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University of California, Davis, United States
Shaghayegh Baradaran Ghavami,
Shahid Beheshti University of Medical
Sciences, Iran

*CORRESPONDENCE

Shelly A. Buffington

shelly.buffington@bcm.edu

RECEIVED 28 June 2024
ACCEPTED 11 November 2024

PUBLISHED 03 December 2024

CITATION

Matz LM, Shah NS, Porterfield L, Stuyck OM,
Jochum MD, Kayed R, Taglialatela G,
Urban RJ and Buffington SA (2024)
Gut pathobiont enrichment observed
in a population predisposed to
dementia, type 2 diabetics of Mexican
descent living in South Texas.
Front. Microbiomes 3:1456642.
doi: 10.3389/frmbi.2024.1456642

COPYRIGHT

© 2024 Matz, Shah, Porterfield, Stuyck,
Jochum, Kayed, Taglialatela, Urban and
Buffington. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 03 December 2024

DOI 10.3389/frmbi.2024.1456642
Gut pathobiont enrichment
observed in a population
predisposed to dementia, type 2
diabetics of Mexican descent
living in South Texas
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Giulio Taglialatela6, Randall J. Urban2

and Shelly A. Buffington1,7*

1Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States,
2Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston,
TX, United States, 3Department of Family Medicine, The University of Texas Medical Branch at
Galveston, Galveston, TX, United States, 4Sealy Institute for Vaccine Sciences, The University of Texas
Medical Branch at Galveston, Galveston, TX, United States, 5Department of Obstetrics and
Gynecology, Baylor College of Medicine, Houston, TX, United States, 6Department of Neurology,
Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch at
Galveston, Galveston, TX, United States, 7Department of Neuroscience, Baylor College of Medicine,
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Type 2 diabetes (T2D) is a common forerunner of neurodegeneration and

accompanying dementia, including Alzheimer’s Disease (AD), yet the

mechanisms underlying this comorbidity remain unresolved. Individuals of

Mexican descent living in South Texas have increased prevalence of comorbid

T2D and early onset AD, despite low incidence of the APOE-e4 risk variant among

the population and an absence of a similar predisposition among relatives

residing in Mexico – suggesting a role for environmental factors in coincident

T2D and AD susceptibility. We therefore sought to test if differences in gut

community structure could be observed in this population prior to any AD

diagnosis. Here, in a small clinical trial (ClinicalTrials.gov Identifier

NCT04602650), we report evidence for altered gut microbial ecology among

subjects of Mexican descent living in South Texas with T2D (sT2D) compared to

healthy controls without T2D (HC), despite no differences in expressed dietary

preferences. We performed metataxonomic 16S rRNA gene amplicon

sequencing of study participant stool samples. Although no significant

decrease in microbial alpha diversity was observed between sT2D gut

communities versus those of HC, body mass index was identified as a driver of

gut community structure. Intriguingly, we observed a significant negative

association of Faecalibacterium and Lachnospiraceae with T2D and an

increase in the abundance of pathobionts Escherichia-Shigella, Enterobacter,

and the erysipelotrichial species Clostridia innocuum among sT2D gut

microbiota, as well as differentially abundant gene and metabolic pathways.
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Future large-scale, longitudinal sequencing efforts of the gut microbiome of

individuals with T2D who go on to develop AD might identify key actors among

“disease state”microbiota that contribute to increased susceptibility to comorbid

dementia. Finally, we identified candidate microbiome-targeted approaches for

the treatment of T2D.
KEYWORDS
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Introduction

Epidemiological studies identify type 2 diabetes (T2D) as a

common antecedent of pathological neurodegeneration and

accompanying dementia, including Alzheimer’s Disease (AD)

(Biessels and Despa, 2018; Biessels and Whitmer, 2020; Srikanth

et al., 2020); however, the mechanisms by which T2D increases risk

for neurodegenerative disorders remains unknown. We performed a

small clinical trial in individuals of Mexican descent living in South

Texas. Although it is well established that this population is at

increased risk of developing both T2D and, subsequently, comorbid

AD compared to non-Hispanic whites (O'Bryant et al., 2013a;

Johnson et al., 2015), the contributing factors and underlying

pathophysiology remain unknown. The leading risk factor for T2D

is obesity (Lillioja et al., 1993; Franks and McCarthy, 2016).

