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Introduction: The human gut microbiome harbors millions of bacterial species,

including opportunistic pathogens, and this microbial community is exposed to

antimicrobial agents present in food, the external environment, or drugs. Thus, it

increases the risk of commensals being enriched with resistant genes, whichmay

get even transmitted to opportunistic pathogens often with the help of mobile

genetic elements. There is limited information about the current burden of

resistant genes in the healthy gut microbiome of the Indian population, the

latter is not only the largest in the world but is also periodically monitored for the

prevalence of antibiotic resistance in clinical samples.

Methods: We analyzed publicly available fecal whole-metagenome shotgun

sequencing data from 141 samples from three healthy Indian cohorts for

antimicrobial-resistance burden, and their likely transmission modes.

Results: The overall resistance profile showed a higher number of resistance

genes against tetracycline, glycopeptide, and aminoglycoside. Out of a total of

188 antimicrobial resistance genes identified in all cohorts, moderately to highly

prevalent ones could potentially target seven of the ‘reserve’ group antibiotics

(colistin, fosfomycin, Polymyxin). We also observed that geographical location

affected the prevalence/abundance of some of the resistance genes. The higher

abundance of several tetracycline and vancomycin resistance genes in tribal

cohorts compared to the other two urban locations was intriguing. Species E. coli

had the highest number of resistant genes, and given its relatively modest

abundance in gut microbiomes can pose a risk of becoming a hub for the

horizontal transfer of resistance genes to others. Lastly, a subset of the resistance

genes showed association with several types of mobile genetic elements, which

potentially could facilitate their transmission within the gut community.

Discussion: This is a first systematic report on AMR genes in healthy gut

microbiome samples from multiple locations of India. While trends for several

of the prevalent AMR genes showed similarity with global data, but a few

population specific trends need further attention by policy-makers. The

association of AMR genes with mobile elements may pose a risk for

transmission to other gut bacteria.
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1 Introduction

Antimicrobial resistance (AMR) occurs when bacteria, fungi,

and, viruses do not respond to the antimicrobial drugs, which are

designed to either kill them or inhibit their growth. As a result, the

infection becomes difficult or sometimes impossible to cure, which

leads to severe illness, disease spread, and death (Murray et al.,

2022). It is one of the leading health problems of the 21st century,

which has claimed around 4.95 million lives in 2019 as estimated by

predictive statistical models (Murray et al., 2022) and it could kill 10

million people every year by 2050 (O’Neill, 2016). The resistance

mechanism could arise due to mutation in the chromosomal genes

or by AMR gene acquisition from the same or different species

through a process called horizontal gene transfer (HGT). HGT can

occur in any environment where bacterial load is high such as

hospital settings, soil, treatment plants, livestock, and human gut

microbiome (McInnes et al., 2020).

To use antibiotics safely and effectively, the WHO expert

committee developed the AWaRe classification system in 2017. It

has three groups: Access, Watch, and Reserve. The ‘Access’ antibiotics

are narrow-spectrum in action, are first or second-choice treatments

for common infections, and generally have low resistance potential.

The ‘Watch’ antibiotics are broader-spectrum antibiotics, generally

have higher costs, and are recommended only as first-choice options

for more severe infections or for infections where the causative

pathogens are more likely to be resistant to Access antibiotics.

Reserve antibiotics are the last-choice antibiotics used to treat

multidrug-resistant infections (World Health Organization, 2024).

Notably, incorporating WHO’s AWaRe classification system in

structured antibiotic prescription is crucial for the safety of patients

and combating its misuse (Elshenawy et al., 2023).

The diverse human gut microbial community acts as a reservoir

of AMR genes (Ghosh et al., 2013; Hu et al., 2013; Bag et al., 2019;

Monaghan et al., 2020). Like pathogenic bacteria, gut commensals

also have antibiotic resistance potential (Kumar et al., 2017; Bag

et al., 2019). Studies on AMR gene prevalence and transmission

have often been done on clinical samples and latent sources have

not been explored much. The latter can also play an important role

in AMR transmission. A systematic gut resistome profiling of 1.4k

healthy subjects from twelve countries’ was done by (Qiu et al.,

2020). suggests the geographical origin of subjects to be the

substantial factor for gut AMR gene composition (Qiu et al.,

2020). A higher abundance of AMR genes in healthy gut

microbiome of individuals from different nationalities has been

reported in the last decade (Ghosh et al., 2013; Hu et al., 2013).

Another systematic resistome profiling by analyzing more than

10,000 metagenome samples showed a higher abundance and

diversity of latent AMR gens compared to established ones in

humans, animals, and their associated environments (Inda-Dıáz

et al., 2023).

