105

Rhizobia Std. Error p-value

intercept 0.004 0.000E+00

Block 0.002 2.757E-09

PlntFamFAB 0.002 0.008

PlntFamMIX 0.002 0.032

PlntFamPOA 0.002 0.0004

ANDGER 0.002 0.007

DALPUR 0.002 0.048
Predictors are from best fit model for each group. “PlntFamFAB” is plant family composition
with Fabaceae only, “PlntFamMIX” are mixtures, and “PlntFamPOA” are Poaceae only.
“Precip” is precipitation treatment 50% ambient rainfall. “PlntSpRich” is realized plant species
richness. Full model outputs in Supplementary Table S3.
P values <0.1 are in bold to emphasize significant and marginally significant responses.
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species richness in Asteraceae single-family plots, with a similar

trend in family mixtures, but the opposite effect in Fabaceae and

Poaceae single-family plots (Supplementary Figure 1B). This

may further contribute to observed increases in decomposition

rates in the 150% treatment (Podzikowski et al., 2024) and to

decomposer bacteria home-field advantage (Austin et al., 2014;

Veen et al., 2015).
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Guild responses to precipitation treatment

There were significant differences in diversity of most microbial

components to precipitation treatments, 50% and 150% of ambient

rainfall. AM fungal diversity increased in 50% ambient

precipitation, which may reflect greater reliance of prairie plants

on AM fungi for nutrient acquisition under dry conditions (Schultz
FIGURE 3

Shannon-Weiner diversity for each microbial community response to precipitation treatment and plant family composition. Fungal saprobe (A,
p=0.01 precipitation), fungal pathogen (B, p=0.03 plant family), rhizobial bacteria (C, p<0.01 precipitation), non-rhizobial bacteria (D, p<0.01
precipitation), oomycetes (E, p=0.01 plant family), and AM fungi (F, p<0.01 precipitation). Oomycetes broken down by plant family composition
treatment to visualize significant interaction between PlantFam*Precip in model output (Table 1).
frontiersin.org

https://doi.org/10.3389/frmbi.2025.1460319
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Burrill et al. 10.3389/frmbi.2025.1460319

Frontiers in Microbiomes 11
et al., 2001, Auge, 2001). In addition, AM fungal community

composition was significantly different between precipitation

treatments. This shift in composition could benefit plant growth

in dry environments, as drought adapted AM fungi have been

shown to improve drought tolerance of their hosts in western US

grasslands (Stahl and Smith, 1984). We also see that the variation in

AM fungal composition between plots in the low precipitation

treatment is greater than that between plots in the high

precipitation treatment (Supplementary Table S2). While it is

possible that this beta dispersion could result from greater

sensitivity or specialization of the AM fungi and plant species

combinations in dry conditions, this possibility is not supported

by evidence of an interactive influence of plant composition and

precipitation on AM fungal composition. Further exploration

necessitates specific greenhouse tests of the ability of AM fungi

from dry treatments to confer drought tolerance.

In contrast, oomycetes were found to have the opposite

response to precipitation treatments. Specifically, oomycete

diversity increased with high precipitation, consistent with

observed oomycete diversity patterns in remnant prairies across

the natural rainfall gradient from central Kansas to Illinois

(Delavaux et al., 2021a). However, in contrast to field patterns

observed in this same gradient, we did not observe changes in fungal

pathogen diversity in response to the precipitation treatment.

Nonetheless, oomycete responses are consistent with the high

precipitation treatment facilitating more pathogenic microbes,

likely since they use flagella as their mode of movement, and

require water for sexual reproduction and transmission. We also

observed greater variation in oomycete composition between plots

within the high precipitation treatments (Supplementary Table S6).

Further, with increased diversity of oomycetes in the high

precipitation treatment, there may also be an increased

occurrence of host specialization, which is further supported by

the interaction of family composition and precipitation on

oomycete composition. Together these results suggest that

oomycete pathogens will be more important to plant species

coexistence and overyielding as precipitation increases.

Bacteria and fungal saprotrophs were found to have opposite

responses to precipitation manipulations. Soil bacterial diversity

increased with high precipitation (Figure 3D). This is consistent
TABLE 3 Permanova table, community response.