According to the Centers for Disease Control (Center for Disease

Control and Prevention, 2018), Texas ranks 14th in the nation for

obesity prevalence (Flegal et al., 2016). Within the Texan population,

individuals of Mexican descent are disproportionately afflicted by

obesity and T2D, with twice the prevalence of T2D (15.7%) relative to

non-Hispanic whites (Umpierrez et al., 2007; Fisher-Hoch et al.,

2010; Ross et al., 2015). Although a combination of genetic and

environmental factors contribute to the etiology and pathophysiology

of obesity (Franks and McCarthy, 2016) and comorbid T2D (Franks

and McCarthy, 2016; Mambiya et al., 2019; Guzman-Castaneda et al.,

2020), a recent study of 132 twin pairs found that – independent of

genetics – overnutrition is the main factor underlying higher body

mass index (BMI) (Berntzen et al., 2019). Furthermore, despite

similar genetics, the Health and Aging Brain among Latino Elders

(HABLE) study found the prevalence of abdominal obesity and T2D

in Americans of Mexican descent to be significantly higher than in

similarly aged patients in a strictly Mexican cohort in the Mexican

Health and Aging Study (MHAS) (Vintimilla et al., 2020). This

finding suggests that environmental factors associated with migration

have a significant effect on metabolic health.

Mexican immigrants to the US and their descendants are faced

with significant dietary changes, including exposure to a Western
02
diet (Santiago-Torres et al., 2016). Characterized by increased

animal protein and sugar consumption with decreased complex

carbohydrate consumption, Western diet contributes to

inflammation and pathological weight gain in diet-induced

obesity (Mozaffarian et al., 2011; Longoria et al., 2022).

Importantly, host diet-derived macronutrient availability regulates

the composition of the human gut microbiome (David et al., 2014;

Turnbaugh, 2017). The gut microbiome is emerging as a powerful

regulator of host physiology (Clemente et al., 2012), including

metabolic function (Nicholson et al., 2012; Tremaroli and

Backhed, 2012; Vallianou et al., 2019), brain function, and

behavior (Sampson and Mazmanian, 2015; Vuong et al., 2017;

Jasarevic and Bale, 2019; Sherwin et al., 2019). Importantly, host

diet-derived macronutrient availability regulates the composition of

the human gut microbiome (David et al., 2014; Turnbaugh, 2017),

and an anti-inflammatory diet was recently shown to reduce risk of

dementia in patients with cardiometabolic disease by 31 percent

(Dove et al., 2024). Although recent studies identify key gut

microbiome signatures in patients with obesity and T2D

(Turnbaugh et al., 2006; Turnbaugh et al., 2009), we sought to

characterize the gut microbiome of individuals of Mexican descent

living in the US, a population at increased risk of developing

comorbid T2D and AD.

The potential contribution of nongenetic factors, such as

changes in the functional composition of the gut microbiome, to

AD prevalence in individuals of Mexican descent with T2D is

supported by several recent studies. First, a meta-analysis of two

large-scale studies comparing risk factors for mild cognitive

impairment (MCI) in non-Hispanic Americans versus Mexican

Americans found that among age, education, Apolipoprotein E

(APOE) e4 status, and gender, only advanced age was a significant

risk factor for MCI in Mexican Americans (O'Bryant et al., 2013b).

In a second study, analysis of serum samples identified divergent

biomarker profiles in Mexican Americans with AD compared to

non-Hispanic whites with AD (O'Bryant et al., 2013c).

Furthermore, Bayesian gene-set enrichment identified differential

methylation in clusters of genes associated with metabolically
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driven systemic inflammation in Mexican Americans with AD

(Pathak et al., 2019). Additionally, there is an increase in

comorbid depression in Mexican Americans with AD (Johnson

et al., 2015; Johnson et al., 2019). In this context, changes in the gut

microbiome, including those that alter the expression of

neurotransmitters and their precursors, have been causally linked

to depression in humans (Bastiaanssen et al., 2020; Cruz-Pereira

et al., 2020; Yang et al., 2020). Taken together, these studies

emphasize how characterization of gut microbiome signature(s)

of Americans of Mexican descent with T2D could (Biessels and

Whitmer, 2020) provide insight into the relationship between T2D

and AD and (Srikanth et al., 2020) identify a new class of innovative

treatments to prevent or delay the onset of cognitive impairment in

individuals with T2D.

For this pilot study, we recruited twelve individuals of Mexican

descent aged 50 – 70 years living in South Texas, within the

Houston-Galveston metroplex and analyzed stool samples along

with questionnaire data (Figure 1). Half of the study participants

were subjects with T2D (sT2D) while the remaining six were

healthy controls without diabetes (HC). Here we show that sT2D

report a significant increase in gastrointestinal symptom severity

compared to HC despite no significant difference in dietary

preferences. 16S ribosomal RNA (rRNA) gene amplicon

sequencing of stool specimens collected from study participants

revealed only slight differences in alpha diversity and a strong

interaction of BMI but not diabetes status on community structure.

