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Chronic Obstructive Pulmonary Disease (COPD) affects 30 million Americans.

Previous epidemiologic work has shown that diet can impact pulmonary function

in those with and without COPD. Diet is also a major driver of gut microbiome

composition and function. Importantly, the gut microbiome has also been

associated with lung health (i.e., the gut-lung axis) in both preclinical and

clinical studies. Despite this growing body of evidence, many questions remain

regarding the gut-lung axis. Specifically, how the microbiome impacts the

relationship between diet factors and spirometry or stage of disease in people

with COPD is little understood. We hypothesize that there are taxonomic

differences in the gut microbiome among the different stages of COPD and

that diet microbiome interactions influence pulmonary function. This study

aimed to identify how the GI microbiota correlated with the severity of

respiratory disease in COPD patients and how the microbiome may mediate

the relationship between diet, including fiber and omega-3 fatty acids, and lung

function outcomes.
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Introduction

Chronic Obstructive Pulmonary Disease (COPD) affects 30

million Americans (Prevention CfDCa, 2022) and was the sixth

overall cause of death in 2021 (Prevention CfDCa, 2023). However,

prior to the COVID-19 pandemic, it was the third leading cause of

death worldwide (Organization WH). In addition to excess

mortality, COPD increases morbidity, often leading to disability.

COPD disproportionately affects women compared to men

(Prevention CfDCa, 2022), as wel l as those who are

socioeconomically disadvantaged (Buttery et al., 2021). The

leading cause of COPD is tobacco smoke, with cigarette smoking

being responsible for 8 out of 10 COPD-related deaths (Prevention

CfDCa; Services USDoHaH, 2014). Despite smoking rates in the

United States being cut in half since 1964, between 2011 and 2020,

the prevalence of COPD remained unchanged. Likewise, the overall

age-adjusted death rate has not changed from 1999-2019. These

data emphasize smoking cessation alone may not be sufficient to

optimize lung function outcomes in smokers, creating a need to

examine additional modifiable lifestyle factors, such as dietary

intake, as a complementary strategy for improving lung health.

Previous epidemiologic work has shown that diet can impact

pulmonary function in those with COPD (Hanson et al., 2014). A

“Western” diet pattern, generally categorized as high in refined grains,

cured and red meats, added sugars, and fat, has also been identified as a

risk factor for COPD (Young and Hopkins, 2018; Scoditti et al., 2019),

impacting both men (Varraso et al., 2007b) and women (Varraso et al.,

2007a). However, individual dietary factors, such as fiber and omega-3

fatty acids, have previously been identified as protective against COPD

(Kan et al., 2008; Varraso et al., 2010; Hanson et al., 2016; Young et al.,

2016; Saeed et al., 2020; Ding et al., 2021; Qu et al., 2022) and are

potentially associated with reduced respiratory symptoms (Lemoine

et al., 2019). One possible mechanism for the positive impact of fiber

and omega-3 fatty acids on COPD is through supporting the gut

microbiome. The gut microbiome is known to have a profound impact

on the immune system, metabolism, and homeostasis. Through its

metabolites, the gut microbiota impacts tissues far beyond the intestinal

mucosa (Moloney et al., 2014; Albillos et al., 2020; Zhao et al., 2021;

Ashique et al., 2022). Increasingly, the gut microbiome is being

associated with lung health. This is becoming termed the “gut-lung

axis” as an encompassing term for the cross-communication between

intestinal and lung microbiota and resultant co-regulation of local and

systemic response to environmental and intrinsic exposures (Ding

et al., 2021; Zhao et al., 2021; Ashique et al., 2022; Qu et al., 2022).

Through this association, we now know that noxious pulmonary

exposures (Buttery et al., 2021), including cigarette smoke (Ding

et al., 2021), can induce intestinal dysbiosis. However, dietary factors,

including fiber and omega-3 fatty acids, are also key modifiers of the

gut microbial composition, including microbes that produce anti-

inflammatory short-chain fatty acids (So et al., 2018; Watson et al.,

2018; Wagenaar et al., 2021).