Saprotrophs Df R2 Pr(>F)

PlntSpRich 1 0.004 0.651

Precip 1 0.014 0.001

DALCAN 1 0.005 0.282

EUPALT 1 0.004 0.397

Residual 230 0.973

Total 234 1

Pathogens Df R2 Pr(>F)

Block 1 0.023 0.001

PlantFam 3 0.012 0.494

Precip 1 0.007 0.003

PlantFam* Precip 3 0.014 0.208

Residual 226 0.943

Total 234 1

Oomycetes Df R2 Pr(>F)

Block 1 0.012 0.001

PlantFam 3 0.013 0.702

Precip 1 0.013 0.001

PlantFam* Precip 3 0.015 0.064

Residual 209 0.947

Total 217 1

Bacteria Df R2 Pr(>F)

Block 1 0.034 0.001

PlantFam 3 0.014 0.058

Precip 1 0.012 0.001

BOUGRA 1 0.005 0.023

PANVIR 1 0.005 0.157

LIAPYC 1 0.005 0.056

Residual 224 0.926

Total 232 1

Rhizobia Df R2 Pr(>F)

Block 1 0.022 0.001

Precip 1 0.008 0.004

AMOCAN 1 0.004 0.506

Residual 228 0.966

Total 231 1

AMF Df R2 Pr(>F)

Block 1 0.018 0.001

PlantFam 3 0.017 0.001

PlntSpRich 1 0.004 0.615

(Continued)
TABLE 3 Continued

Rhizobia Df R2 Pr(>F)

Precip 1 0.018 0.001

DALCAN 1 0.004 0.173

DESILL 1 0.006 0.001

LIAPYC 1 0.004 0.152

CORTIN 1 0.005 0.119

Residual 224 0.924

Total 234 1
Aitchison distance matrices for each community ran in a permanova with the best fit models
from ordistep model selection. Full model outputs in Supplementary Table S4.
P values <0.1 are in bold to emphasize significant and marginally significant responses.
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with previous work showing soil bacteria are more sensitive to

drought than fungi (de Vries et al., 2018). Given that plant

decomposition rates have been observed to increase in the 150%

precipitation treatment (Podzikowski et al., 2024), it is possible that

increased bacterial diversity contributes to the observed increase in

decomposition rates. Contrary to the bacterial response, we
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detected higher fungal saprotroph diversity in the 50% ambient

precipitation (Figure 3A). This result is consistent with prior

research showing increased fungal diversity under low rainfall

(Hawkes et al., 2011). In addition, while fungal life history

traits may be more conducive to wetter environments, fungi are

also more capable of surviving during periods of extreme drought
FIGURE 4

Relative abundance of fungal pathogens, saprotrophs, and rhizobial bacteria among plant family and precipitation treatments. Mean relative
abundance of fungal saprotrophs (A, p>0.05), pathogens (B, p<0.05) and rhizobial bacteria (C, p<0.05) between plant family treatments. Differences
between precipitation treatments also shown, fungal saprotroph relative abundance higher in 150% precipitation (A, p<0.05 =) and fungal plant
pathogen relative abundance had an interaction between plant family and precipitation in the full model (B, Supplementary Table S3 p<0.01).
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via dormant spore structures (Furze et al., 2017; Barnard et al.,

2013). Together, these results may indicate relative shifts in

contribution of bacterial and fungal decomposers, depending on

precipitation conditions.
Conclusions

We observed significant responses in functionally distinct

groups of soil bacteria, fungi and oomycetes to precipitation and

family composition treatments three years after planting, indicating

that both plant community composition and precipitation matter,

with relatively little interaction. Contrasting responses of mutualist

AM fungi and pathogenic oomycetes to precipitation potentially

indicate both AM fungal-mediation of plant drought tolerance and

increased oomycete pathogen effects in high rainfall. Together these

results suggest a negative directional shift in the soil microbiomes

impact on plant fitness with increasing precipitation. Additional

contrasts between fungal saprotrophs and bacteria suggest

differential shifts in decomposer taxa, depending on climate

condit ions. Further , bacterial and fungal saprotroph

differentiation with plant composition support prior research

indicating that decomposers may have plant species litter

preferences, thus driving home-field advantage in decomposition

rates. Rapid responses of pathogens in year one (Burrill et al., 2023)

were sustained in year three. Moreover, we find that oomycete

specialization may be enhanced with precipitation. While we have

direct evidence of fungal pathogen and oomycete specialization

generating negative feedback on plant fitness and overyielding in

mixtures (Wang et al., 2023), further investigations may elucidate

whether other observed shifts in microbial communities influence

terrestrial ecosystem functions. Interestingly, we did not find an

interactive effect of precipitation treatments with plant species

richness, instead demonstrating that microbial communities were

independently affected by each of these factors. Together, our

findings demonstrate the relative shifts of differential microbial

functional groups in response to both plant community structure

and climate, which likely have downstream impacts on terrestrial

ecosystems under biodiversity loss and climate change.
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