Moreover, we identified associations of specific taxa with diabetes

status. Finally, predictive functional profiling identified

differentially abundant gene pathways between cohorts. Together,
Frontiers in Microbiomes 03
our results suggest that alternations in the functional composition

of the gut microbiome of individuals with T2D could precede and

potentially contribute to risk for inflammation-associated

neurodegenerative disorders.
Materials and methods

Recruitment and observational clinical
study details

We performed a case-control, cross-sectional observational

clinical study based at The University of Texas Medical Branch at

Galveston (UTMB). Human subjects were recruited through UTMB’s

Endocrinology and Family Medicine clinics in accordance with

UTMB Institutional Review Board-approved protocol 20-0201

(ClinicalTrials.gov Identifier NCT04602650; Buffington, PI; Urban,

MD) between November 2020 and May 2022. Notably, the study was

registered with ClinicalTrials.gov prior to participant recruitment.

Subjects were pre-screened to confirm eligibility. Inclusion criteria for

sT2D: 50 – 70-year-old males or females of Mexican descent living in

Texas with a diagnosis of type 2 diabetes who were willing and able to

give informed consent to participate in the study. Inclusion criteria

for controls: 50 – 70-year-old males or females of Mexican descent

living in Texas without a history of type 2 diabetes who were willing

and able to give informed consent to participate in the study. Each

group included English-, Spanish-speaking, and bilingual

participants. Exclusion Criteria were hypertension requiring more

than three anti-hypertensive medications for control, chronic kidney
FIGURE 1

Study schematic and STORMS (Mirzayi et al., 2021) flowchart. Twelve individuals meeting study inclusion criteria completed the study. Each
participant completed the gastrointestinal symptom rating scale (GSRS), modified Leeds Food Preference Questionnaire (LFPS), and neurological
history questionnaire. Subjects submitted fecal specimens collected at home for 16S ribosomal RNA gene amplicon sequencing and analysis to
characterize gut microbial communities.
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disease (CKD) stage 4 or higher, a history of coronary bypass or stent

placement, current pregnancy, and a history of gut inflammation,

including irritable bowel syndrome (IBS), celiac disease, or active

diverticulitis. Pre-screened subjects that met the defined criteria were

consented and enrolled at the UTMB Clinical Research Center.

Participants completed medical history, dietary preference,

neurological, and gastrointestinal function questionnaires (see

Supplementary File 1) and were instructed on home use of the

provided fecal sample collection kit (DNA GenoTek OMR-200). No

subjects were excluded on account of recent antibiotic usage (one

subject reported taking a 10-day course of Augmentin roughly 8

weeks prior to sample collection). Subjects were compensated with

two gift cards: one upon enrollment and one upon receipt of sample.

Samples were de-identified and stored at -80°C until prepared for

extraction and analysis. Samples were shipped on dry ice fromUTMB

in Galveston, TX to Baylor College of Medicine in Houston, TX

where they were extracted and analyzed.
Gastrointestinal Symptom Rating Scale
questionnaire and scoring

The GSRS consists of 15 questions to assess reflux (Q2 and 3),

abdominal pain (Q1, 4, and 5), indigestion (Q6–9), diarrhea (Q11,

12, and 14), and constipation (Q10, 13, and 15) (Svedlund et al.,

1988; Revicki et al., 1998). Subjects were asked to numerically score

their subjective symptoms on a scale of 1-7 (1 = no discomfort; 7 =

very severe discomfort). The sum of the scores for all 15 items is

regarded as the GSRS total score. Total scores ranged from 15 (best

outcome) to 105 (worst outcome). The GSRS was administered in

the subject’s primary language, English or Spanish. Certified

Spanish translation of each questionnaire in the study was

provided by UTMB translation services. Cumulative and average

scores were calculated. For the average GSRS score, averages of the

five categories for subject were averaged and outliers were

determined using Grubbs’ test with alpha = 0.05. As data passed

the Shapiro-Wilk normality test, but variances were significantly

different, statistical significance was determined using an unpaired,

two-tailed t test with Welch’s correction, where *p<0.05.
Food preference questionnaire

The food preference questionnaire (FPQ) (Finlayson et al.,

2007) screens for known food allergies and food preferences

across a variety of categories including red meat, chicken, fish,

other protein (e.g., egg), grains and starches, dairy, fruit, vegetables,

and sugary or fatty foods. It is a specific 3-item questionnaire in

which subjects are asked to first indicate whether they identify as

vegan, vegetarian, pescatarian, or none of the above. The subject is

then asked whether they have any food allergies to the top eleven

common food allergens and given the option to specify a food

allergy not listed under, “Other.” Finally, the subject is asked to
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indicate preference, ranging from, “dislike a lot,” to, “like a lot,” for

59 specific food items listed in tabular format.
Neurological history questionnaire

