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Metagenomic characterization
of the tracheobronchial
microbiome in lung cancer
Alexis Bailey1, Stephanie Hogue2, Christine M. Pierce2†,
Shirlene Paul2, Natalie La Fuente2, Ram Thapa3,
Youngchul Kim3 and Lary A. Robinson 1*

1Division of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, United States, 2Department of
Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, United States, 3Department of Biostatistics
and Bioinformatics, Moffitt Cancer Center, Tampa, FL, United States
Background: The tracheobronchial and oral microbiomemay be associated with

lung cancer, potentially acting as predictive biomarkers. Therefore, we studied

the lung and oral bacteriome and virome in non-small cell lung cancer (NSCLC)

patients compared to melanoma controls to discover distinguishable features

that may suggest lung cancer microbial biomarkers.

Methods: In this pilot case-control study, we recruited ten patients with early-

stageNSCLC (cases) and ten age-matchedmelanomapatients (controls) who both

underwent tumor resection. Preoperative oral gargles were collected from both

groups, who then underwent transbronchoscopic tracheal lavage after intubation.

Lung tumor and adjacent non-neoplastic lung were sterilely collected after

resection. Microbial DNA from all lung specimens underwent 16S rRNA gene

sequencing. Lavage and gargle specimens underwent whole-genome shotgun

sequencing. Microbiome metrics were calculated to compare both cohorts. T-

tests and Wilcoxon rank sum tests were used to test for significant differences in

alpha diversity between cohorts. PERMANOVAwas used to compare beta diversity.

Results: No clear differences were found in the microbial community structure of

case and control gargles, but beta diversity of case and control lavages significantly

differed. Two species, Granulicatella adiacens and Neisseria subflava, which are

both common oral commensal organisms, appeared inmuch higher abundance in

case versus control lavages. Case lavages also maintained higher relative

abundances of other oral commensals compared to controls.

Conclusions: Lung lavages demonstrated oral microbiota enrichment in cases

compared to controls, suggesting microaspiration and resultant inflammation.

The oral commensals Granulicatella adiacens and Neisseria subflava were more

abundant in the tracheobronchial lavages of lung cancer versus melanoma

patients, implicating these microorganisms as potential lung cancer

biomarkers, warranting further validation studies.
KEYWORDS

lung cancer microbiome, non-small cell lung cancer, tracheal microbiota, oral

microbiota, lung microbiome, microaspiration, lung inflammation
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1 Introduction

Lung cancer is the most common cancer worldwide and the

leading cause of cancer deaths, with 1.8 million deaths in 2020

(World Health Organization, 2022). In the US, lung cancer has the

second highest incidence rate among both males and females, but it

is the most common cause of death among both sexes (Henley et al.,

2020). An estimated 130,450 Americans will die from lung cancer in

2024, exceeding the number of deaths expected from colon, breast,

and prostate cancers combined (American Cancer Society, 2024).

Despite enormous research and treatment efforts, the high fatality

rate of this malignancy (75%) has changed little over the last few

decades (American Lung Association, 2024). The high mortality

rate of lung cancer is primarily due to delayed diagnosis, with 77%

of cases not being recognized until later stages (Mao et al., 2016).

Screening low dose chest computed tomography is underutilized,

with only 5.5% of eligible individuals obtaining a scan despite its

proven potential to detect early-stage diseases in high-risk

individuals (Richards et al., 2019). Therefore, exploration of

potential biomarkers of this disease is warranted.

As the affordability of next-generation sequencing techniques

improves, the microbiome, or the collective genomic material of all

microorganisms found within and on the body, is increasingly being

investigated for associations with disease and potential therapeutic

value. Most research has focused on the gut microbiome, the largest

andmost diverse microbiome in the human body, with relatively little

investigation of the microbiota of other anatomic sites. Until recently,

the lungs were considered sterile, but evidence indicates commensal

microbes, including Acinetobacter, Pseudomonas, and Ralstonia,

indeed colonize this organ (Yu et al., 2016). Furthermore, the

composition and function of the microbiota in lung tissue are

distinct from other anatomic sites, including the oral cavity (Yu

et al., 2016).

Recent research has further shown associations between the

local lung microbiome and various lung pathologies, such as

asthma, cystic fibrosis, and chronic obstructive pulmonary disease

(COPD) (Moffatt and Cookson, 2017; Mur et al., 2018).

Additionally, hypotheses regarding an association between the

lung microbiome and lung cancer, potentially mediated by

chronic inflammation, have been suggested (Mur et al., 2018).

Nevertheless, relatively little research on the lung microbiome in

the context of lung cancer has been conducted.

Given the potential for the lung microbiome to be associated

with lung cancer and to be utilized as a biomarker, this study aimed

to characterize lung and oral bacteriomes and viromes in early-stage

non-small cell lung cancer (NSCLC) patients compared to

melanoma controls to identify distinguishable features in their

oral, tracheal, and tumor microbiomes that may suggest a reliable
Abbreviations: COPD, Chronic obstructive pulmonary disease; DNA,

Deoxyribonucleic acid; HPV, Human papillomavirus; HTLV-1, Human T-cell

leukemia virus-1; ICI, Immune checkpoint inhibitors; NSCLC, Non-small cell

lung cancer; PBS, Phosphate-buffered saline; PERMANOVA, Permutational

multivariate analysis of variance; PCR, Polymerase chain reaction; 16S rRNA,

16S ribosomal ribonucleic acid; TBL, Tracheobronchial lavage; WGSS, Whole

genome shotgun sequencing.
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microbial biomarker for the presence of lung cancer. The results

may help assess the potential of minimally invasive samples from

the oral flora that might act as proxies for tumor microbiomes,

potentially leading to the development of a reliable screening

technique for high-risk individuals with early cancers. While the

presence of specific microorganisms found in conjunction with lung

cancer is intriguing, this study is not focused on correlating these

findings with possible lung carcinogenesis.
2 Methods

2.1 Patients

This prospective, exploratory case-control study recruited ten

early-stage NSCLC patients and ten control melanoma patients

undergoing surgical resection of their tumor under general

anesthesia at Moffitt Cancer Center between July 2015 and May

2016. Melanoma patients were chosen as the best possible proxy for

controls because this cancer type has not shown clear evidence of

microbial etiology (Woo et al., 2022) that would alter the normal oral

and respiratory flora, and these patients were already undergoing

anesthesia with intubation for major resection of locally-advanced

peripheral melanomas on extremities, far distant from the lung.

Theoretically, the best control would be bronchoscopy and

tracheobronchial lavages on normal people without cancer or lung

disease. However, it would be exceedingly difficult to recruit these

individuals and we had ethical concerns about recommending this

procedure with its inherent risks for this exploratory study. In

general, the usual reasons for performing bronchoscopy on patients

without diagnosed cancer are either for evaluation of lung infections

and/or to biopsy lung abnormalities which might be cancer.

Obviously, these patients would not be valid controls.

Lung cancer cases and melanoma controls were matched by age (±

10 years) and smoking status (current/former versus never-smokers).

Eligible participants were at least 21 years of age, mentally competent,

not pregnant, and received no chemotherapy within 1 year of surgery.

Furthermore, participants could not have post-obstructive

pneumonitis, current pneumonitis, purulent bronchitis, other acute

respiratory infections, cystic fibrosis, clinically significant

bronchiectasis, other inflammatory or fibrotic lung diseases, chronic

or current corticosteroid use, antimicrobial therapy within 1 month or

prebiotics/probiotics within 3 months of surgery. We performed this

study per the ethical standards established in the 1964 Declaration of

Helsinki and its later amendments. It was approved by the Liberty

Institutional Review Board, Protocol 14.12.0036 (MCC 17976). We

obtained informed consent from all participants.
2.2 Specimen collection

2.2.1 Tracheobronchial lavages
We collected intraoperative tracheobronchial lavages in all patients.

After induction of general anesthesia and within two minutes of

endotracheal intubation with a sterile single-use tube, LAR

performed bronchoscopy with tracheal lavage using 50-100mL of
frontiersin.org
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sterile 0.9% normal saline solution and an Olympus pediatric

bronchoscope pre-cleaned and disinfected with Steris (Steris System

1E Liquid Chemical Sterilant Processing System, Steris Corporation,

Mentor, OH) according to CDC guidelines (Rutala and Weber, 2008).