India, despite being a region under watch for AMR, not a single

systematic study of AMR prevalence was done on the gut

microbiome of healthy subjects, except for (Monaghan et al.,

2020), which examined 105 samples from (diarrheal and non-

diarrheal from urban and rural locations) central India, but the

non-diarrheal samples were again sourced from the hospital
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(Monaghan et al., 2020). AMR surveillance is being routinely

done at the national and global level but it is mostly limited to

common pathogens in clinical samples (AMR Surveillance

Network, 2021; Murray et al., 2022; Kaur et al., 2024). The

resistome profiling of five gut commensals, eight gram-negative

enteric pathogens, and investigation of the prevalence of 35 AMR

genes in Indian tribes are among the different studies done in India

(Kumar et al., 2017; Bag et al., 2019; Sethi et al., 2022).

While the gut microbiota frequently gets exposed to

antimicrobials, none of the present studies has systematically

looked at the AMR gene load in a healthy Indian population, so

the present study aims to profile AMR genes in such group. To

achieve this, we utilized and analyzed publicly available Whole

Metagenome Shotgun (WGS) data of three cohorts consisting of

141 gut microbiome samples from healthy Indian individuals. The

metagenome data was analyzed to assess the prevalence and

abundance of AMR genes targeting antibiotics in the WHO

AWaRe classification (World Health Organization, 2024). We

further examined the common/unique trends of the mode of

transmission through HGT, and mechanisms of resistance. Finally,

any effect of age, diet, and location or lifestyle on the AMR gene

prevalence in healthy gut microbiome was also investigated.
2 Methods

2.1 Sequence data retrieval of Indian
metagenome samples

To obtain gut metagenome samples of Indians, the NCBI Short

Read Archive (SRA) database was searched for the keywords

“human gut metagenome” with or without additional ones like

“India”, and “healthy” (database accessed on March 2023). Results

were manually curated for the studies involving WGS sequencing

data of individuals without any disease at the sampling time.

Samples under Bioproject IDs PRJNA397112 (N=110) (Dhakan

et al., 2019), PRJNA531203 (N=31) (Kaur et al., 2020),

PRJNA482729 (N=12) (NCBI-B iopro j ec t da tabase ) ,

PRJNA492714 (N=12) (Bhushan et al., 2021), and PRJNA564397

(N=47) (Monaghan et al., 2020) were from healthy subjects, so they

were further checked for the minimum metadata information

namely, age, gender, diet, and location. Since the samples in

PRJNA482729 and PRJNA492714 had missing age information,

and those in PRJNA482729 also had missing dietary information, so

both of them were dropped from the analysis. For the samples in

PRJNA564397, although complete metadata information was

available, however, the control group was sourced from hospital

samples without diarrheal conditions, hence they were also

excluded from the study (Figure 1).

Finally, a total of 141 healthy gut metagenome samples with

consistent metadata information from the remaining two

bioproject IDs were considered representative of the Indian

population, and their WGS sequencing data were downloaded.

Briefly, Bioproject ID PRJNA397112 included 110 samples from

two urban locations, namely Bhopal (central India) and Kasargod

(south-west coastal city), whereas, PRJNA531203 had 31 samples
frontiersin.org
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from three tribal populations (Ladakh, Jaisalmer, and Khargone),

which were grouped as one based on their lower beta-diversity

values (Singh et al., 2019; Kaur et al., 2020). The average age of all

the samples was 30.6 ± 16.29 years. There were 60 females and 81

males who broadly followed an omnivorous (n=100) and

vegetarian (n=41) diet (refer to (Chandel et al., 2023) for details).
2.2 Quality-control of metagenome data

The downloaded sequence data consisted of only Illumina

paired-end reads, which were checked for overall quality using

FastQC (version: 0.12.1) (Andrews, 2010). The adapter content and

low-quality reads (phred score < 20) were removed using

Trimmomatic (version: 0.39) (Bolger et al., 2014). Illumina

adaptor sequences provided in the Trimmomatic package were

removed. Other key parameters were: Reads were scanned with a 4-

base wide sliding window and were cut when the average quality per

base dropped below 20. The average number of pre-processed reads

and sequence data were ~10 million and ~3 Gbases, respectively

(Supplementary Table S1). Reads were further filtered for host

contamination by first aligning the reads to the human reference

genome (genome assembly GRCh38.p14 downloaded from NCBI)

using bowtie2 (version: v2.5.3) (Langmead and Salzberg, 2012),

followed by extraction of unmapped reads using samtools (version:

1.20) (Li et al., 2009) by specifying SAM-flags for unmapped

reads (Figure 1).
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2.3 Co-assembly of the metagenome data,
antibiotic resistome detection, and
abundance estimation

The pre-processed reads from all samples were pooled together,

and a co-assembly was generated using megahit (version: 1.2.9) (Li

et al., 2016). Contigs with length less than 500 bp were removed.