The neurological questionnaire is a specific 2-item

questionnaire that screens for history of neurological disorders

including Alzheimer’s Disease (AD), Parkinson’s Disease (PD),

Lewy Body Dementia (LBD), Bipolar Disorder, Schizophrenia,

Autism Spectrum Disorder (ASD), Multiple Sclerosis (MS),

Amyotrophic Lateral Sclerosis (ALS; Lou Gherig’s Disease),

Guillain-Barre Syndrome (GBS), and Attention Deficit and

Hyperactivity Disorder (ADHD). In the second part, subjects are

asked if they have ever experienced ischemic stroke or mild

traumatic brain injury (mTBI).
Stool sample analysis

Metataxonomic 16S rRNA gene amplicon sequencing was

performed by the Baylor College of Medicine Alkek Center for

Metagenomics and Microbiome Research (CMMR) as previously

described (Sgritta et al., 2019; Buffington et al., 2021; Di Gesu et al.,

2022). Briefly, bacterial genomic DNA was extracted using the

DNeasy PowerSoil DNA Isolation Kit (MO BIO Laboratories,

Carlsbad, CA), and the 16S ribosomal DNA (rDNA)

hypervariable region 4 (V4, Forward: GTGCCAGCMG

CCGCGGTAA, Reverse: GGACTACHVGGGTWTCTAAT) was

amplified by PCR and sequenced on the MiSeq platform

(Illumina). A bacterial mock community (MSA-2002™, ATCC)

was used as an in situ positive control during extraction,

amplification, and sequencing of samples. Kit elution buffers and

water are used as negative controls during extraction and

amplification, respectively. Raw data was uploaded into NCBI

BioProject number PRJNA986954. After Trimmomatic (Bolger

et al., 2014) and FastQC (Andrews, 2010), reads were imported

into R and quality trimmed based on a minimum read length of 50,

and truncated to 200–250bp based on quality control scores < 20.

Filtered reads were then inferred from Amplicon Sequence Variants

(ASVs) using DADA2 (Callahan et al., 2016) followed by chimera

removal and taxonomic classification using DECIPHER (Wright,

2016) against the SILVA Database 138 (Quast et al., 2013). ASV

counts, taxonomy, and metadata were imported into phyloseq for

downstream analysis (McMurdie and Holmes, 2013). ASV counts

were agglomerated to genus-level specificity, filtered based on 1%

prevalence and detection, and compositionally transformed into

relative abundances for taxonomic comparisons and richness

estimations. Beta diversity was determined from VST-

transformed ASVs based on Euclidian distance in Vegan. The

envfit function, part of the vegan package, was used to fit

environmental vectors onto an ordination (https://search.r-

project.org/CRAN/refmans/vegan/html/envfit.html). MaAsLin2
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was used to identify associations between specific ASV/taxa and

diabetes status (Mallick et al., 2021).
Functional inference using PICRUSt2

Functional potential of the microbiome was inferred using

PICRUSt2, which predicts the metagenomic content based on

ASVs (Douglas et al., 2020). PICRUSt2 was used to predict

functional profiles from the normalized count table, identifying

functional gene families (MetaCyc and KEGG Pathways) associated

with each ASV, and then summing these contributions to obtain the

predicted functional profile for each sample. A comparison across

diabetes status was conducted using DESeq2 with an upstream

independent filtering of pathways containing less than 10 detected

counts (Love et al., 2014). Reported results have a log2 fold

change>2.5 and an adjusted p-value of <0.05. Significance was

corrected for multiple comparisons using the Benjamini-

Hochberg multiple test correction.
Results

Demographics and clinical characteristics

Telephone scripts were read to 30 potential subjects. Of those, 18

were pre-screened. Thirteen subjects were deemed eligible and

enrolled. Of those, six healthy controls without diabetes (HC; 1

male, 5 female) and six subjects with type 2 diabetes (sT2D; 3

male, 3 female) completed the study, for a total of 12 participants.

The average age of HC and sT2D groups was 54 (HC) and 61 (sT2D)

years. Average body mass index (BMI) was 27.9 (HC; range 21.1–

34.5) and 34.6 (sT2D; range 28.5–45.4) kg/m2, average A1C was 5.3

(HC; range 4.9–5.6) and 7.5 (sT2D; range 5.5–9.6) mg/dL, average

systolic pressure was 117 (HC; range 97– 137) and 124 (sT2D; range

106–159) mmHg, and diastolic pressure was 72.8 (HC; range 58–87)

and 79.2 (sT2D; range 72–92) mm Hg (Supplementary Figure S1).
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Only A1C was significantly different between cohorts after correcting

for multiple comparisons (Table 1). All sT2D were prescribed

antidiabetics, including sulfonylureas (glipizide), glucagon-like

peptide 1 (GLP-1) receptor agonists (semaglutide), sodium-glucose

co-transporter-2 (SGLT-2) inhibitors (empagliflozin), dipeptidyl

peptidase-4 (DPP-4) inhibitors (linagliptin), and biguanides

(metformin) (Supplementary Table S1). All sT2D were taking

metformin, and most were on two diabetic medications. No

subjects were on insulin, as their non-insulin medications were in

the process of titration for dose adjustment to reach maximum dose

before adding insulin. Additionally, for some patients, HbA1C targets

at 7–8% are appropriate depending on their life expectancy and co-

morbidities (Samson et al., 2023).
Questionnaire results: increased
gastrointestinal symptom severity,
equivalent food preference reported
by sT2D