An intravenous, preoperative, prophylactic antibiotic was started

during bronchoscopy, so it would not have reached a therapeutic

blood level when we obtained lavage samples. We collected

approximately 20 mL of tracheobronchial lavage fluid into a sterile

Lukens trap (Argyle™ Specimen Trap, Cardinal Health Inc., Dublin,

OH), transported on ice to the laboratory, and processed by

centrifugation at 3,000 x g for 15 minutes at 4°C to separate

supernatant and cell pellet. 3.2mL of supernatant was pipetted

between two cryovials. Cell pellets were re-suspended in 1.2mL of

sterile PBS and aliquoted evenly between two cryovials, which were

snap-frozen in liquid nitrogen. Cell pellets were snap frozen in liquid

nitrogen (LN) and stored at -80°C.

2.2.2 Oral gargle samples
We also collected oral gargles from cases and controls in the

preoperative area. Participants vigorously swished and gargled 15mL of

disinfectant-free mouthwash for 15 seconds, then expectorated into a

sterile 50mL conical tube. Specimens were centrifuged according to the

same parameters as lavages. We collected 3.2mL of supernatant

between two cryovials. The cell pellet was re-suspended in 20mL of

PBS and centrifuged again at the same speed, duration, and

temperature. The final cell pellet was re-suspended in 1.2mL PBS

and aliquoted as two 0.6mL aliquots stored at -80°C.

2.2.3 Tissue samples
Only lung cancer patients provided tumor and adjacent non-

neoplastic lung tissue specimens. Immediately after resection, the

surgeon (LAR, the thoracic surgeon on all cases), while wearing a

mask, took the resected specimen in a sterile container to the frozen

section room and after the pathologist removed specimens needed for

clinical pathology (diagnosis, margins, and lymph nodes), LAR

removed 1cm3 from the tumor using sterile gloves and instruments

in a sterile field. LAR also harvested a similar-sized, non-neoplastic

lung specimen in the same manner at a distance from the tumor.

Tissue specimens were transported to the laboratory and snap frozen in

LN before undergoing macrodissection and long-term storage at -80°C.
2.3 DNA extraction

We extracted microbial DNA from all sample types. The MoBio®

PowerSoil DNA isolation kit (Qiagen, Germantown, MD) was

utilized in a modified protocol to extract bacterial DNA from

0.6mL cell pellets from lavages and gargles. Briefly, cell pellets were

vortexed and spun down until the sample collected at the bottom of

the tube. It was then added to a bead-beating tube with buffer and

processed in the MP-Bio Fastprep™ 5G (MP Biomedicals, Irvine,

CA) for 30 seconds at 6m/s for each of 2 cycles. Samples were

centrifuged at 10,000 x g for 30 seconds at room temperature with the

resulting supernatant collected. The supernatant was processed to

remove PCR inhibitors and eluted with 100µL of buffer. DNA was

quantitated using Qubit, and quality was checked using Nanodrop.
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We used the Qiagen® DNeasy Blood and Tissue kit (Qiagen,

Germantown, MD) to isolate DNA from tissue samples according

to the manufacturer’s protocol. Approximately 25mg was utilized,

or about half of the total tissue volume. We briefly added the tissue

to a bead-beating tube containing 360 µL of ATL buffer and 40 µL of

proteinase K before being vortexed and incubated in the lytic step.

Samples were bead-beat according to the same steps outlined above.

Samples were then centrifuged at 20,000xg for 3 minutes, and the

resulting supernatant was further processed and eluted in buffer AE.
2.4 16S rRNA gene sequencing

All samples underwent 16S rRNA gene sequencing with

appropriate controls. Libraries were prepared using standard

operating procedures (SOPs) from the Weinstock Lab at the

Jackson Laboratory (The Jackson Laboratory, Farmington, CT).

Briefly, high-performance liquid chromatography-purified primers

and 4ng of DNA template were used to amplify the V1-V3 regions

of the 16S rRNA gene. Libraries were screened for size and quantity

as described in the SOP, and after pooling, they were quantified by

qPCR using the Kapa Library Quantification Kit. The final libraries

were sequenced with a 50% PhiX spike-in on an Illumina MiSeq v3

2x300 sequencing run. The raw reads were submitted to the NCBI

Short Read Archive (SRA) under BioProject PRJNA1177881.
2.5 Metagenomic whole genome
shotgun sequencing

DNA was isolated from all oral gargles and lung lavages. Whole

genome shotgun DNA libraries were prepared from 100ng of DNA

using the Illumina TruSeq Nano DNA kit following the manufacturer’s

protocol (Illumina, Inc., San Diego, CA). The libraries were sequenced

on Illumina NextSeq High Output Kits v2 2x150 to about 80 to 260

million paired-end reads, depending on the percent alignment to

microbial species. This method was utilized to resolve bacterial

signatures to the species level and to identify viral signatures. Fungal

sequences were not examined in the WGSS results.
2.6 Bioinformatics and statistical analyses

2.6.1 16s rRNA sequencing data analysis
Paired-end sequencing reads were cleaned using Trimmomatic

v. 0.39 (Bolger et al., 2014) with the following parameters:

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36

to remove adaptors and low-quality reads. Treatment samples with

a minimum of 2,000 reads were kept for further downstream

analysis. The chimeric reads were searched against the 16S rRNA

Gold database with the default UCHIME (4.2) parameters (Edgar,

2016). Next, the cleaned reads were merged with PEAR (0.9.10)

(Zhang et al., 2014) and operational taxonomic units (OTUs) were

generated by open reference of QIIME1.9.1 pipeline (Caporaso

et al., 2010). Only OTUs with a minimum observation count of 100

were retained. The database used for the taxonomic assignment was
frontiersin.org

https://doi.org/10.3389/frmbi.2024.1457537
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Bailey et al. 10.3389/frmbi.2024.1457537
Silva 128 97_otus_16S.fasta (Quast et al., 2013). Alpha- and Beta-

diversity were analyzed using QIIME1.9.1. The taxonomy plots

were based on the 25 most prevalent OTUs. PERMANOVA was

used to compare beta diversity estimates.

Fold differences in the top 25 most abundant microbes, with

relative abundances of at least 1% in one comparison group, were

calculated by dividing the relative abundance of the microbe in the

comparison groups. Similarly, fold differences in the top 25 most

prevalent microbes with prevalence of at least 10% in either

comparison group were calculated and organized into Venn

diagrams. Student two-sample t-test and Wilcoxon rank sum test

were used for differential abundance analysis between cases, controls,

and sample types. Two-sided P values <0.05 were considered

statistically significant. Statistical analysis was completed using the

Phyloseq package in R software (v3.1.1 and v4.1.0, The R Foundation,

Vienna, Austria).

2.6.2 WGSS data processing analysis for
taxonomic classification methods

The CosmosID platform was used to process WGSS data and

perform strain-level taxonomic classification. Briefly, their algorithm

disambiguated short sequence reads into discrete genomes. The

pipeline used pre-computation phases [using the CosmosID

taxonomic reference databases containing bacteria, viruses, phages,

virulence markers, and antimicrobial resistance markers curated by

CosmosID (CosmosID, Inc., Germantown, MD) (CosmosID Inc,

2021)] with per-sample computation (searches short sequence reads

or contigs from draft de novo assemblies against fingerprint sets), detect

and classify microbial sequencing reads. The platform filtered reads

using a filtering threshold derived from internal scores determined by

analyzing many diverse metagenomes to exclude false positives.
3 Results

3.1 Patient characteristics

All 20 participants (ten NSCLC cases and ten melanoma

controls) were Caucasian (Table 1). Cases had a higher percentage

of females than controls (40% vs. 20%).Most lung cancer patients had

stage I disease (80%), while most melanoma controls were advanced

stage (50% had stage III disease). Most cases (90%) and controls

(80%) had not received antibiotics within 2 months before their

surgery. No significant differences were observed in the

characteristics measured between cases and controls.
3.2 Microbial profiling

3.2.1 Cases vs. controls: tracheobronchial lavages
3.2.1.1 16S rRNA gene sequencing

The usual lower airway genera Streptococcus and Prevotella

(CosmosID Inc, 2021) were identified in all lavages (Figure 1A).