The antibiotic resistance genes in the entire filtered co-assembly

were predicted using the Resistance Gene Identifier (RGI) (version:

6.0.3) with default parameters (Alcock et al., 2023), which uses

Prodigal as a gene prediction tool (Hyatt et al., 2010) and

Comprehensive Antibiotic Resistance Database (CARD) (version:

4.0.2) as a reference (Alcock et al., 2020). Since the AMR genes

predicted by RGI were also functionally annotated, the non-

redundant set of AMR genes were obtained based on their

functional annotation. The abundance of non-redundant set of

observed AMR genes in each sample was estimated by obtaining the

count of reads mapped to them using the RSEM tool (version: 1.3.3)

in transcripts per million (TPM) (Figure 1) (Li and Dewey, 2011).

An AMR gene with an abundance of more than 0 was considered

present in the sample.
2.4 Binning and taxonomic profiling

The filtered co-assembly was binned using metabat2 (version:

2.15) (Kang et al., 2019), and each bin’s quality was determined
FIGURE 1

An overview of methodology followed in the analysis. Blue colored text represents the tools used in respective steps.
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using checkM (version: 1.2.2) (Parks et al., 2015). Bins henceforth

will be called Metagenome Assembled Genomes (MAGs)

(Figure 1). To retain the majority of the bins, those with

completeness >= 50% and contamination <=10% were kept for

ongoing analysis as acceptable quality, consistent with the medium

genome quality presented by (Bowers et al., 2017). The entire co-

assembly was divided into acceptable-quality MAGs, poor-quality

MAGs, and co-assembly remained unassigned to any of the MAGs,

henceforth, labeled as “unbinned” , which also carried

extrachromosomal DNA. The occurrence of AMR-gene-carrying

contigs (identified above in section 2.3) was calculated for binned

and unbinned contigs sets, and the difference in the proportion

between two sets was tested using the 2-sample test for equality of

proportions, prop.test() in R package (version 4.2.2; r-project.org).

The taxonomy of acceptable quality MAGs was assigned using

the GTDB-Tk tool (version: 2.4.0) (Chaumeil et al., 2022), which

uses Genome Database Taxonomy (GTDB) information (Figure 1).

The presence of AMR genes detected in the previous step was

confirmed in these groups.
2.5 Statistical testing of differentially
abundant AMR genes

Differential AMR gene abundance testing for multiple

conditions along with the confounders (locations, dietary habits,

age, and gender) was done using negative binomial Generalized

Linear Model (GLM), as implemented in DESeq2 package (version:

1.42.1) (Love et al., 2014), and also using the log-transformed

multiple linear regression model (implemented in lm() function

of R package), while controlling the effect of covariates (Figure 1).

The significantly abundant AMR genes common in both

approaches were further considered. All other statistical tests were

performed in R (version 4.2.2; r-project.org). All the figures were

generated using ggplot2 (version: 3.5.0) (Wilkinson, 2011) and

VennDiagram (version: 1.7.3) (Chen and Boutros, 2011) packages

in R (version 4.2.2; www.r-project.org).
2.6 Antibiotics of WHO-AWaRe groups that
are targeted by AMR genes

Since AMR genes can target the antibiotics grouped under the

WHO-AWaRe classification, so it was tested if any of the WHO-

AWaRe groups are overrepresented among the (AMR targeted)

antibiotics (Figure 1). A list of antibiotics belonging to the WHO-

AWaRe group was downloaded from the WHO (World Health

Organization, 2024), and the antibiotics targeted only by highly

prevalent AMR genes (percentage of samples in which AMR gene is

present: >=80), were mapped in the AWaRe list. A contingency

table was prepared having the number of antibiotics from the

WHO-AWaRe list, belonging (or not belonging) to a particular

group, which can (or cannot) be targeted by the AMR genes.

Observing the skewed size of the count data (<=5), Fisher’s exact

test was used to test the difference in frequency of the antibiotic

groups between two lists (fisher.test() in R). The parameter
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“alternative” was set to “less” when the odds ratio of the AWaRe

group was less than 1, and “greater” otherwise.

In a related mapping analysis, the antibiotics targeted by

moderately or highly prevalent AMR genes (>20%) were mapped

only to the ‘Reserve’ group of the AWaRe list, as transmission of

AMR genes targeting this group of antibiotics has been of higher

concern than others. The frequency distribution of prevalence of

such AMR genes was generated using the histogram option with a

bin size of 10. Since AMR genes may act against more than one

antibiotic, those exclusively acting against the ‘Reserve’ group were

distinguished from the remaining ones.
2.7 Detection of mobile genetic elements
associated with AMR genes

The contigs having any of the AMR genes were also examined

to determine whether they are part of any of the mobile genetic

elements, potentially facilitating the transmission of AMR genes.

