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Gut eutrophication
Chika Edward Uzoigwe*

Department of Science, Harcourt House, Sheffield, United Kingdom
“Classical eutrophication” occurs when raw unfixed nutrients enter an aquatic

environment. This causes the deleterious proliferation in fauna most adept at

exploiting this abundance of nutrition. The net effect is de-diversification. We

propose an analogous process in the gut: “gut eutrophication”. Evidence shows

that consumption of processed food, high in unfixed disaccharides, causes an

expansion of bacteria in the gut habitat with a metabolic proclivity for these

nutrients. This is at the expense of microbiota with a predilection for complex

macromolecule macronutrients. There is a loss of diversity and the effect is

exacerbated by a sedentary lifestyle. Gut luminal low oxygen tension favors

salubrious gut commensals. This effect is potentiated by exercise but thwarted by

inactivity. Antibiotics cause an obvious gut dysbiosis. So too can diet in a more

insidious manner. The transition in microbial composition, seen in “gut

eutrophication”, may be an aetiological component of metabolic disease-

associated gut dysbiosis.
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Introduction

There exists the fundamental assumption that hosts act to optimise the microbial

composition in order to promote physiological function and, in particular, do so

behaviourally (Wilde et al., 2024). This is not necessarily the case. Indeed, at times hosts

act to sabotage and undermine the henotic microbial symbiosis. This is typically seen in a

human host and is the bedrock of many non-communicable diseases. The consumption of

refined substrates elicits the proliferation of commensals and/or symbionts, most adept at

metabolising such raw oligomer materials (Ross et al., 2024). These tend to be species with

celeritous and fugacious lifecycles. In their rapid rise and overgrowth, they out-compete

and subdue their peers, critically leading to microbial de-diversification (Ross et al., 2024).

This is “gut eutrophication”. The progeny of this process is not those most conducive to

host physiological eudemonia. Simply put, diet impacts the gut microbiome. The human

diet is often dictated by palatability and appetite for processed foods rather than the

exigencies of the gut habitat. Humans are most acquisitive of monosaccharides,

disaccharides, and salt (sodium chloride). Such food substances, when found in nature

are delivered in a healthy composite. Hence, during evolution, halo- and glyco-petal

proclivity would have been salubrious to the gut habitat and physiological performance.

Halotropic and glycotropic behaviours would have been copacetic phenotypes, largely due
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to indigence in these substrates. Today, however, two significant

human innovations make these behaviours/traits injurious. The first

is animal and plant husbandry resulting, for many, in the nimiety of

such substrates. Secondly, and most significantly, is industrial food

production. Sugar and salt are extricated from their healthy co-

constituents. They are refined and concentrated. Thus, unlike other

species, we have the ability to match this insatiable appetite for salt

and di/mono-saccharides with a panoply of diverse high-sugar

high-salt foodstuffs. There is discordance between human

preferences based on palatability and substrates which actually

foster a gut habitat most conducive to host health (Ross et al., 2024).
Aquatic and gut eutrophication

In natural habitats, there exists finite resources and competition

between species. Those that achieve durable existence are those that

not only most efficaciously use the resources available but promote

the very health of the habitat rather as opposed to those that pursue

aggressive sequestration of resources and follow a Ponzi-style

lifecycle. The unrestricted introduction of elemental resources can

disrupt the ecological equilibrium and result in harm to the habitat.

In an aquatic habitat, this is observed in the form of eutrophication.

Classically, eutrophication occurs when fertilisers and

micronutrient-rich effluent enters an aquatic milieu. This results

in the proliferation of algae with celeritous lifecycles. This is

injurious to the environment. The algae sequester oxygen,

obfuscate light penetration, resulting in the death of plant fauna.
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The algae themselves ultimately expire. The degradation of these

plant species further deprives the habitat of oxygen, rendering it

uninhabitable (Figure from: Consequences_of_eutrophication_on_

coral_reef,_seagrass_and_mangrove_ecosystems.png (2044×1583))

(Figure 1).