However, the oral commensals appeared more prevalent among cases

versus controls:Granulicatella (100% versus 30%), Leptotrichia (100%

versus 50%), Moryella (70% versus 20%), and Neisseria (80% versus
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50%) respectively (Figure 2A). Neisseria was nearly eight-fold more

abundant in tracheobronchial lavages of cases versus controls

(Table 2; Figure 2B) (Lee et al., 2016; Huffnagle et al., 2017).

Lung cancer lavages appeared slightly more diverse than

controls, but not significantly (Table 3; Figure 2C) (Lee et al.,

2016; Gomes et al., 2019). Beta diversity, measured by Bray-

Curtis dissimilarity, showed substantial differences but no clear

separation between cases and controls (Table 3; Figure 2D).

3.2.1.2 Whole genome shotgun sequencing

The bacterial speciesGranulicatella adiacens andNeisseria subflava

were more abundant in cases compared to controls by 6.18 and

15.93-fold, respectively (Table 2; Supplementary Figures S1A, B).

Several species of Prevotella were more abundant in controls

compared to cases. Alpha diversity estimates revealed no consistent

pattern and, along with beta diversity, were not significantly different

between cases and controls (Table 3; Supplementary Figures S1C, D).

The virome of the tracheal lavages was assessed through WGSS

sequencing, too, identifying broadly similar prevalence and relative

abundance between cases and controls (Table 2). Human

betaherpesvirus 7 was far more abundant in case versus control

lavages but was rare. Though not statistically significant, case

lavages consistently showed higher viral alpha diversity than

control lavages (Table 3). Beta diversity was similar.

3.2.2 Cases vs. controls: oral gargles
3.2.2.1 16S rRNA gene sequencing

Oral gargles from lung cancer and melanoma patients showed

very little difference in prevalence (Figures 1B, 3A).

The genus Prevotella was more prevalent in controls (90%)

compared to cases (50%), while Granulicatella was identified in all

oral gargles from all patients (Figure 3A). Regarding relative

abundance, Streptococcus and Prevotella (Huffnagle et al., 2017)

were the most abundant genera in oral gargles from both cases and

controls (Figure 3B). Neisseria was more abundant in controls

compared to cases, while Fusobacterium was 2.5-fold higher in

cases. Alpha and beta diversity showed no significant differences

between gargles (Table 3; Figures 3C, D).
3.2.2.2 Whole genome shotgun sequencing

Neisseria subflava was twice as abundant in gargles from lung

cancer cases compared to controls, and Rothia dentocariosa was

slightly more abundant in controls versus cases (Table 2;

Supplementary Figure S2B). Overall, bacterial abundance appeared

quite similar among oral gargle samples. Neither alpha nor beta

diversity indices demonstrated significant differences between cases

and controls (Table 3; Supplementary Figures S2C, D). There were no

significant differences in the case versus control viromes in the gargles

(Supplementary Figure S3).
3.2.3 Cases: tumor versus normal (non-
neoplastic) lung tissue

16S rRNA gene sequencing: Considering prevalence,

Propionibacterium, Atopobium, and Granulicatella were identified

in at least one tumor specimen but not in normal tissues (Figure 1C;
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Supplementary Figure S4A). The most abundant genus, albeit rare, in

both the tumor and normal tissue was Burkholderia, though it is

slightly more abundant in tumors (Table 2; Supplementary

Figure S4B). The most abundant in both tissues were unclassified

bacteria. Alpha and beta diversity were not significantly different

between tissue types (Table 3; Supplementary Figures S4C, D),

though normal tissue generally had lower alpha diversity than

tumor tissue (Greathouse et al., 2018).

3.2.4 Cases: lavage versus gargle
3.2.4.1 16S rRNA gene sequencing

Several genera appeared slightly more prevalent in lavages than

gargles (Figure 1D; Supplementary Figure S5A), including Leptotrichia,

while genera like Capnocytophaga were more prevalent in gargles. The

genera Streptococcus, Prevotella, and Rothia were more abundant in

gargles than lavages, while Leptotrichia was >5-fold higher. By the

Chao1 index, lavages maintained higher diversity than gargles (Table 3;

Supplementary Figure S5C). Bacterial community structures

significantly differed between gargles and lavages by both Bray Curtis
Frontiers in Microbiomes 05
dissimilarity and unweighted UniFrac distance (p=0.001)

(Supplementary Figure S5D).

3.2.4.2 Whole genome shotgun sequencing

Rothia dentocariosa was 2.7x more abundant in lavages versus

gargles (Table 2; Supplementary Figure S6B). Interestingly, E. coli

was not identified in the top 25 most prevalent species of lavages but

was observed in all gargle samples. The species R. mucilaginosa

(28.9% versus 17.9%), Veillonella dispar (5.9% versus 1.9%), and

two species of Prevotella are more abundant in gargles versus

lavages, respectively. On the other hand, Porphyromonas KLE

1280 (6.5% versus not within the top 25 most abundant species)

and G. adiaciens (5.1% versus 2.5%) are more abundant in lavages

than gargles, respectively (Supplementary Figure S6B). Shannon

and Chao1 alpha diversity indices revealed gargles to be

significantly more diverse compared to lavages (Table 3),

significantly so by Shannon (p=0.015) and Chao1 (p=0.004)

indices. Beta diversity by Bray Curtis dissimilarity (p=0.005) and

unweighted UniFrac distance (p=0.002) showed significantly
TABLE 1 Distribution of sample characteristics by lung cancer cases (n=10) versus melanoma control (n=10) status.

Characteristic Categories Cases, No. (%) Controls, No. (%) p value

Age, mean ± SD – 71.2 ± 9.3 71.8 ± 12.0 0.791

Sex Male 6 (60.0) 8 (80.0) 0.628

Female 4 (40.0) 2 (20.0)

Race White 10 (100.0) 10 (100.0) N/A

Non-white 0 (0.0) 0 (0.0)

Ethnicity Hispanic 0 (0.0) 1 (10.0) 1.000

Non-Hispanic 10 (100.0) 9 (90.0)

Marital status Married 7 (70.0) 7 (70.0) 1.000

Divorced/separated 1 (10.0) 1 (10.0)

Widowed 1 (10.0) 2 (20.0)

Single 1 (10.0) 0 (0.0)

Stage I
IA
IB

8 (80.0)
3 (30.0)
5 (50.0)

3 (3.0)
2 (20.0)
1 (10.0)

0.212

II
IIA
IIC

1 (10.0)
1 (10.0)
0 (0.0)

1 (10.0)
0 (0.0)
1 (10.0)

III
IIIA
IIIB
IIIC

1 (10.0)
1 (10.0)
0 (0.0)
0 (0.0)

5 (50.0)
2 (20.0)
1 (10.0)
2 (20.0)

Not staged 0 (0.0) 1 (10.0)

Antibiotic use < 2 Mo. before surgery 1 (10.0) 2 (20.0) 1.000

> 2 Mo. before surgery 9 (90.0) 8 (80.0)

Smoking status Current/former smokers 5 (50.0) 5 (50.0) N/A

Never smokers 5 (50.0) 5 (50.0)
Mo., months; N/A, not applicable; SD, standard deviation. Fisher’s exact test and Wilcoxon rank sum test were used to determine if distributions of categorical and continuous variables differed
according to case or control status, respectively.
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differential bacterial community structures also between lavages and

gargles (Table 3; Supplementary Figures S6C, D).

Considering viral signatures, prevalence appears different between

these sample types (Supplementary Figures S7) For example, Human

parainfluenza virus 3 and respiratory syncytial virus were identified in

more lavages (10 and 6, respectively) than gargles (6 and 3,

respectively). Human gammaherpesvirus 4 and beta herpesvirus 7

were identified in 5 and 6 gargle samples, but only 1 lavage specimen,

respectively. Several non-human, plant and bacterial pathogens were

identified in these samples as well. There also appeared to be a much

higher proportion of unclassified viral taxa in lung cancer lavages

(92.6%) versus gargles (74.6%). Alpha diversity by Chao1 was higher in

gargles versus lavages (Table 3; Supplementary Figure S7C). Beta

diversity was significant across Bray Curtis dissimilarity (p=0.001),

weighted UniFrac distance (p=0.004), and unweighted UniFrac

distance (Supplementary Figure S7D).