Among the mobile elements that were examined included Insertion

Sequence (IS) elements/DNA transposons by using ISEscan

(version: 1.7.2.3) (Xie and Tang, 2017), integrons by using

IntegronFinder (version: 2) (Néron et al., 2022), and Integrative

and Conjugative elements (ICEs) or plasmid conjugative elements

by using CONJscan (version: 2.0.1) (Figure 1) (Cury et al., 2020).

Even a partial association (overlap of >=1 nucleotide base) of the

AMR gene with the mobile elements was considered for

further analysis.

The recent occurrence of the HGT event was examined by

identifying identical AMR gene sequences in two or more species

using the clustering tool of the USEARCH package (version:

11.0.667) with 100% identity threshold (Edgar, 2010). The contigs

of plasmid origin were identified using MOB-suite (version: 3.1.9)

(Figure 1) (Robertson and Nash, 2018).
3 Results

3.1 188 AMR genes were identified in the
co-assembly of 141 Indian gut
metagenome samples

A total of 141 healthy gut metagenome samples from three

cohorts, belonging to two Bioprojects with complete metadata

information, were considered for the current analysis. These

samples not only differed in (Indian) biogeographical locations

but also differed in their lifestyle, diet, gender, and age. Data

processing for read quality, adaptor content, and host

contamination resulted in ~10 million reads per sample, and co-

assembly of these quality-filtered WGS data yielded 6,121,077

contigs, which were further filtered based on the length, resulted

in 1,540,199 contigs. AMR genes from the CARD database were

searched in filtered co-assembly, and 2340 redundant AMR genes

were detected, out of which 188 constituted a non-redundant AMR

gene set. The majority of the genes targeted glycopeptide antibiotics

(14%) followed by tetracycline (9%) and aminoglycoside (7%)
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antibiotics (Figure 2A; Supplementary Table S2). The identified

resistome showed seven different mechanisms by which it could

escape or neutralize the effect of antibiotics; few genes were involved

in more than one mechanism. Among different mechanisms of

action utilized by the resistome, antibiotic efflux (31%), antibiotic

inactivation (28%), and target alteration (23.4%) were the three

most frequent ones, whereas, reduced permeability to antibiotic was

rarest (≤1%) (Figure 2B; Supplementary Table S2).
3.2 Antibiotics targeted by highly prevalent
AMR genes showed associations with WHO
AWaRe antibiotics groups

The median abundance of 188 AMR genes across all samples

ranged from 0 to 319,509, with genes nimG and cfxA6, having the

lowest and highest abundance, respectively. Twelve of them such as

tet(O), tet(W), tet(40), tet(O/W), ErmF, etc., were present in ≥80% of

the samples, and had high abundance values as well, with median

abundance of >24,000 TPM. Such AMR genes were henceforth

labeled as highly prevalent. On the other hand, almost half of the

detected AMR genes (n=92) such as nimG, AAC(6)-Im, BRP(MBL),

norC, etc., had very low prevalence (<20%), and also had much

lower abundance (median abundance: 0 TPM) (Figure 2C;

Supplementary Table S2).

Among the antibiotics classes targeted by the highly prevalent

AMR genes, tetracycline class was targeted by 4–5 genes, followed

by macrolides (erythromycin, etc.) by three genes; second-

generation cephalosporin (cephamycin), fluoroquinolones

(norfloxacin) and penam (oxacillin, etc.) by two each;
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streptogramins (dalfopristin, etc.), peptides (polymyxin B), and

glycopeptides (vancomycin) by one each. Modification of the

target (by protection or alteration) was the most frequent

mechanism of resistance, followed by antibiotic efflux (by Major

Facilitator Superfamily Pump or Resistance-Nodulation-cell

Division pump) and antibiotic inactivation (by Beta-lactamase).