No neurological events (see Materials and Methods) were

reported by study participants. Interestingly, both cumulative and

category-averaged GSRS scores were significantly higher in sT2D

compared to HCs (Figures 2A, B), despite no differences in dietary

expressed preferences (Figure 2C). No significant differences among

individual GSRS categories (reflux, abdominal pain, indigestion,

diarrhea, or constipation) were identified between groups

(Supplementary Figure S2).
Microbiome analysis reveals that BMI is a
significant contributor to gut
community structure

To determine if any differences were present at the genus level

between sT2D and HC, we performed metataxonomic 16S ribosomal

RNA (rRNA) gene amplicon sequencing of stool samples provided by
TABLE 1 Health metrics of participants enrolled in and completing the study.

Characteristic HC sT2D p-value Adjusted p-value†

Age (mean years) 54 61 0.014088 0.070438

Ethnicity, n (%)

Mexican American 6 (100%) 6 (100%)

Sex, n (%)

Female 5 (83%) 3 (50%)

Male 1 (17%) 3 (50%)

BMI (mean kg/m2 ± SD) 27.9 ± 5.9 34.6 ± 6.7 0.095675 0.478374

A1C (mean mg/dL ± SD) 5.3 ± 0.2 7.5 ± 1.4 0.003162 0.015810†

Systolic Pressure (mean mm Hg ± SD) 117.0 ± 15.6 124.0 ± 19.2 0.504296 >0.99999

Diastolic Pressure (mean mm Hg ± SD) 72.8 ± 11.4 79.2 ± 7.2 0.275352 >0.99999
†Denotes significance as determined by an unpaired t test with Bonferroni-Dunn’s correction for multiple comparisons (FDR Q = 5%).
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study participants (see Materials & Methods). Although averages for

combined alpha (within sample) diversity metrics (Figures 3A–D)

including amplicon sequence variants (ASVs), Chao1 index, Shannon

Index, and Inverse Simpson Index were lower for sT2D compared to

HC samples, they were not statistically significant. Furthermore, we

observed no significant differences in beta (between sample) diversity as

measured by permutational ANOVA of Bray-Curtis (Figure 3E), and

Weighted (Diabetes Status: p = 0.5682, R2 = 0.0904, permutations =

9999; BMI: p = 0.8771, R2 = 0.0159, permutations = 9999) or

Unweighted UniFrac distances (Diabetes Status: p = 0.6119, R2 =

0.0780, permutations = 9999; BMI: p = 0.0121, R2 = 0.1470,

permutations = 9999), possibly due to the small sample size of this

pilot cohort. However, sample clusters did trend towards significance

based on body mass index (BMI) values (Figure 3F). Specifically, use of

the Envfit function to fit environmental vectors age and BMI onto an

ordination plot revealed that BMI, but not age, is a significant driver of

community structure (BMI: p = 0.007, R2 = 0.7062, permutations =

999; Age: p = 0.750, R2 = 0.0548, permutations = 999; Supplementary

Figure S3).
Microbiome analysis reveals significant
differences in taxa abundance
between groups

We next used Microbiome Multivariable Associations with

Linear Models (MaAsLin2) (Mallick et al., 2021) to determine if

any associations existed between ASVs and diabetes status, and

identified seventeen taxa with p<0.05 (Figure 4A, Supplementary

File 2), of which two passed after controlling for false discovery

(Faecalibacterium, FDR=0.003; Lachnospiraceae, FDR=0.249).

sT2D samples were associated with Streptococcus, Escherichia-

Shigella, Enterobacter, and Clostridum innocuum (Figures 4B–E),

while HC samples were associated with Lachnospiraceae,

Oscillobacter, Akkermansia, Alistipes, Anaerostipes, Roseburia, and

Faecalibacterium (Figures 4F–R).
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Predictive functional profiling identifies
differentially abundant gene pathways
between cohorts

Finally, to perform predictive functional profiling, we first used

PICRUSt2 to generate functional outputs based on Kyoto

Encyclopedia of Genes and Genomes (KEGG) (Goto et al., 1997;

Kanehisa et al., 2012) and MetaCyc databases (Tables 2, 3, Figure 5),

and then performed pairwise comparisons using DESeq2 to

determine if any of these pathways were significantly enriched in

sT2D compared to HC samples. We identified four significantly

differentially abundant KEGG pathways: Bacterial invasion of

epithelial cells, Staphylococcus aureus infection, alpha-linolenic

acid metabolism, and polycyclic aromatic hydrocarbon

degradation (Table 2). Twenty-five KEGG orthologs (KO) present

in 105 ASVs contributed to these pathways (Supplementary

Table S2, Supplementary File 3). From MetaCyc, we identified 15

significantly differentially abundant metabolic pathways

(Table 3, Figure 5).
Discussion

A growing body of literature links inflammation and dysbiosis

of the gut microbiome to AD susceptibility [for review see (Stolzer

et al., 2023)]. For instance, a recent study of a small cohort of

dementia patients revealed divergent gut microbiota composition,

increased gut permeability, and inflammation, implicating a

microbial determinant in neuroimmune dysregulation, an

emerging player in neurodegeneration (Stadlbauer et al., 2020).