Despite this growing body of evidence, many questions remain

regarding the gut-lung axis. Spirometry measures the maximum

volume and duration a participant can inspire and then forcefully

and completely expire. These tests are considered the gold standard

for the measurement of lung function, allowing for the classification
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of COPD severity. Little is known about whether microbiome

diversity correlates with the Global Initiative for Obstructive Lung

Disease (GOLD) severity stages of COPD and how nutrient intake

might influence the microbiome and mediate lung function and

stage of disease in people with COPD.We hypothesize that there are

taxonomic differences in the gut microbiome among the different

stages of COPD. This study aimed to identify the associations

between nutrient intakes and respiratory disease stage in COPD

patients, as well as how the microbiome may mediate the

relationship between diet, including fiber and omega-3 fatty acids,

and lung function outcomes.
Materials and methods

Patient enrollment

This study is a secondary analysis of data collected in the

Comparing Urban and Rural Effects on COPD (CURE COPD,

NIH grant #P50-ES026096) Center at Johns Hopkins University

(JHU). The urban cohort of CURE COPD is an observational study

of 99 former smokers with moderately severe COPD, followed

longitudinally for six months. CURE COPD participants were

evaluated at baseline, 3, and 6 months, with assessment of lung

function, diet, and collection of stool samples. Inclusion criteria

were 1) age ≥ 40 years, 2) physician diagnosis of COPD, 3) GOLD

Stage I-IV disease with FEV1/FVC ≤70% and FEV1 (% predicted) <

80%, 4) tobacco exposure ≥ 10 pack-years, and 5) former smoker

(identified those who report no current smoking in the past one

year and have exhaled CO levels ≤ 6ppm. This threshold was chosen

to maximize the chance of distinguishing true smokers and ex-

smokers (> 95%). Exclusion criteria include; 1) use of chronic

systemic corticosteroids (≥ 3 months continuous), 2) BMI less

than 18.5, and 3) pregnancy or breastfeeding. The catchment area

of the study represents a low socioeconomic status (SES) population

from Baltimore and surrounding areas with high rates of Medicaid

coverage (90%), 78% have a high school education or less, and 57%

report less than $15,000 of yearly household income. All studies

were approved by the JHU IRB.
Sample collection

Participants were given a fecal sampling kit with detailed

instructions. Using an established protocol, the subject is asked to

swab fresh feces from toilet paper and insert the swab into a sterile

screw-cap tube with cell lysis and DNA stabilization buffer (American

Gut Project). The subject is then given a postage-paid mailing pouch

for return to the study coordinator. Samples collected for this study

were obtained prior to the COVID-19 pandemic.
Primary outcome

The primary outcomes of the study were lung function and

COPD stage. Lung function was assessed as FEV1 and FEV1%
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predicted (FEV1, adjusted for age, height, and sex) according to ATS

guidelines (Miller et al., 2005) using a KOKO® (Pulmonary Data

Services, Inc., Louisville, CO) pneumotach. Predicted values for

FEV1 were calculated by formulae of Hankinson et al. (1999). At

each test, three sets of values were obtained, and the highest set of

FEV1 and FVC measurements was used. Global Initiative for

Obstructive Lung Disease (GOLD) criteria was used to classify

COPD severity (Fromer and Cooper, 2008).
16S rRNA library preparation
and sequencing

Analysis of the microbiome was performed on stool samples

collected from patients. The DNA quality was checked using a

Qubit 3.0 fluorometer before 16S Metagenomic Sequencing Library

Preparation following Illumina MiSeq pair-end protocol. The

protocol targeted the variable 16S V3 and V4 regions. After

libraries were quantified and normalized, a 4nM pool of all

samples was denatured and diluted to 8 pM. This pool was

loaded onto the Illumina MiSeq for a 300bp paired-end run using

the MiSeq v3 600 cycle kit.
Bioinformatics

Sequences were demultiplexed using the Illumina software,

according to the manufacturer’s guidelines. Bioinformatics analyses

were performed following the Bioconductor workflow for microbiome

data analysis by Callahan et al. (Callahan et al., 2016) using the R

software (version 4.2.1). For denoising, the R package DADA2

(Callahan et al., 2016) (version 1.18.0) was used following these

conditions: the forward reads were truncated at position 290 while

the reverse ones were truncated at position 260 to discard positions for

which nucleotide median quality was Q25 or below. High-quality

sequencing reads were clustered to infer amplicon sequence variants

(ASV), and a final table of ASV counts per sample was generated after

removing chimeras. A naïve Bayes taxonomy classifier (Wang et al.,

2007) was used to classify each ASV against the SILVA 138.1 reference

database, while MAFFT (Katoh and Standley, 2013) (version 7.407)