The list of targeted antibiotics was under-represented with the

‘Access’ category antibiotics (p-value: 0.06; Supplementary Table

S3), and was close to being over-represented with the ‘Watch’

category ones (p-value: 0.1; Supplementary Table S3). Only two

(targeted antibiotics) were in the ‘Reserve’ and/or ‘Essential’

category, namely, Polymyxin B and Dalfopristin/Quinupristin.
3.3 Seven ‘Reserve’ group antibiotics were
targeted by a quarter of moderately or
highly prevalent AMR genes

Out of a total of hundred moderately or highly prevalent AMR

genes (with prevalence >=20%), and a total of twenty-nine

antibiotics in the WHO AWaRe ‘Reserve’ list, twenty-seven of

such genes targeted seven ‘Reserve’ group antibiotics, either

exclusively or along with other antibiotic groups. The distribution

of such AMR genes showed that the majority of them (almost four-

fifths) had a prevalence of up to 60%, peaking in the range of 50-

60% (Supplementary Figure S1, Supplementary Table S4). Those

(AMR genes) exclusively targeting the ‘Reserve’ group of antibiotics

include eptB and ArnT targeting colistin; mdtG, Ecol_GlpT_FOF,

and Ecol_UhpT_FOF targeting fosfomycin; and PmrF, ugd, and

eptA targeting Polymyxin. While eptA had the highest prevalence
A

B

C

FIGURE 2

Annotation of AMR genes observed in Indian samples, and their abundance/prevalence. Bar plots showing the distribution of (A) drug class
information of their targets, and (B) resistance mechanisms involved. (C) A scatter plot showing the abundance and prevalence of AMR genes in
Indian samples. A subset of AMR genes that were highly prevalent and abundant have been labeled.
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and abundance (80% and 940 TPM, respectively), pmrF had the

lowest (20% and 0 TPM, respectively).
3.4 Location-specific prevalence trends
were fewer in number

The AMR gene occurrences showed only a few location-specific

patterns wherein the genes showed (nearly complete) presence or

absence in at least one of the three cohorts. As few as two, four, and

six AMR genes were uniquely present in Bhopal (central India;

urban), Kasargod (south-west coastal India; urban), and tribal

cohorts (north and central India), respectively (Figures 3A, B). To

get insights into location-specific highly prevalent AMR genes, the

188 AMR genes were searched for prevalence >=80% in at least one

of the cohorts, and 29 such cases were found (Figure 3C). For

location-specific trends of very low prevalent ones, the AMR genes

that were completely absent in at least one of the cohorts were also

observed, and 41 such cases were there (Figure 3D). What emerged

from the prevalence trends was that the observed AMR genes, if
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highly prevalent in one, also had moderate to high prevalence in

other cohorts, whereas those absent in at least one cohort generally

had very low prevalence in other cohorts.

From the former category, a large fraction of them (40.7%)

showed resistance against the tetracycline drug class: genes tetB(P)

and tet(45) from that class were highly prevalent in tribal cohorts

(Supplementary Table S2). From the latter category, 34% of such

AMR genes showed resistance against the glycopeptide class of

antibiotics, in particular, against vancomycin (Figure 3D).
3.5 Tetracycline and vancomycin resistance
genes were significantly abundant in
tribal cohorts

Differential abundance of the AMR genes was tested using two

statistical models, and a total of 34 differentially abundant genes were

observed in three pairwise comparisons in bothmodels (p-value or p-

adj<=0.05). Around half of these genes were highly abundant in the

tribal cohort, andmost of them belonged to the tetracycline resistance
A B

DC

FIGURE 3

Location-specific trends of AMR genes (A) A venn diagram showing unique and common AMR genes across three cohorts, and (B) details of the
genes unique to each cohort. Heatmaps showing the AMR genes that are (C) highly prevalent and (D) completely absent in at least one of
the cohorts.
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drug class (Figure 4; Supplementary Table S5). Interestingly,

the dominance of tetracycline resistance in Indian tribes has

been reported in an earlier study (Sethi et al., 2022). Along

with tetracycline, three vancomycin resistance genes (vanG,

vanH_in_vanB_cl and vanY_in_vanM_cl) were differentially

abundant in Tribals (Supplementary Tables S2, S5). Since

vancomycin is a “watch” category of antibiotics, resistance against

it is a matter of concern. Additionally, 38% of the differentially

abundant genes targeted multiple drug classes, the majority of which

were significantly abundant in both urban locations- Bhopal and

Kasargod (Figure 4; Supplementary Table S5).
3.6 Abundance of a few AMR genes was
also affected by diet, age, and gender

While the geographical location has a significant impact on the

abundance (or prevalence) of AMR genes, we also observed the

effect of other variables such as diet, age, and gender, on a few AMR

gene abundance using both negative binomial and multiple linear

regression models (Figure 5; Supplementary Table S6). These

variables were previously considered as covariates, but here each

one was examined as the main variable, one at a time, and the effect

of the remaining ones was controlled.

The tet(M) gene was significantly abundant among vegetarians.