3.2.5 Cases: lavage versus tumor
16S rRNA gene sequencing: The genus Burkholderia is more

prevalent in tumor tissue compared to lavages (90% versus 40%,

respectively) (Supplementary Figure S8A). The tumor tissue mostly

contained unclassified organisms but did maintain a higher relative

abundance of Burkholderia than the lavage samples (1.4% versus 0.1%,
Frontiers in Microbiomes 06
respectively). However, genera like Streptococcus, Fusobacterium,

Veillonella, Granulicatella, Neisseria, Leptotrichia, Prevotella, and

Rothia, amongst many others, were more abundant in lavages

compared to tumor tissues. LEfSe showed that Burkholderia and its

associated family were significantly differentially abundant in tumors

as compared to lavages (data not shown). Many bacterial taxa

significantly differentiated lavages from tumors, including

Granulicatella, Leptotrichia, Neisseria, Prevotella, and Rothia

(Supplementary Figures S8A, B). Alpha diversity was significantly

different between lavages and tumor tissue by all three indices,

Shannon (p=0.0005), Simpson (p=0.0246), and Chao1 (p=0.0003),

whereby intra-sample diversity was consistently higher in lavages

versus tumor tissue (Table 3; Supplementary Figure S8C). Similarly,

all three Beta diversity measures showed that bacterial community

structure significantly differs between the sample types (p=0.001 across

all three indices) (Supplementary Figure S8D).

3.2.6 Cases: gargle versus tumor
16S rRNA gene sequencing:Most genera were more abundant in

gargles versus tumor tissue. A substantially higher number of

bacterial taxa were significantly discriminatory between gargles

versus tumors, including Granulicatella, Leptotrichia, Neisseria,

Prevotella, and Rothia. Alpha diversity was significantly different
FIGURE 1

Venn diagram comparison of bacterial genera prevalence between cases and controls and between different sample types among controls, as determined
by the top 25 most prevalent bacterial genera identified in 16S rRNA sequencing analyses. Bacterial genera in the center of the Venn diagram are found in
both groups. (A) Comparison of bacterial prevalence between lung cancer and melanoma tracheobronchial lavages (TBL).
(B) Comparison of bacterial prevalence between lung cancer and melanoma oral gargles. (C) Comparison of bacterial prevalence between tumor and
normal tissue from lung cancer cases. (D) Comparison of bacterial prevalence between tracheobronchial lavages and oral gargles from lung cancer cases.
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between these two sample types for both Simpson (p=0.007) and

Chao1 (p=0.043), indicating that oral gargles were more diverse in

bacterial species richness and evenness compared to tumor tissue

(Table 3). Beta diversity significantly differed across all three

metrics, showing that these sample types maintain vastly

disparate community structures.
4 Discussion

By a conservative estimate, there are at least a billion species of

bacteria, but only 30,000 are formally named (Dykhuizen, 2005).

Less than 2% of those can be cultured and identified in the

laboratory (Wade, 2002). However, in the 1980’s, the introduction

of the polymerase chain reaction (PCR) targeting the highly

conserved ribosomal genes (16S rRNA) of bacteria allowed for

the identification of unculturable organisms (Wilson et al., 1997).

Subsequent advances in DNA sequencing and other molecular

techniques have allowed for inexpensive, rapid culture-

independent identification of the vast array of resident microbiota

in health (normobiosis or eubiosis) and in disease (dysbiosis), such

as cancer. Despite the explosion in microbiome studies primarily in

the gut looking for culprit bacteria that may cause malignancies,

especially colon cancer and other gastrointestinal diseases, results

have been disappointing since findings are inconsistent and not

reproducible, likely due to variability of gut microbiota depending

upon the sex, race, age, geographic location, and lifestyle factors of

diet, exposures, drugs, and exercise (Pierrard and Seront, 2019).
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Pierrard and associates and Nyein and associates observed that

external factors such as antibiotics appeared to play a vital role in

determining the bacterial composition in the gut microbiome which

in turn affected immune checkpoint inhibitors (ICI) efficacy in

cancer patients (Pierrard and Seront, 2019; Nyein et al., 2022).

However, numerous human studies have failed to identify specific

species or phyla associated with immunotherapy efficacy in cancer.

Other factors, such as bacterial-dependent gut metabolite

production that modifies blood metabolites and immune

competence, may be essential to ICI efficacy (Tang, 2011).

Although the taxonomy of gut microbiota has been under intense

investigation to elucidate its role in various cancers, only a few

studies have focused on the respiratory microbiome and its

relationship to lung cancer. Therefore, we elected to perform this

pilot study investigating possible microbial biomarkers indicating

the presence of lung cancer and, if positive, then potentially they

may be prognostic indicators of the efficacy of cancer treatment.
4.1 Oral gargles or tracheal lavage as
potential microbial lung cancer biomarkers

4.1.1 Gargles
The primary focus of this study was to evaluate the oral and

lower airway microbiome compositions of lung cancer cases

compared to melanoma controls to reveal differences with

potential applications as biomarkers for lung tumors. Therefore,

we compared tracheobronchial lavages and oral gargles collected
FIGURE 2

Comparing the bacteriomes, assessed by 16S rRNA gene sequencing, of tracheobronchial lavages (TBLs) of lung cancer cases and melanoma
controls. (A) Comparison of the prevalence of bacterial genera in lung cancer versus melanoma control TBLs. (B) Comparison of the relative
abundance of bacterial genera in lung cancer versus melanoma control TBLs. (C) Comparison of the alpha diversity, as measured by Shannon,
Simpson, and Chao1 indices, between lung cancer case and melanoma control TBLs. (D) Comparison of the beta diversity, measured by Bray Curtis,
Weighted and Unweighted UniFrac distance measures, between lung cancer case and melanoma control TBLs.
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TABLE 2 Relative abundance comparisons, using fold changes, of the top 25 most abundant (for taxa in >1% abundance) bacterial genera bacterial
species, and viral taxa between case and control specimens and case tissue specimens.

Comparison Sequencing Methodology

16S rRNA
gene sequencing

WGSS (bacterial) WGSS (viral)

Lavages: Lung cancer
compared to melanoma

Higher abundance in
Lung cancer

1. Neisseria (7.82x)
2. Leptotrichia (5.94x)
3. Campylobacter (5.37x)
4. Fusobacterium (5.02x)
5. Granulicatella (4.55x)
6. [Prevotella] (3.10)
7. Porphyromonas and
Actinomyces (2.60x)
8. Atopobium (2.50x)
9. Prevotella (1.91x)
10. Rothia (1.55x)
11. Streptococcus (1.47x)

1. Gemella haemolysans
(26.17x)
2. Neisseria subflava (>15.93x)
3. Porphyromonas KLE1280
13.56x)
4. Granulicatella adiacens
(>6.18x)
5. Rothia dentocariosa (1.80x)
6. Rothia mucilaginosa (1.39x)

1. Human betaherpesvirus
7 (>22.1x)

Lower abundance in
Lung Cancer

N/A 1. Megasphaera micronuciformis
(0.06x)
2. Prevotella histicola (0.07x)
3. Veillonella dispar (0.13x)
4. Prevotella pallens (0.18x)

1. Human respiratory syncytial
virus (0.05x)
2. Tomato yellow leaf curl China
betasatellite (0.37x)
3. Human parainfluenza virus
3 (0.61x)

Gargles: Lung cancer
compared to melanoma

Higher abundance in
Lung cancer

1. Fusobacterium (2.47x)
2. Atopobium (2.09x)
3. Leptotrichia (1.80x)
4. [Prevotella] (1.77x)
5. Porphyromonas (1.34x)
6. Granulicatella (1.07x)

1. Neisseria subflava (2.05x)
2. Prevotella ICM33 (1.31x)

1. Haemophilus phage HP2
(14.23x)
2. Haemophilus Phage HP1
(7.16x)
3. Human betaherpesvirus
7 (1.83x)

Lower abundance in
Lung cancer

1. Neisseria (0.49x)
2. Actinomyces (0.51)
3. Rothia (0.76x)
4. Veillonella (0.89x)
5. Prevotella (0.93x)
6. Streptococcus (0.98x)

1. Rothia dentocariosa (0.23x)
2. Prevotella melaninogenica
(0.57x)
3. Veillonella dispar (0.60x)
4. Prevotella pallens (0.80x)
5. Rothia mucilaginosa (0.93x)

N/A

Lung cancer tumor
compared to normal
lung tissue

Higher abundance in
Lung tumor

1. Burkholderia (1.23x) N/A N/A

Lower abundance in
Lung tumor

N/A N/A N/A

Lung cancer lavage
compared to lung
cancer gargle

Higher abundance in lung
cancer lavage

1. Leptotrichia (5.46x)
2. Campylobacter (2.50x)
3. Fusobacterium (1.13x)
4. Neisseria (1.04x)

1. Rothia dentocariosa (2.71x)
2. Porphyromonas KLE1280
(2.53x)
3. Gemella hemolysans (1.79x)
4. Granulicatella adiacens
(1.71x)
5.