The human gut is a habitat. It is suggested that an analogous

process can occur here, resulting in a human disease, notably

metabolic disease. This is the gut eutrophication hypothesis.

Exposure of the gut to high concentrations of raw unfixed

nutrients results in “gut eutrophication”. Kawano et al. showed in

murine models that a high-sugar diet resulted in overgrowth of

Faecalibaculum rodentium including Erysipelotrichaceae bacteria

(Kawano et al., 2022). This was at the expense of bacteria that

exhibited favourable immuno-tropic characteristics that would

promote euglycaemia and prevent metabolic syndrome (Kawano

et al., 2022). A further consistent finding is that high sugar

alimentation, analogous to eutrophication, results in a reduction

in gut diversity (Zoetendal et al., 2012; Do et al., 2018). The pre-

eminent species following gut eutrophication tend to be pro-

inflammatory. The patho-mechanism is similar to that of aquatic

eutrophication. Commensals that flourish during gut

eutrophication are those adept at metabolising raw ingredients

with celeritous lifecycles (Satokari, 2020; Takeuchi et al., 2023).

These rise to ascendancy over gut bacteria specialised at degrading

complex carbohydrates and have more protracted life cycles

(Figure 2: Adapted from: Kinashi Y, Hase K. Partners in Leaky

Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front

Immunol. 2021 Apr 22;12:673708).
FIGURE 1

The process of aquatic eutrophication. Figure from: Consequences_of_eutrophication_on_coral_reef,_seagrass_and_mangrove_ecosystems.
png (2044×1583).
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Eutrophication derives its etymology from the Greek words

“eὖ” and “trοfikός”meaning “well-fed” or “well-nourished”. In the

aquatic milieux, the nimiety of nutrients is frequently in the form of

nitrates and phosphates from fertiliser. In the gut, the surplusage is

typically in the guise of excess processed sugars such as

monosaccharides and disaccharides. However, given that the gut

lumen is anoxic, it may also be oxygen. This is of relevance in the

consideration of the impact of exercise or lack thereof on gut fauna.
Exercise and gut eutrophication

Beneficiaries of the eutrophic milieux move to maintain the

dysglycemic environment. Recent work has shown that the gut

microbial profile also affects the motivation of mice to engage in

physical exercise (Agirman and Hsiao, 2022; Dohnalová et al., 2022).

This proclivity for and performance during exercise can actually be

transferred between mice by transplanting the gut microbial fauna

from high-performance mice to mice bred with a sterile gut. The

latter then adopt the motivation and performance of the donors

(Agirman and Hsiao, 2022; Dohnalová et al., 2022). Microbial fauna

can thus remarkably manipulate the environment to promote their

own existence. This is directly analogous to the fauna that are

predominant following aquatic eutrophication that produce a

similar phenomenon by means of their oxygen sequestration and

tenebrific effect.

A lack of physical activity, like a poor diet, is a second

behavioural choice that profoundly impacts gut microbial

phenotype (Mailing et al., 2019; Clauss et al., 2021; Huang et al.,

2022). It has been shown that the gut lumen is physiologically
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maintained anaerobic. This acts as a selective pressure promoting

the colonisation of anaerobic bacteria which ferment complex

carbohydrates producing salubrious metabolites that the host can

exploit. This is therefore conducive to a diverse and healthy gut

microbiome repertoire (Wilde et al., 2024). However, many authors

prescind from the critically important behaviour of exercise and its

impact on gut oxygen tension. Exercise causes physiological gut

hypoxia and thus potentiates the luminal anaerobic process,

promoting anaerobic fermentative bacteria (Mailing et al., 2019;