It uses target protection as a resistance mechanism to act against
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tetracycline antibiotics belonging to both ‘watch’ and ‘access’

groups. Besides, females and males showed a higher abundance of

adeF (a membrane fusion protein) and vanT_in_vanG_cl genes,

which target the tetracycline/fluoroquinolone and glycopeptide

class of antibiotics, respectively. Even for the ‘age variable, a

significant decrease in the abundance of a beta-lactamase gene

TEM-181, which could target ceftazidime (cephalosporin class;

‘reserve ’ antibiotic), with age was observed (Figure 5;

Supplementary Table S2).
3.7 A substantially higher proportion of
AMR genes were present in binned set
(MAGs) than in unbinned

Binning of filtered co-assembly resulted in 631 MAGs, which

included 122,807 contigs. However, a relatively larger fraction of

the contigs of the co-assembly remained unbinned (1,417,392).

MAGs were further filtered for completeness >= 50% and

contamination <= 10%, and 367 acceptable-quality MAGs were

obtained. The AMR-carrying contigs in the co-assembly were

traced to one of the three groups namely acceptable-quality

MAGs, poor-quality MAGs, and unbinned contigs, which had

about 1005, 325, and 988 AMR-carrying contigs respectively.

Despite the disproportionately smaller size of the binned set, they

contained a substantially higher proportion of AMR-carrying
FIGURE 4

Heatmap representing prevalence and abundance of differentially abundant AMR genes in all three pairwise comparisons along with their drug class
(p-value <=0.05).
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contigs than the unbinned set (p-value: 2.2E-16) Even after

correcting for redundancy among the AMR genes in each set,

the difference in the proportion of non-redundant AMR genes

in two sets still followed the same trend as observed above

(Figure 6A; Supplementary Table S7).
3.8 Taxonomy assignment showed that
Escherichia coli carried the highest AMR
gene burden

Taxonomic profiles showed that phylum Pseudomonadota had

the highest number of AMR genes followed by Actinomycetota

(Figure 6B; Supplementary Table S8). The detection of

Cyanobacteriota in the human gut was surprising. But it’s known

that Vampirovibrionia (formerly Melainabacteria) is one of the

closest non-photosynthetic living relatives of Cyanobacteriota,

which also includes gut symbionts (Grettenberger et al., 2020;

Oliver et al., 2021). In our analysis, Vampirovibrionia was classified

as a class under phylum Cyanobacteriota. Species Escherichia coli

carried the highest number of AMR genes (n=50) in its genome,
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followed by Klebsiella pneumoniae with 29 genes (Figure 6C;

Supplementary Table S8), and both of the species belong to the

phylum Pseudomonadota. In line with the AMR surveillance report

2021, MAGs belonging to both E. coli and K. pneumoniae showed

resistance to broad-spectrum antibiotics fluoroquinolone, third-

generation cephalosporine, carbapenem, and colistin, which is a last

resort antibiotic Supplementary Table S8) (AMR Surveillance

Network, 2021).
3.9 A fraction of AMR genes were part of
mobile genetic elements

The AMR gene-carrying contigs were also searched for mobile

genetic elements i.e., IS elements, integrons, and ICEs. The positive

results were further checked for their complete or partial overlap

with AMR genes based on coordinates. For IS elements, three

different cases were observed where 1) the AMR gene was present

within the IS element, 2) the AMR gene and IS element were

partially overlapping, and 3) the AMR gene in the flanking region or

far apart from the IS element (Figure 7A). Case 1 included gene
A

B

C

FIGURE 5

Effect of variables, other than location, on the abundance of AMR genes. Boxplots showing the AMR genes differentially abundant (A) between
vegetarian and omnivorous dietary habits, and (B) between males and females. (C) Linear regression plots showing change in gene abundance with
increasing age. (p-value <=0.05).
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vanY_in_vanB_cl, which targets vancomycin (‘watch’ group), gene

QnrS1, which targets antibiotics of fluoroquinolone class (‘watch’

group), and gene lnuC, which targets lincosamide antibiotic (‘watch’

group). All of them were present in the contigs of plasmid origin

and could transmit easily. Gene adeF, vanW_in_vanI_cl, tet(45),

and 14 more genes were part of case 2. For case 3, we had 45 such

contigs where the IS element and AMR genes were separate entities

(Supplementary Table S9).

Besides IS elements, we also observed the presence of AMR genes

in partial Integrons i.e., ‘Integron-integrase lacking cassette’ (InI0)
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and ‘Cluster of attC sites lacking integron integrase’ (CALIN). CALIN

had nine AMR genes showing complete overlap, and these genes can

target antibiotics belonging to the ‘access’ and ‘watch’ group. Gene

OXA-1 targets carbapenem class of antibiotics (‘access’ and ‘watch’

group), aadA5 targets aminoglycoside antibiotic (‘access’ and ‘watch’

group), and AAC(6’)-Ib-cr6 targets fluoroquinolone, and

aminoglycoside antibiotic (‘access’ and ‘watch’ group) (Figure 7B;