Specifically, authors reported increased serum diaminooxidase

(DAO) and soluble CD-14, markers of intestinal permeability and

inflammation, respectively, in subjects with dementia. Although

alpha diversity was unchanged, the authors did report divergent gut

ecology (as determined by beta diversity analysis) in subjects with

dementia compared to controls that also clustered by severity. The
FIGURE 2

Subjects with Type 2 Diabetes report increased GI symptom severity, but have no change in dietary preferences, compared to healthy controls.
(A) Cumulative and (B) average severity scores from the gastrointestinal symptom rating scale (GSRS) show that sT2D report higher GI symptom
severity compared to HC [A: (t(6.539) = 3.305, p = 0.0144); B: (t(6.073) = 3.187, p = 0.0186] as determined by a two-tailed unpaired Welch’s t-test,
with one outlier removed (Grubbs’ test where alpha = 0.05; *p < 0.05). (C) In contrast, food preferences are not statistically different between
groups. Subjects were asked to rank foods by preference, where 0 = Not applicable, 1 = Dislike a lot, 2 = Dislike a little, 3 = Neither like nor dislike, 4
= Like a little, and 5 = Like a lot. Analysis by a mixed-effects model with Šıd́ák’s correction for multiple comparisons did not identify any significant
differences between HC and sT2D.
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aim of this current study was to examine if changes in gut

community structure occur in individuals with diabetes within a

population at increased risk for AD. This multidisciplinary pilot

study builds on previous investigations into the gut microbial

community structure of a similar cohort of Americans of

Mexican descent with high rates of obesity and diabetes (Fisher-

Hoch et al., 2010; Ross et al., 2015). Although not statistically

significant, our finding that some metrics of within-sample (alpha)

diversity were slightly lower in gut microbiomes of sT2D compared

to HC (Figures 3A, B, D) agrees with a previous study reporting

altered composition and functional capacity of gut microbiomes in

obese patients (Thingholm et al., 2019). This same study, which

examined the gut microbiomes of hundreds of lean non-diabetic,

obese non-diabetic, and obese type 2 diabetic subjects, also reported

differences in between-sample (beta) diversity not captured in our

small pilot study. Importantly, however, our findings agree with

other previously reported associations between T2D or other

chronic conditions (including inflammatory bowel disease) and

changes in specific taxa, including higher abundance of

Escherichia-Shigella and lower abundance of Faecalibacterium,

Alistipes, Oscillobacter, Roseburia, and Akkermansia (Figure 4)

(Thingholm et al., 2019; Mallick et al., 2021). Given the person-

to-person variability observed among gut microbiome profiles of

aging populations (Claesson et al., 2011), our results from a small

cohort could be indicative of a predictive disease signature among

patients with T2D predisposed toward AD. Furthermore, they

support a hypothesis that a subgroup of patients with type 2

diabetes who would go on to develop AD could benefit from
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characterization and precision targeting of the gut microbiome to

reduce inflammation and thereby prevent or at least postpone the

onset of dementia.

Our study is not without limitations. First, enrollment took

place from 2020–2022, and recruitment challenges associated with

the COVID-19 pandemic resulted in a small sample size (N =12).

Longitudinal, sufficiently powered studies are needed to continue

exploring how alterations in gut microbiome community structure

contribute to risk for neurodegenerative disorders. Second, while we

did not detect any differences in food preferences between HC and

sT2D, it is possible that the food preference questionnaire –

although appropriate to assess exposure to a Western pattern diet

high in carbohydrate and fat but low in fiber content – was not

ideally suited to our specific cohort. Additionally, we do not have

any data on the immigration history of participants, which might

inform shifts in diet and therefore microbiome composition. Of

note, all six sT2D were prescribed metformin, a known modulator

of gut microbiome community composition (Sun et al., 2018), and

treatment with sulfonylurea drugs (taken by one subject here)