Clauss et al., 2021; Huang et al., 2022; Wilde et al., 2024). In a recent

instructive review Wilde et al. conclude that “the anerobic

environment and the provision of complex carbohydrates favors

microbes that ferment the carbohydrates into products that the

host can use”. Sedentary lifestyles and processed Western diets,

nimious in oligosaccharides, undermine and compromise

this process.
A20

In addition to the host prioritising palatability over gut faunal

health, the first act of a human host is to actually cede control to gut

microbiota by means of inducing tolerance via A20 [tumour necrosis

factor, alpha-induced protein 3 (TNFAIP3)]. Wang et al. showed that

A20 was responsible for the tolerance of the gut to bacterial

lipopolysaccharide (LPS) (Wang et al., 2009). Indeed, the enzyme

was both necessary and sufficient for the process. A20-deficient mice

showed marked bowel inflammation in response to LPS. The group

also observed, in their murinemodel, that A20 levels were low at birth

but rose, with increasing exposure to bacterial LPS, in the perinatal
FIGURE 2

The process of gut eutrophication. Adapted from Kinashi Y, Hase K. Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front
Immunol. 2021 Apr 22;12:673708.
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period. Interestingly, A20 was also low following bacterial eradication

with antibiotics.

Gut flora have been incontrovertibly linked to obesity. This is

either due to the composition of the gut microbiota, their effect on

nutrient bio-availability and short-chain fatty acid production, or

LPS-induced inflammation (Turnbaugh et al., 2009; DiBaise et al.,

2012; Ridaura et al., 2013; Moreno-Indias et al., 2014). A20

enterocyte knockout mice exhibit a relative increase in Firmicutes

gut bacteria and a relative fall in Bacteriodetes compared with wild-

type mice (Vereecke et al., 2014). This is an enteric microbial profile

seen in genetically obese (ob) mice (Ley et al., 2005). Inflammation

in the gut and white adipose tissue has been strongly linked to

obesity (Hand et al., 2015; Marchesi et al., 2015). It has also been

implicated in the putative patho-mechanism of insulin resistance/

diabetes spectrum endocrinopathy (Moreno-Indias et al., 2014).

The microbiome in obesity is pro-inflammatory (DiBaise et al.,

2012; Moreno-Indias et al., 2014; Scheithauer et al., 2020). The shift

and narrowing in the gut microbiome repertoire during the process

of “gut eutrophication” results in an immune response to the

ascendancy of a new bacterial cohort. Furthermore, a diet replete

with processed food, predominantly comprising unfixed nutrient

mono- and oligomers, is thought to undermine the integrity of the

alimentary canal barrier and increase gut permeability to LPS which

elicits inflammatory cascades in white adipose tissue, germane to

adipose tissue dysfunction, insulin resistance, and obesity (DiBaise

et al., 2012; Moreno-Indias et al., 2014; Scheithauer et al., 2020). In

addition, the expansion of pro-inflammatory bacteria is at the

expense of anti-inflammatory microbiota such as F. prausnitzii

which may putatively produce inflammatory repressors such as the

short-chain fatty acid butyrate (Scheithauer et al., 2020).

A20, by dampening inflammation, has been shown to be

necessary to maintain bowel wall integrity in inflammation

(Mailing et al., 2019). Without it, LPS potentially gains systemic

access through a permeable gut wall. It has been shown in a cohort

of obese patients that there is an inverse correlation between the

extent of A20 expression in adipose tissue and insulin resistance

(Wang et al., 2009). A20 is also implicated by the fact that it appears

to be part of a bacterial composition at birth and in early life that is

related to obesity (DiBaise et al., 2012; Moreno-Indias et al., 2014).

Hence, A20 potentially plays a role in tolerance, in early life, to

bowel symbionts; defects may increase the risk of obesity.
A20 and gut iatrogenic dysbiosis

Much of modern human existence and even medical intervention

can tend to foment suboptimal faunal profiles. For example, much of

the colonisation of the infantile gut and the respiratory tract occurs

during vaginal delivery. Children who are born by a Caesarean section

do not undergo the process to the same degree (Mueller et al., 2015a).