Supplementary Table S10). Lastly, one more type of mobile genetic

element namely Integrative and conjugative elements, was also found

in close vicinity of a few AMR genes. Tetracycline targeting genes tet
A B

C

FIGURE 6

Distribution of AMR gene carrying contigs. (A) A venn diagram showing the proportion of AMR gene carrying contigs in each group i.e, acceptable
quality MAGs, poor quality MAGs, and unbinned contigs, (B) a bar plot representing the number of AMR genes in each phylum, and (C) top 10
bacterial species in carrying the number of AMR genes.
A B

FIGURE 7

Association of AMR genes with mobile genetic elements. (A) Three different types of associations with IS elements, i.e., IS elements carrying the AMR
genes fully, IS element overlapping with AMR genes, and AMR genes present at the vicinity of IS element, (B) Integron gene cassettes identified in
AMR gene carrying contigs; InI0 is Integron-integrase lacking cassette and CALIN is Cluster of attC sites lacking integron integrase.
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(32) (‘access’ and ‘watch’ group) and tet(45) (‘access’ group),

vancomycin (‘watch’ group) targeting vanW_in_vanI_cl gene

antibiotic etc., were among them (Supplementary Table S11).

The occurrence of the HGT event was also indicated for two

vancomycin-resistant genes namely vanY_in_vanB_cl and

vanY_in_vanG_cl. Identical sequence of gene vanY_in_vanB_cl

between two species of Bcillota phylum, between two pairs of

unbinned contigs were observed. Similarly, the identical sequence

of vanY_in_vanG_cl was observed between poor-quality bin and

unbinned contig.
4 Discussion

4.1 First report on AMR genes in healthy
gut microbiome samples from multiple
locations of India

In the present study we have analyzed the publicly available

fecal WGS sequencing data to assess the AMR load in gut

microbiomes of healthy Indian cohorts. This is the first report on

healthy Indian gut resistome where a total of 141 samples were

taken from three different Indian locations and belonged to urban

and tribal groups. We observed the presence of a total of 188 AMR

genes which can target several drug classes (Figure 2A), either

uniquely or along with other genes in all three cohorts. For instance,

the moderately to highly prevalent ones can target seven ‘reserve’

group antibiotics which also included the essential ones. The

geographic location/lifestyle majorly accounted for resistome

composition variability, which was also reported in a study

involving global samples (Qiu et al., 2020), along with other

factors such as age, gender, and diet. Interestingly, age

significantly affected the abundance of four AMR genes (TEM-

181, EmrB, ACI-1, and tet(W)), and we reason that this could be due

to the differential use of antibiotics in different age groups (Patangia

et al., 2024).
4.2 A higher abundance of tetracycline
resistance genes synced with the global
data, but that of vancomycin resistance
genes in Indian tribal cohorts
was intriguing

We observed the resistance majorly against the glycopeptide

antibiotic drug class followed by tetracycline and aminoglycosides

in all cohorts (Figure 2A). These results were in sync with the

previous studies on healthy Indian gut resistome which showed the

dominance of tetracycline resistant genes (Bag et al., 2019;

Monaghan et al., 2020; Sethi et al., 2022), and the same was true

for several studies involving global samples (Ghosh et al., 2013; Hu

et al., 2013; Qiu et al., 2020). The higher abundance of glycopeptides

(Vancomycin) in overall Indian cohorts and their differential

abundance in tribal cohorts was intriguing to us, as they have

such a higher prevalence. A previous study also reported the

presence of vancomycin resistance genes (vanA, vanB, and vanC)
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in healthy Indian tribal cohorts (Sethi et al., 2022). It is known that

bacteria such as Lactobacillus have intrinsic resistance to

Vancomycin (Gueimonde et al., 2013), and the tribal cohort

might harbor several such bacterial species.

Similar to resistance profiles of healthy individuals, isolated

genomes of pathogenic bacteria from acute diarrheal patients from

India showed resistance genes against b-lactam, aminoglycoside

antibiotics, and also possessed multiple multidrug resistance efflux

pumps (Kumar et al., 2017).
4.3 The highest AMR gene burden of E. coli
in both Indian and global cohorts may
pose a risk of becoming a transmission hub

Among all the MAGs identified in our data, E.coli had the highest

load of AMR genes (n=50). Along with ‘access’ group antibiotics, it

can also impart resistance against the ‘reserve’ group (polymyxin,

ceftazidime, imipenem, fosfomycin, tigecycline) and ‘watch’ group

antibiotics (vancomycin, norfloxacin, ciprofloxacin etc)

(Supplementary Table S2; Supplementary Table S8). E. coli isolates

detected from 2009-2015 from diarrheal patients showed higher

resistance genes against the ‘access’ group (gentamycin, ampicillin,

trimethoprim, nalidixic acid), ‘watch’ group (kanamycin,

streptomycin, ciprofloxacin), and low detection rate was observed

against spectinomycin and polymyxin B (Kumar et al., 2017). From

2016 to 2021, a decreasing trend of susceptibility of E. coli was

observed for imipenem (85.9% to 64%), meropenem (80.7% to

695%), ceftazidime (25% to 18%), ciprofloxacin (20.3% to 19%),

and amikacin (83.8% to 78.2%) (Inda-Dı ́az et al., 2023).