1. Human parainfluenzavirus
3 (45.8x)

Lower abundance in lung
cancer lavage

1. Rothia (0.35x)
2. Atopobium (0.52x)
3. Porphyromonas (0.54x)
4. Streptococcus (0.57x)
5. Prevotella (0.61x)
6. Granulicatella (0.77x)
7. Actinomyces (0.78x)
8. Veillonella (0.93x)
9. [Prevotella] (0.97x)

1. Veillonella dispar (0.27x)
2. Prevotella pallens (0.47x)
3. Rothia mucilaginosa (0.0.53x)
4. Neisseria subflava (0.94x)

1. Haemophilus phage HP1
(0.08x)
2. Haemophilus phage HP2
(0.06x)
3. Human betaherpesvirus
7 (0.68x)

Lung cancer lavage
compared to lung tumor

Higher abundance in
lung lavage

1. Streptococcus (651.67x)
2. Prevotella (130.63x)

N/A N/A

Lower abundance in
lung lavage

1. Burkholderia (0.08x) N/A N/A

Lung cancer gargle
compared to lung tumor

Higher abundance in
lung gargle

3. Streptococcus (1133.67x)
4. Prevotella (211.00x)

N/A N/A

(Continued)
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from lung cancer cases and controls. The results demonstrate that

there are few significant differences in the oral gargles between lung

cancer and melanoma patients in overall microbial composition

using prevalence, abundance, and diversity measures, indicating

unfortunately the readily available, noninvasively sampled

oral gargle microbiome would not likely serve as a lung

cancer biomarker.

4.1.2 Tracheal lavages
Beta diversity refers to the variation between the samples of one

community (group) compared to another community, such that the

microbiome composition of one group with a higher beta diversity

indicates a more significant difference from the other group. By 16S

rRNA gene sequencing data, beta diversity measured by Bray Curtis

dissimilarity demonstrated significant differences (p=0.022)

between case and control lavages, indicating that the bacterial

communities in lavages from lung cancer versus melanoma were
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distinct. However, no such trend was observed for gargles. While

the lung cancer and control tracheobronchial lavages were

significantly different by 16S rRNA-derived beta diversity, it is

difficult to say that the lavages will be able to distinguish lung

cancer from non-lung cancer patients since WGSS did not clearly

replicate these results.

Abundance denotes a specific bacterium’s percentage of a

sample’s overall composition. In contrast, prevalence refers to the

number (percentage) of cases in a specific group where a bacterium

is detected. Significant trends were observed in abundance and

prevalence of the lavages. Most noteworthy was Granulicatella

adiacens, which was more prevalent and abundant in lung cancer

cases. Granulicatella adiacens is a well-recognized oral commensal

bacterium etiologically linked to endocarditis (Cincotta et al., 2015).

We found this bacterium as one of the top 25 most abundant genera

in lung cancer lavages, and it had a much higher prevalence

appearing in virtually all lung cancer tracheal lavages (100%)
TABLE 2 Continued

Comparison Sequencing Methodology

16S rRNA
gene sequencing

WGSS (bacterial) WGSS (viral)

Lower abundance in
lung gargle

1. N/A N/A N/A
WGSS, whole genome shotgun sequencing; N/A, Not applicable. Oral commensal bacteria are shown in bold type. Fold changes were calculated as the relative abundance in the case sample
divided by the control samples and control sample type one versus control sample type 2.
TABLE 3 Comparison of alpha and beta diversity of bacterial genera, bacterial species, and viral taxa between cases and controls and between sample
types among cases.

Comparison Sequencing methodology

16S rRNA gene sequencing WGSS (bacterial) WGSS (viral)

Alpha diversity
(means)

Beta
diversity

Alpha diversity
(means)

Beta
diversity

Alpha diversity
(means)

Beta
diversity

Lavages: Lung cancer
compared to melanoma

1. lower
2. lower
3. higher

1. S
2. MS
3. MS

1. higher
2. lower
3. higher

1. NS
2. NS
3. NS

1. higher
2. higher
3. higher

1. NS
2. NS
3. NS

Gargles: Lung cancer
compared to melanoma

1. lower
2. lower
3. lower

1. NS
2. NS
3. NS

1. lower
2. lower
3. lower

1. NS
2. NS
3. NS

1. higher
2. higher
3. lower

1. NS
2. NS
3. NS

Lung cancer tumor compared
to normal lung tissue

1. higher
2. equal
3. higher

1. NS
2. NS
3. NS

N/A N/A N/A N/A

Lung cancer lavage compared
to lung cancer gargle

1. higher
2. higher
3. higher (S)

1. S
2. NS
3. S

1. lower (S)
2. lower
3. lower (S)

1. S
2. NS
3. S

1. lower
2. lower
3. lower (S)

1. S
2. S
3. S

Lung cancer lavage compared
to lung tumor

1. higher (S)
2. higher (S)
3. higher (S)

1. S
2. S
3. S

N/A N/A N/A N/A

Lung cancer gargle compared
to lung tumor

1. higher (S)
2. higher (S)
3. higher (S)

5. S
6. S
7. S

N/A N/A N/A N/A
Metric 1-3 for alpha diversity is Shannon index, Simpson index, and Chao1 index, respectively, and for beta diversity metric 1-3 is Bray-Curtis dissimilarity, weighted UniFrac distance, and
unweighted UniFrac distance, respectively. S, significant (p¾0.05), MS, marginally significant (p=0.08 or below); NS, not significant; WGSS, whole genome shotgun sequencing; N/A, Not
applicable. Alpha diversity means were compared by T tests (Shannon) and Wilcoxon rank sum tests (Chao1 and Simpson).
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versus only some control lavages (30%), despite being similarly

abundant in gargle specimens of both groups. Granulicatella

adiacens is the same organism that Cameron and associates found

in the sputum of lung cancer patients but not controls in a recent

pilot study, suggesting this as a potential novel lung cancer

biomarker (Cameron et al., 2017). Replication of this finding in

our study suggests that this microbe may be important to further

investigate as a potential diagnostic biomarker (Cameron et al.,

2017) and possibly even a predisposing factor to the development of

lung cancer.

Additionally, lavage from the lower airways of our lung cancer

cases harbored numerous supraglottic bacteria Neisseria (oral

commensal), Capnocytophaga (oral commensal), Leptotrichia

(oral commensal) and Moryella (oral and intestinal commensal)

with twice the prevalence compared to control lavages. Neisseria

subflava, which commonly colonizes the dorsum of the tongue, was

also found in high abundance in lung cancer lavages.

LEfSe (linear discriminant analysis effect size) analysis is used to

validate biomarkers by detailing features (bacterial taxa in lavages in

this case) that distinguish two groups based on relative abundances.