increases risk for hypoglycemia, which may accelerate dementia

(Meneilly and Tessier, 2016). Notably, Thingholm et al. found clear

associations between host microbiome variation and medications,

supplementations, and diet, making direct changes due to diabetes

status difficult to establish. Therefore, the potentially confounding

variable of medication (including antihypertensive and antilipemic

drugs) should be considered in subsequent studies examining links

between the gut microbiome, diabetes, and dementia. Also of note,

in our study BMI was not significantly different between cohorts
FIGURE 3

Analysis of alpha diversity metrics among study participants revealed a trending decrease in microbial diversity among subjects with T2D.
(A–D) Alpha diversity graphs for males and females combined analyzed by two-tailed, unpaired Welch’s t-test: (A) ASVs (t(9.661) = 0.8404,
p = 0.4210), (B) Chao1 Index (t(9.323) = 0.8917, p = 0.395), (C) Shannon Index (t(6.877) = 0.4008, p = 0.7007), and (D) Inverse Simpson Index (t
(6.328) = 1.086, p = 0.317). Principal coordinate analysis of (E) Bray-Curtis dissimilarities analyzed by permutational ANOVA (p = 0.175, R2 = 0.1028,
permutations = 999) did not reveal statistically significant clusters between subject groups but did trend toward significance based on (F) BMI values
(p = 0.0740, R2 = 0.1188, permutations = 999). Similarly, unweighted UniFrac (which incorporates phylogenetic distance but does not consider
abundance) analysis was significantly different for BMI but not Diabetes Status; however, this significance was not observed by Weighted UniFrac
(which does consider abundance). Importantly, betadisper analysis did not reveal significant within group significant differences by either method
(Bray-Curtis: p = 0.7844; Unweighted and Weighted UniFrac: p = 0.1512 and 0.9136, respectively). See also Supplementary File 2.
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(p = 0.096144, Table 1) but did strongly associate with community

structure (Table 1, Figure 3, Supplementary Figure S3). We

therefore found it curious that BMI, but not diabetes, is a strong

driver of gut community structure. Given the findings of

Thingholm et al., it is possible that the gut-modulating

medications being taken by the subjects with T2D could mask an

associated risk/contribution to gut ecology, whereas BMI is an

indicator of obesity which is driven by diet, also the main driver

of gut microbiome ecologyx. Of note, no healthy control subjects

were pre-diabetic based on A1C, but there is an overlap in the range

of BMIs across groups. Notably, it is difficult to match BMI between

cohorts in a diabetes study, given that a BMI ≥ 30 kg/m2 has been

shown to be a strong indicator of “adult lifetime risk of diabetes

(Narayan et al., 2007)” nevertheless, the role of diabetes specifically

(independent of obesity) as a driver of AD must be carefully teased
TABLE 2 Results of four significant differentially abundant ASV-inferred
KEGG pathways associated with sT2D compared to HC samples (see also
Supplementary Table S2, Supplementary File 3).

Feature Pathway Name Log2FoldChange Adjusted
p-value

KO00592 Alpha-linolenic
acid metabolism

2.03 0.0066

KO00624 Polycyclic aromatic
hydrocarbon
degradation

9.70 0.0034

KO05150 Staphylococcus
aureus infection

2.90 0.0001

KO05100 Bacterial invasion of
epithelial cells

3.28 0.0074
FIGURE 4

Microbiome Multivariable Associations with Linear Models (MaAsLin2) detected associations of specific taxa with diabetes status. (A) Histogram of
MaAsLin2 Coefficient Values (effect sizes) for genus-level taxa with p < 0.05. *Indicates significance after FDR correction. (B–R) ASV counts by subject
group for (B) Streptococcus, (C) Escherichia-Shigella, (D) Enterobacter, (E) Clostridium innocuum group, (F) Lachnospiraceae (ASV 230), (G)
Lachnospiraceae (ASV 94), (H) Akkermansia, (I) Lachnospiraceae (ASV 102), (J) Alistipes (ASV 113), (K) Oscillospirales, (L) Lachnospiraceae UC, (M)
Anaerostipes, (N) Roseburia, (O) Alistipes (ASV 115), (P) Alistipes (ASV 17), (Q) Lachnospiraceae (ASV 87), and (R) Faecalibacterium, with MaAsLin2 p- and
q-values shown above each taxa. UC; uncultured.
frontiersin.org

https://doi.org/10.3389/frmbi.2024.1456642
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Matz et al. 10.3389/frmbi.2024.1456642
out in future work. A technical limitation of this work is that

amplicon-based sequencing provides genus-level resolution,

whereas metagenomic whole genome shotgun sequencing of

participant samples would provide species-to-strain level-specific

information as well as functional data (as opposed to predicted

functions which may not capture “rare environment-specific

functions (Douglas et al., 2020)” of bacteria whose genomes are
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not currently well-represented). Indeed, metagenomic combined

with metatranscriptomic analysis of gut microbiota from

patients with T2D both pre- and post-medication, and post-AD

diagnosis, will be critical to differentiate between changes in the

composition and functional profile of the gut microbiota due to

various medications and those that may directly contribute to

neurodegeneration. Lastly, given the small sample size and
FIGURE 5

Heatmap of statistically significant Metacyc features that differ between groups with p < 0.05. Heatmap from Metacyc metabolic database based on
PICRUSt2 output (See Materials and Methods and Table 3 for p-values).
TABLE 3 Results of 15 significant differentially abundant ASV-inferred MetaCyc metabolic pathways associated with sT2D compared to HC samples
(See also Figure 5).