Unfortunately, the resistance against colistin, which is a last resort

antibiotic of human medicine was observed in our data and ICMR

surveillance report (AMR Surveillance Network, 2021). An AMR

gene Ecol_GlpT_FOF in E. coli, which potentially targets fosfomycin

showed partial overlap with IS element. This makes it more likely to

get transmitted to other members of the gut community. Fortunately,

we didn’t find an association of the remaining AMR gene from E. coli

MAG with any mobile genetic element.

Having a higher abundance of resistance genes is also associated

with a higher abundance of the species harboring them. The

previous analysis of the same data showed a mean relative

abundance of E. coli >= 0.1% (Chandel et al., 2023). The co-

occurrence network between AMR genes and microbial taxa in

global cohorts clearly showed E. coli as a hub (Qiu et al., 2020).

Taken together, E. coli being an AMR gene hub, with higher

abundance in the gut poses a threat to AMR transmission in the

gut community.
4.4 Association of AMR genes with mobile
elements poses a risk for transmission to
other gut bacteria

The CARD database for AMR genes (Alcock et al., 2020)

annotated at least two tetracycline resistance genes, tet(O) and tet

(W), having association with conjugative plasmids or conjugative
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DNA (Supplementary Table S2). Moreover, the results on ICEs in

Indian gut metagenomes showed evidence of association of another

two genes, tet(45) and tet(32), with the conjugative elements

(Supplementary Table S11). These two genes were moderately to

highly prevalent (99% and 48%, respectively). These pieces of

evidence suggest that conjugative DNA or plasmids might have

been a key factor behind the high prevalence of these AMR genes, in

particular, the tetracycline resistance genes. However, there were

exceptions too, as one of the vancomycin resistance genes

(vanW_in_vanI_cl), which also was detected as part of ICEs, had

a very low prevalence (5%).

Results of association with another mobile element, namely IS

elements, showed that multiple vancomycin resistance genes

(vanY_in_vanB_cl, vanW_in_vanI_cl, vanG, vanT_in_vanG_cl,

and vanY_in_vanA_cl) overlapped, completely or partially, with

the composite transposons (Supplementary Table S9), and among

them, vanG and vanT_in_vanG_cl showed higher abundance (84%

and 41%, respectively) as compared to others which were <15%.

This suggests that a subset of vancomycin resistance genes used IS

elements/DNA transposons for faster spread across bacteria and/or

individuals. Even few other AMR genes (such as OXA-1 beta-

lactamase, catB3 Chloramphenicol acetyltransferase) likely used

integrons for their transmission, a majority of them however had

lower prevalence in Indian samples (Supplementary Table S10),

which was in contrast to a recent finding where integrons were

demonstrated to accelerate the evolution of AMR (Souque et al.,

2021). This difference however can be due to the difference in the

level of selection pressure applied. As HGT occurs more frequently

between ecologically similar bacteria than phylogenetically related

ones (Jansen and Aktipis, 2014), thus a narrow niche formed in the

gut acts as a reservoir of AMR genes for commensals as well

as pathogens.

The association of vancomycin-resistant gene vanY_in_vanB_cl

with IS element and its recent exchange between two species of

Bacillota phylum further confirms its chances of getting spread to

the gut community.
4.5 Limitations and future directions

One of the major limitations of the study is the representation of

samples. Only three cohorts covering 141 samples qualified the

criteria set for inclusion in the study, which is not a sound

representation of the Indian population. The availability of more

gut metagenome samples of Indians in the future may bring out

trends with better robustness. The other limitation of the study is

that the large chunk of assembly remained unbinned. While we

searched for AMR genes in each assembled contig, the bacterial

source of unbinned AMR-carrying contigs remained unknown.

Besides, E. coli has a relatively modest abundance in healthy

Indian gut (Chandel et al., 2023). Since it was observed to carry the

highest AMR genes in its genome, it will be interesting to

experimentally investigate the extent of horizontal transfer of

AMR genes from E. coli to other gut bacteria. Likewise, we also

advocate for further experimental studies on reasons for the high
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prevalence of vancomycin resistance genes in Indian

tribal cohorts.
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