In our study, the LEfSe analysis did show several bacterial taxa,

including Fusobacteria andNeisseria (especially the oral commensal

N. subflava) to be significantly 8-fold differentially abundant in the

tracheobronchial lavages of lung versus melanoma patients. These

intriguing results strongly support continued research into the

tracheal microbiota as potential biomarkers of lung cancer,

especially the highly prevalent and abundant Granulicatella

adiacens and Neisseria subflava.
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4.2 Oral gargle or tracheal lavage as
proxies of the tumor microbiome

Our study also investigated the potential utility of the oral gargle

or tracheobronchial lavage microbiomes as proxies for the tumor

microbiome in lung cancer. If the lavage and oral microbiomes were

similar to the tumor microbiome, these less invasive sample types

could be utilized to study the tumor microbiome more easily.

Initially, lavages and gargles were compared to see if the gargle

could mimic the lavage microbiota. However, significant differences

were found between both bacterial and viral community structures

(i.e., beta diversity) and alpha diversity in lavages and gargles. That

is, the gargle microbiota were dissimilar from the lavages and

cannot be used to represent the lavage microbiota.

Alpha diversity refers to the variation (how diverse it is) of bacteria

within a single sample, such that a higher alpha diversity is usually

associated with a more diverse, healthier microbiome. In our study, the

alpha diversity of lavages versus gargles was likewise different, with

gargles consistently maintaining higher bacterial and viral diversity by

WGSS. LEfSe, performed on both 16S rRNA gene sequencing and

WGSS data, also showed many differentially abundant bacterial taxa

and some viral taxa between lavages and gargles. Unfortunately, as a

result, these differences prevent oral gargles from acting as clinical

proxies for tracheobronchial lavages. Further differences were identified

between the tumor, gargles, and lavages, which precludes using these

sample types as proxies of one another. This was not surprising,

however, considering previous literature that has identified significant

differences between lung tissue and oral microbiomes (Yu et al., 2016).
FIGURE 3

Comparing the bacteriomes, assessed by 16S rRNA gene sequencing, of oral gargles of lung cancer cases and melanoma controls. (A) Comparison
of the prevalence of bacterial genera in lung cancer versus melanoma control oral gargles. (B) Comparison of the relative abundance of bacterial
genera in lung cancer versus melanoma control oral gargles. (C) Comparison of the alpha diversity, as measured by Shannon, Simpson, and Chao1
indices, between lung cancer case and melanoma control oral gargles. (D) Comparison of the beta diversity, measured by Bray Curtis, Weighted and
Unweighted UniFrac distance measures, between lung cancer case and melanoma control oral gargles.
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Despite these results, two recent studies have revealed the

prognostic biomarker potential of the lung microbiome: one

identified associations of the bronchoalveolar lavage microbiome

with recurrence (Patnaik et al., 2021), and another identified

Enterobacter in this same sample type associated with worse

survival (Gomes et al., 2019), emphasizing the importance of

continued investigation of the lung microbiome in lung cancer. It

has already been hypothesized that Enterobacteriaceae, a bacterial

family that expresses the common antigen lipopolysaccharide and

identified in our study to be significantly more abundant in lavages

and tumor tissue versus oral gargles in lung cancer cases, may

induce inflammation in lung cancer that could be associated with

poor prognosis (Gomes et al., 2019). Other studies have suggested

that some microbiota may opportunistically invade damaged lung

epithelium caused by smoking and drive tumorigenesis by

producing free radicals like ROS/RNS that can damage the TP53

gene (Greathouse et al., 2018). Mouse models further suggest that

lung microbiota may contribute to gd-T cell activation, which are

cells that go on to release the cytokines IL-17A and IL-22 (Jin et al.,

2019). These cytokines appeared to co-occur with tumor

progression in the mice (Jin et al., 2019). Additional studies are

needed to provide substantiated evidence of the mechanistic

relationships between the microbiome, the immune system, and

lung cancer.
4.3 The microbiome of tumor and non-
neoplastic lung

Differences in the composition of the tumor and normal non-

neoplastic tissue microbiomes of lung cancer patients were

examined to highlight differences that might suggest a microbial

contribution to lung carcinogenesis. If the microbiome signatures

differed slightly but maintained similar microbial signatures

between tumor and normal tissue, then it might indicate certain

microbes from the typical lung environment that could have

contributed to tumorigenesis or at least were opportunistic

inhabitants of the tumor microenvironment. Indeed, sequencing

revealed no significant differences in bacterial relative abundance

and alpha or beta diversity between tumor and normal tissue

samples. Interestingly, normal tissue had lower alpha diversity

than tumor tissue, contrary to previously observed between tumor

and healthy tissue controls (Mao et al., 2018). Finally, slight

variations in bacterial prevalence were identified: a higher

prevalence of the genera Granulicatella and Burkholderia in

tumors was observed, and a higher prevalence of Neisseria and

Fusobacterium in normal tissues.

The genus Granulicatella, in particular, has been found in a

previous published study to inhabit the tumor microenvironment as

it showed “lung cancer stage-specific increases in abundances” (Mur

et al., 2018). As it becomes increasingly anaerobic, the production of

useful metabolites for this genus increases (Mur et al., 2018). In the

current study, Granulicatella was also identified as having a higher

prevalence not only in tumors and normal tissue but also in

tracheobronchial lavages of lung cancer patients versus melanoma
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controls. Hosgood and associates also found a strong correlation

between the finding of Granulicatella enriched in lung cancer

patients’ oral and sputum samples compared to controls (Hosgood

et al., 2014). This provides some intriguing preliminary data

suggesting a possible carcinogenic role for some specific bacteria or

at least opportunistic inhabitants of the tumor microenvironment,

but testing in more extensive cohort studies is needed. The

epidemiological relationship of Granulicatella may relate to the

mechanism of elevated levels of microbial toxins and resultant

inflammatory cytokines leading to chronic inflammation-associated

carcinogenesis, such as that reported with M. tuberculosis and lung

cancer (Elinav et al., 2013; Li et al., 2024).

Overall, tracheal lavages and gargles do not provide a consistent

microbial signature for the tumor microbiome. Significant

differences were observed between the lavage and tumor

microbiomes. By all three alpha diversity indices, lavages

maintained higher bacterial diversity than tumor tissue, and by all

three beta diversity indices, bacterial communities are different

between lavages and tumor tissue. LEfSe revealed many bacterial

genera that are more abundant in lavages, like Granulicatella and

Neisseria. However, one genus was more abundant in tumor tissue,

namely Burkholderia, an important Gram-negative pathogen of

lung infections in cystic fibrosis patients (Fauroux et al., 2004) and

is the causative agent in the life-threatening respiratory illness

melioidosis (Wiersinga et al., 2018). Beta diversity indicated

significantly different bacterial community structures between oral

gargles and tumor tissue. This was not surprising considering

previous literature that has identified significant differences

between lung tissue and oral microbiomes (Yu et al., 2016).

Indices of alpha diversity also showed gargles to be significantly

more diverse than tumor tissues.

Given their substantial differences, lavages and gargles cannot

accurately represent the tumor microbiome. However, the genus

Burkholderia, in particular, appeared more abundant and prevalent

in tumor tissue than both lavages and gargles, suggesting a potential

role in tumorigenesis or at least opportunistic inhabitants of the

tumor microenvironment. However, further more mechanistic

studies will need to be performed in order to suggest there is a

connection between the mere presence of any of these

microorganisms and lung carcinogenesis (Li et al., 2024).
4.4 Microaspiration

Silent microaspiration is the term used to describe the process in

people when they have asymptomatic aspiration of small amounts of

oropharyngeal or gastric secretions into their tracheobronchial tree

and lungs, and it is felt to contribute to the genesis of many lung

diseases such as pulmonary fibrosis (Lee et al., 2010). Microaspiration

is a common event, occurring in as many as 50% of healthy people

(Gleeson et al., 1997), although it is unknown how many have

persistent colonization of the tracheobronchial tree with oral

commensals. Previous studies by Segal and associates (Segal et al.,

2016) demonstrated that the enrichment of oral commensals in the

lower airways of normal individuals is associated with increased host
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inflammatory tone and checkpoint inhibitor markers. Tsay and

colleagues found this lower airway dysbiotic signature to

distinguish between patients with lung cancer and benign lung

nodules (Tsay et al., 2018).