Pathway Description Log2FoldChange Adjusted
p-value

ARGDEG-PWY Superpathway of L-arginine, putrescine, & 4-
aminobutanoate degradation

3.887 0.049

AST-PWY L-arginine degradation II 3.919 0.049

FAO-PWY Fatty acid b-oxidation I 2.806 0.019

GLYCOLYSIS-TCA-GLYOX-BYPASS Superpathway of glycolysis, pyruvate dehydrogenase, TCA, &
glyoxylate bypass

3.561 0.036

ORNARGDEG-PWY Superpathway of L-arginine & L-ornithine degradation 3.887 0.049

P105-PWY TCA cycle IV (2-oxoglutarate decarboxylase) 3.686 0.029

P125-PWY Superpathway of (R,R)-butanediol biosynthesis 2.873 0.048

PROTOCATECHUATE-ORTHO-
CLEAVAGE-PWY

Protocatechuate degradation II (ortho-cleavage pathway) 6.595 0.049

PWY-5910 Superpathway of geranylgeranyldiphosphate biosynthesis I
(via mevalonate)

3.911 0.049

PWY-6396 Superpathway of 2,3-butanediol biosynthesis 2.865 0.049

PWY-6629 Superpathway of L-tryptophan biosynthesis 3.319 0.049

PWY-922 Mevalonate pathway I 3.978 0.049

PWY0-1338 Polymyxin resistance 3.374 0.049

TCA-GLYOX-BYPASS Superpathway of glyoxylate bypass & TCA 3.750 0.036

THREOCAT-PWY Superpathway of L-threonine metabolism 7.310 0.014
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only one male in our control cohort, we could not evaluate

sex differences. However, future studies should examine sex

differences, which may be relevant given that that 1) women are

disproportionately affected by AD and 2) recently published results

in preclinical animal models performed by our lab show a sexually

dimorphic impact of diet and [probiotic] supplementation alike on

host gut microbiota composition (Di Gesu et al., 2022).

Data presented here adds to the growing body of work seeking

to determine how T2D predisposes individuals to the cognitive

impairment and underlying neuropathology characteristic of AD.

Given our findings that sT2D reported increase gastrointestinal

symptoms compared to HC (Figure 2), and previous reports of

increased gut permeability and endotoxin load, a noteworthy ASV-

inferred functional KEGG pathway that was differentially abundant

in sT2D in our study was the bacterial invasion of epithelial

cells (pathway ko05100, Table 2, Supplementary Table S2,

Supplementary File 3). Consistent with this finding, we observed

a significant association of Faecalibacterium among healthy control

gut microbiota (Figure 4). Notably, Faecalibacterium prausnitzii has

been shown to enhance gut barrier integrity and intestinal

immunity (Al-Fakhrany and Elekhnawy, 2024). Thus, future

studies examining gut permeability and gut barrier integrity, as

well as the therapeutic potential of probiotic strains with

capacity to strengthen gut barrier integrity, in T2D patient

populations predisposed to AD may be warranted. Conversely,

the microbiome is also a source of neuroprotective metabolites,

such as indole derivatives which modulate host inflammation

(Pappolla et al., 2021). Surprisingly, differentially abundant ASV-

inferred MetaCyc metabolic pathways (including the tryptophan

pathway, an indole precursor) were all elevated in sT2D compared

to HC (Table 3, Figure 5). Although many factors, both genetic and

environmental, contribute to AD susceptibility, targeting the host

gut microbiome may reduce risk in a predisposed population, as

well as in a proportion of the population at large. Exemplifying this

is work in our lab showing striking improvements in offspring

neurological outcomes simply by altering the maternal environment

(gut and serum) through probiotics. As this study was performed in

a very specific demographic, future work comparing our results to

other minority populations at higher risk of T2D would help

understand the impact of environment (diet, lifestyle, etc.),

genetics, and their interactions on AD risk. For instance, given

that we found BMI to be a major driver of microbiome community

structure among participants in our study (Figure 3F), it is possible

that the mechanisms at play and associated risk profile would be

similar to those impacting populations disproportionately affected

by obesity (Hales et al., 2018; Liu et al., 2021).

The results of this study bring us one step closer to the

identification of a microbial or microbially associated signature that

predicts dementia risk, as well as pre- or probiotics that can modulate

said signatures, which would be a key breakthrough that could

revolutionize care for patients with metabolic and neurodegenerative

disorders alike. Moreover, it highlights the therapeutic potential of

targeting the gut microbiome to dampen neuroinflammation in the

context of metabolic and neurodegenerative disorders.
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