It is believed that vaginal delivery activates A20 and a Caesarean

section tends not to do so. One would hypothesise that a Caesarean

section would be associated with obesity. This link is irrefutable (Li

et al., 2013; Darmasseelane et al., 2014; Kuhle et al., 2015; Ardic et al.,

2021; Chiavarini et al., 2023). A Caesarean section is also strongly

linked to asthma (Huang et al., 2015; Suárez-Martıńez et al., 2024).
Frontiers in Microbiomes 04
Consistent with this finding, children at risk of asthma have a paucity

of Lachnospira, Veillonella, Faecalibacterium, and Rothia gut

commensals, which may be a feature of Caesarean delivery (Arrieta

et al., 2015). Furthermore, maternal faecal transplants in the form of a

milkshake to their newborns delivered by a Caesarean section, result in

more salubrious gut microbial profile in the infants (Lenharo, 2024).

Intriguingly, maternal antibiotics in the second and third trimester,

but not the first, also increase the risk of childhood obesity (Mueller

et al., 2015b). Asthma risk is also increased by maternal antibiotics

(Marchesi et al., 2015; Suárez-Martıńez et al., 2024; Tai et al., 2024).

Differences in gut fauna have also been observed in children that are

breastfed compared to those that are bottle fed (Yan et al., 2014). The

latter technique is sterile while lactation necessarily involves greater

exposure of the gut to bacteria. According to the A20 paradigm,

breastfeeding would be associated with a reduction in obesity rates.

This has been confirmed in meta-analyses (Yan et al., 2014).
Collateral confirmation

Recent research on racehorses found that reduced diversity of the

gut microbiome, early in life as foals, either due to antibiotics or as

a feature of intraspecific variation, was associated with inferior

athletic performance and increased risk of asthma in adulthood

(Leng et al., 2024). Gracner et al. reported almost the obverse

phenomenon in humans. Intriguingly, they observed that the

omission or restriction of sugar from children for the first 1,000

days of life, including the time from conception to birth, significantly

reduces the risk of metabolic disease in adulthood, including diabetes

and hypertension (Gracner et al., 2024). It is prima fascie perplexing

how intrauterine rationing could be eu-metabolic in adulthood.

However, it accounted for a third of the risk reduction. This

phenomenon is easily explicated by the gut eutrophication

hypothesis. An aglycemic diet shapes the maternal gut microbiome,

promoting diversity and is protective against eutrophic profiles. This

is “inherited” by the child at birth as they egress the birth canal and

come in contact with the maternal perineum and attendant fauna. In

over 95% of births, the baby emerges from the birth canal in an

occiput anterior position with the child’s face orientated posteriorly

with respect to the mother (Gardberg and Tuppurainen, 1994). It is

thought that in addition to facilitating foetal egress due to the human

sacro-pelvic bauplan, it may equally promote parturient materno-

fetal transplantation of gut microbiota (Mitteroecker and Fischer,

2024). As such, we anticipate that children born in a cephalic occiput

anterior position will have a more salubrious gut microbiome profile

and thus favourable metabolic profiles in adulthood than those born

in a cephalic occiput posterior position with the face anteriorly

orientated as the child is delivered.

In the context of a eutrophic diet, gut commensals prevent the

propagation of pathogenic strains. Furuichi et al, using a murine

model, report that a consortium of commensal bacteria impedes the

proliferation of Klebisella pneumonia by resource restriction.

However, this effect was found to be abrogated by an eutrophic

diet by enriching the mice comestibles with glucose juxta-

metabolites such as gluconate (Furuichi et al., 2024). This is a

consistent finding (Pamer, 2024). An infusion of galactose
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precursors/juxta-metabolites eliminates the capacity of Klebsiella

michiganensis to inhibit the growth of injurious Escherichia coli

strains (Oliveira et al., 2020). An identical phenomenon was

demonstrated with regard to the repression of Salmonella by

resource sequestration by E. coli and Klebsiella oxytoca (Eberl

et al., 2021; Osbelt et al., 2021).

In summary, a processed food diet and a paucity of exercise are

important factors in gut eutrophication. This is characterised by

overgrowth of certain strains that at least contribute to dysmetabolic

states and a lack of faunal diversity. A reduction in the heterogeneity

of the microbiome is seen in a number of dysbioses and has been

linked to adverse health and performance outcomes.
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