Particularly notable differences in our study are the marked 16-,

6- and 6-fold higher abundance of the oral commensals Neisseria

subflava, Granulicatella adiacens, and Leptotrichia in the lung

cancer lavages versus controls. Also, the dysbiotic tracheal

microbiome had extensive 2-3 times enrichment of oral

microbiota (Granulicatella, Capnocytophaga, Leptotrichia, and

Neisseria) in lung cancer patients compared to controls (Table 2),

perhaps contributing to an inflammatory environment. The control

lavages have a markedly reduced abundance of oral taxa, suggesting

microaspiration and inflammation occur more significantly in lung

cancer patients than in the control lavages. Indeed, beta diversity

studies revealed significant differences (p=0.022) in bacterial

community structures between the lung cancer and the control

melanoma lavages.

Patnaik and associates also found oral aspiration as the source

of lower airway microbiota in lung cancer, with the actual microbial

community in bronchial lavage correlating with lung cancer

recurrence after resection (Patnaik et al., 2021). Tsay and

colleagues, using RNA-seq analysis of lower airway samples,

found that the supraglottic predominant taxa found in the

trachea were associated with upregulation of inflammatory

pathways for p53 mutation, PI3K/PTEN, ERK and IL6/IL8, such

that enrichment of the lower airway with oral commensals may

increase local immune tone with upregulation of IL1, IL6, and

ERK/MARK, in turn promoting tumor progression, hence

suggesting microaspiration may be involved in lung cancer

pathogenesis (Tsay et al., 2018).
4.5 Microvirome

While the characterization of the human microbiome’s bacterial

(and fungal) members, including the respiratory tree, has

blossomed in the last decade, studies of the viral component still

need to be completed. Many challenges exist with exploration of the

microvirome due to its low biomass and enormous number of

unclassified species. Even high throughput sequencing technologies

are hampered by the small fraction of total DNA in the sample,

often present in concentrations too low (< 1% of the reads) to be

detected without amplification (Abbas, 2019). Additionally,

contaminating human and bacterial DNA and RNA in samples

are challenging. Finally, most reads with WGSS are commonly

called “viral dark matter” since the results cannot be annotated into

taxonomic categories (unclassified) due to the lack of species

available in databases (Abbas, 2019). For example, as of 2022, the

International Committee on Taxonomy of Viruses listed only

11,273 named viral species (International Committee on

Taxonomy of Viruses, 2023) but they estimated there were

unknown 100,939,140 viruses, excluding tens of millions of

bacteriophage known and unknown species (Racaniello, 2013). As

a result, only a relatively small number of viruses were identified in
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our study, likely because of the low abundance and obvious inability

to classify common though unknown viral organisms.

The virome of the tracheal lavages in our study was assessed

through WGSS sequencing, which identified broadly similar

prevalence and relative abundance between cases and controls

among both lavages and gargles. Of the identified viruses, there

was a higher abundance of human respiratory syncytial virus in the

melanoma versus lung cancer patient lavages. Conversely, human

beta-herpesvirus 7 was more abundant in lung cancer lavages versus

controls. Oddly, many of the more prevalent viruses we identified in

both cases and controls are plant pathogens (e.g., yellow vein viruses

and tomato yellow leaf curl viruses), although yellow leaf curl is

known to infect tobacco plants, which could conceivably enter the

respiratory tree by cigarette smoking.

Viral signatures in the oral gargles demonstrated that

bacteriophages targeting Haemophilus bacteria were more

prevalent in melanoma controls versus lung cancer cases.

Human-tropic viruses, such as endogenous retrovirus K and beta-

herpesvirus 7, were similarly more prevalent between cases and

controls. Although LEfSe identified several unclassified viral

signatures as significantly different between cases and controls,

neither alpha nor beta diversity indices demonstrated any

significant differences between cases and controls. However,

unclassified viral signatures were the most abundant in cases

and controls.

A comparison of viral signatures between the oral gargle and

lavages in the lung cancer cases demonstrated that the prevalence

between these two sample types appears different. The most

prevalent viral signature in lavages was human parainfluenza

virus 3 and the human respiratory syncytial virus compared to

gargles. However, human gamma-herpesvirus 4 was identified more

commonly in gargles. LEfSe revealed several viral taxa that were

significantly differentially abundant between gargles and lavages.

Alpha diversity for viral signatures was higher across all three

indices in gargles compared to lavages. Finally, beta diversity

revealed significant differences in viral community structure

between gargles and lavages.

Unfortunately, our WGSS and bioinformatics approaches left

most of the viral taxa unclassified in lung cancer lavages (92.6%)

and gargles (74.6%), thus hampering meaningful evaluation of the

viral microbiome.
4.6 Proinflammatory microbiome

Ultimately, the question arises as to why a dysbiotic,

inflammatory tracheobronchial microbiome appears to be

uniformly associated with lung cancer, and perhaps the answer

lies in the multifactorial nature of carcinogenesis as suggested by the

human papillomavirus (HPV) and cervical cancer picture. HPV has

been convincingly proven to cause 99.7% of cervical cancer

(Walboomers et al., 1999). If a woman is found to have high risk

HPV on her pelvic exam specimens, then she is at elevated risk for

the malignancy, yet at most, only 8% of high risk, HPV-positive

women ever develop either pre-cancerous cervical changes or frank
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cancer (Rodrıǵuez et al., 2010). Recent studies suggest that the

primary factor determining the ability of HPV to transform cervical

cells is the vaginal microbiota, such that a dysbiotic, inflammatory

microbiome is needed. A eubiotic, low diversity, low pH vaginal

microbiome, mainly dominated by lactobacillus species, likely helps

clear HPV infections and is also cytotoxic by secreting bacteriocins

that modulate the immune system to inhibit viral activity. However,

the dysbiotic, proinflammatory vaginal microbiome induces

oxidative DNA damage and promotes viral transformation of the

cervix by the resident HPV (Mitra et al., 2016).

Therefore, we might postulate a similar scenario for the

consistent finding of a dysbiotic tracheobronchial microbiome in

lung cancer patients. In fact, chronic lung inflammation along with

concurrent inflammatory cytokines, growth factors and adhesions

molecules provide a favorable environment to promote tumor cell

growth and proliferation (Wang et al., 2021). Suppose some or all

lung cancer is “caused’ by one or more oncogenic viruses suggested

by prior studies, such as HPV (Xiong et al., 2017), bovine leukemia

virus (Robinson et al., 2016), and HTLV-1 (Nomori et al., 2011;

Robinson et al., 2016). In that case, the development of a dysbiotic,

inflammatory tracheobronchial microbiome, such as that found in

the current study and others, may be the promoting factor that

allows existing colonized, oncogenic viruses to cause malignant

transformation in the lung. However, this attractive hypothesis will

require many future studies to substantiate.
4.7 Limitations and strengths

The small sample size of this study results in significant

limitations that may have obscured statistically significant

differences in microbiome compositions between lung cancer

cases and melanoma controls. The use of melanoma patients

undergoing resection of a peripheral extremity tumor under

general anesthesia was the best possible proxy for control patients

to collected oral gargles and tracheal lavages. Theoretically, the best

control would be bronchoscopy and lavages on normal people

without cancer or lung disease, but we did not feel ethically

comfortable attempting to recruit normal people for a procedure

that carries some procedural risk. In addition, the small sample sizes

prevent us from appropriate sub-analysis of smokers versus non-

smoker results. Future research will require larger cohorts to allow

sufficient power to detect clinically meaningful differences that

could hold biomarker potential. Although, a more thorough

evaluation of specimen contamination could be implemented in

future studies, our case and control samples were processed with

similar reagents and at the same time, so contamination should not

result in a substantial difference in microbiome signatures between

our comparison groups.

Due to the study’s case-control design, the effect of changes in the

microbiome over time could not be established to identify when

microbial alterations may have occurred in lung cancer patients as

compared to the controls. Therefore, further research into microbial

dysbiosis in lung cancer will ideally require collecting samples at

various time points using prospective cohort designs, although this
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would be a more challenging study to accomplish. However, such a

study might enable a better understanding of when microbial

dysbiosis occurs and how it is associated with clinically important

events, such as disease initiation, progression, or treatment response.

Despite these limitations, this study has several significant

strengths, including the direct comparison of the oral, tracheal,

lung tumor, and non-neoplastic lung microbiome versus the oral

and tracheal microbiome of control patients without lung cancer.

Also important is the use of WGSS in addition to 16S rRNA gene

sequencing of the specimens. WGSS enabled greater taxonomic

resolution, specifically to the species level—more so than 16S rRNA

gene sequencing would have enabled alone.

WGSS additionally enabled the elucidation of viral, not merely

bacterial, signatures to generate a more holistic view of the

microbial environments among the different sample types.

However, since the vast majority (93%) of viral signatures were

unclassified, we are conducting additional research studies focusing

on the more specific PCR approaches targeting specific viral taxa

suspected to be associated with lung cancer, including human

retroviruses, human papillomavirus (Srinivasan et al., 2009; Xiong

et al., 2017), and hepatitis B virus (Sundquist et al., 2014), as

documented in our prior pan-microbial array study of biobanked

frozen lung cancers (Robinson et al., 2016).
4.8 Conclusions

The primary focus of this study was to evaluate the oral and

lower airway microbiome compositions of lung cancer cases

compared to melanoma controls to reveal any differences that

may have potential applications as lung cancer biomarkers.

Indeed, in this case-control study, we found that bacterial

communities of lung cancer versus melanoma lavages were

significantly different although unfortunately no such trend was

observed for gargles. Several bacterial taxa, including oral

commensals Neisseria subflava and Granulicatella adiacens were

significantly 8-fold differentially abundant in the tracheobronchial

lavages of lung versus melanoma patients suggesting these

organisms may warrant future study as more-invasive potential

confirmatory biomarkers of lung cancer when bronchoscopy results

are equivocal. Like other published studies, we found a dysbiotic

tracheal microbiome with extensive 2-3 times enrichment of oral

microbiota (higher abundances of oral commensals Granulicatella,

Capnocytophaga, Leptotrichia and Neisseria) in lung cancer patients

compared to controls. The control lavages have a markedly reduced

abundance of oral taxa. This suggests far more microaspiration and

resultant inflammation occurs in lung cancer patients.

The tumor microbiome shows substantial differences between

the lavages and gargles, such that they cannot accurately stand in as

proxies of the tumor microbiome. However, the genus Burkholderia

in particular, appeared more abundant and prevalent in tumor

tissue versus both lavages and gargles, suggesting a potential role of

this organism in tumorigenesis or at least it may be an opportunistic

inhabitant of the tumor microenvironment. Finally, for the

microvirome, our WGSS and bioinformatics approaches left the
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vast majority of the viral taxa unclassified in lung cancer and control

lavages (92.6%) and in gargles (74.6%), thus hampering a

meaningful evaluation of the role of virus in lung cancer. Overall,

this study generated encouraging preliminary results confirming

some of the findings in the published literature that can be used in

hypothesis generation for basing future studies directed at

identifying potential microbial biomarkers of lung cancer.
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SUPPLEMENTARY FIGURE 1

Comparing the bacteriomes, assessed by whole genome shotgun

sequencing, of tracheobronchial lavages from lung cancer cases and
melanoma controls. (A) Comparison of the prevalence of bacterial species.

(B) Comparison of the relative abundance of bacterial species. (C)
Comparison of the alpha diversity, as measured by Shannon, Simpson, and

Chao1 indices. (D) Comparison of the beta diversity, measured by Bray Curtis,
Weighted and Unweighted UniFrac distance measures.

SUPPLEMENTARY FIGURE 2

Comparing the bacteriomes, assessed by whole genome shotgun

sequencing, of oral gargles of lung cancer cases and melanoma controls.
(A) Comparison of the prevalence of bacterial species in lung cancer versus

melanoma control oral gargles. (B) Comparison of the relative abundance of
bacterial species in lung cancer versus melanoma control oral gargles. (C)
Comparison of the alpha diversity, as measured by Shannon, Simpson, and

Chao1 indices, between lung cancer case andmelanoma control oral gargles.
(D) Comparison of the beta diversity, measured by Bray Curtis, Weighted and

Unweighted UniFrac distance measures, between lung cancer case and
melanoma control oral gargles.

SUPPLEMENTARY FIGURE 3

Comparing the viromes, assessed by whole genome shotgun sequencing, of
oral gargles of lung cancer cases and melanoma controls. (A) Comparison of

the prevalence of viral species in lung cancer versus melanoma control oral

gargles. (B) Comparison of the relative abundance of viral species in lung
cancer versus melanoma control oral gargles. (C) Comparison of the alpha

diversity, as measured by Shannon, Simpson, and Chao1 indices, between
lung cancer case and melanoma control oral gargles. (D) Comparison of the

beta diversity, measured by Bray Curtis, Weighted and Unweighted UniFrac
distance measures, between lung cancer case and melanoma control

oral gargles.
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SUPPLEMENTARY FIGURE 4

Comparing the bacteriomes, assessed by 16S rRNA gene sequencing, of
tumor and normal tissue from lung cancer patients. (A) Comparison of the

prevalence of bacterial genera in lung cancer tumor versus normal tissue. (B)
Comparison of the relative abundance of bacterial genera in lung cancer
tumor versus normal tissue. (C) Comparison of the alpha diversity, as

measured by Shannon, Simpson, and Chao1 indices, between tumor and
normal tissue from lung cancer patients. (D) Comparison of the beta diversity,

measured by Bray Curtis, Weighted and Unweighted UniFrac distance
measures, between tumor and normal tissue from lung cancer patients.

SUPPLEMENTARY FIGURE 5

Comparing the bacteriomes, assessed by 16S rRNA gene sequencing, of TBLs

and oral gargles of lung cancer cases. (A) Comparison of the prevalence of
bacterial genera in lung cancer oral gargles versus TBLs. (B) Comparison of

the relative abundance of bacterial genera in lung cancer versus melanoma
control oral gargles. (C) Comparison of the alpha diversity, as measured by

Shannon, Simpson, and Chao1 indices, between lung cancer oral gargles and

TBLs. (D) Comparison of the beta diversity, measured by Bray Curtis,
Weighted and Unweighted UniFrac distance measures, between lung

cancer oral gargles and TBLs.

SUPPLEMENTARY FIGURE 6

Comparing the bacteriomes, assessed by whole genome shotgun sequencing,

of TBLs and oral gargles of lung cancer cases. (A)Comparison of the prevalence

of bacterial species in lung cancer oral gargles versus TBLs. (B) Comparison of
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the relative abundance of bacterial species in lung cancer oral gargles versus
TBLs. (C)Comparison of the alpha diversity, as measured by Shannon, Simpson,

and Chao1 indices, between lung cancer oral gargles and TBLs. (D)Comparison

of the beta diversity, measured by Bray Curtis, Weighted and Unweighted
UniFrac distance measures, between lung cancer oral gargles and TBLs.

SUPPLEMENTARY FIGURE 7

Comparing the viromes, assessed by whole genome shotgun sequencing, of

oral gargles and TBLs of lung cancer cases. (A) Comparison of the prevalence
of viral species in lung cancer oral gargles versus TBLs. (B) Comparison of the

relative abundance of viral species in lung cancer oral gargles versus TBLs. (C)
Comparison of the alpha diversity, as measured by Shannon, Simpson, and
Chao1 indices, between lung cancer oral gargles and TBLs. (D)Comparison of

the beta diversity, measured by Bray Curtis, Weighted and Unweighted
UniFrac distance measures, between lung cancer oral gargles and TBLs.

SUPPLEMENTARY FIGURE 8

Comparing the bacteriomes, assessed by 16S rRNA gene sequencing, of TBLs

and tumor tissue of lung cancer cases. (A) Comparison of the prevalence of
bacterial genera in lung cancer TBLs versus tumor tissue. (B) Comparison of

the relative abundance of bacterial genera in lung cancer TBLs versus tumor

tissue. (C) Comparison of the alpha diversity, as measured by Shannon,
Simpson, and Chao1 indices, between lung cancer TBLs versus tumor

tissue. (D) Comparison of the beta diversity, measured by Bray Curtis,
Weighted and Unweighted UniFrac distance measures, between lung

cancer TBLs versus tumor tissue.
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