and FASTTREE (Price et al., 2009) (version 2.1.11) programs were

used to construct a phylogenetic tree. Taxa abundances were

normalized with the total sum scaling normalization method,

dividing each ASV count by the total library size to yield their

relative proportion of counts for each sample. Alpha diversity was

studied with several diversity indices with the R packages phyloseq

(McMurdie and Holmes, 2013) (version 1.34.0) and picante (Kembel

et al., 2010) (Version 1.8.2). Principal coordinates analysis (PCoA) via

various distance matrices (Bray Curtis, Jaccard, weighted and

unweighted UniFrac) was used to evaluate beta diversity and to plot

patterns of microbiome community diversity. Analysis of variance of

the distance matrices was performed with the nonparametric

MANOVA test Adonis with 999 permutations (PERMANOVA) as

implemented in the R package vegan (Oksanen, 2022) (version 2.5-7).
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Dietary intake methodology

Nutrient intake was assessed using the Willett Food Frequency

Questionnaire (FFQ). The FFQ provides information on the usual

intake of many foods, food groups, and supplements. From responses

to the questionnaire, individualized nutrient intake can be calculated

based on the known nutrient content of foods. The FFQ was analyzed

by trained personnel at the Harvard School of Public Health.

Nutrients of interest for this analysis were based on previous

associations with lung function in the literature and included total

fiber intake, total omega (n)-3 fatty acid intake (FA) (including alpha-

linolenic acid), intake of specific n-3 FAs [Docosahexaenoic acid

(DHA) + eicosapentaenoic acid (EPA)], and total n-6 fatty acids.

Using this data, a ratio of total n-6:total n-3 FAs was calculated.
Statistics and data analysis

Prior to analysis, all data was tested for normality using the

D’Agostino & Pearson test method. All data not normally

distributed was log-transformed prior to analysis. Differential

abundance analyses were performed using the R package corncob

(Martin et al., 2020) (version 0.2.0) to reveal statistically

significantly changed taxa. Regularized Canonical Correlation

Analysis (rCCA) was performed using R package mixOmics

(Rohart et al., 2017) (version 6.14.1) to explore associations

between nutrient intake, microbiome, and pulmonary outcomes.

rCCA is a standard method for microbiome studies and accounts

for the high dimensionality and/or high collinearities of the

datasets, both of which are commonly seen in microbiome and

biological studies. For taxa differential abundance analysis, the

Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg,

1995) was applied to correct for multiple hypothesis testing.

Mediation analyses were performed using the MODIMA method

by Hamidi et al. (Hamidi et al., 2019) and the CCMM method by

Sohn et al. (Michael and Hongzhe, 2019) to evaluate the mediation

effect of the microbiome as a community and individual taxa after

agglomerating at the genus level, respectively, between dietary

covariates as exposure and lung function outcomes. Prediction of

metagenomics functions was performed using PICRUSt2 (Douglas

et al., 2020) (version 2.4) and Pfam (Finn et al., 2007) database of

protein families. Unless specified, an adjusted p-value of less than

0.05 was used for the significance level.
Results

Characteristics of the study population

A total of 54 individuals who had completed fecal sample

collection were included in the analysis. COPD GOLD stages

were divided among the groups as follows: 7.4% (n = 4) GOLD

stage I, 57.4% (n = 31) GOLD stage II, 27.8% (n = 15) stage III, and

7.4% (n = 4) stage IV. The mean age was 64 years, with an average
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BMI of 34.7. The study population was 67% female (n = 36) with 26

(48%) white, non-Hispanic patients and 28 (52%) black

participants. Baseline characteristics of the study population are

provided in Table 1.
Differential microbial taxa and inferred
functional capacity across COPD
GOLD stages

We examined the composition of the microbiota to determine

whether there were differences in the dominant phyla of bacteria of

the gut microbiota between the different stages of COPD, we

measured the relative abundance of the major bacterial phylum in

each GOLD stage for each participant. (Supplementary Figure 1). In

each GOLD stage, the Firmicutes and Bacteroidetes phyla dominated

the gut microbial communities. Analysis of a-diversity metrics were

calculated for each sample using Observed species, Chao1, and

Shannon diversity measures. No significant difference in a-diversity
was observed between GOLD stages (Supplementary Figure 2A).

Similarly, analysis of b-diversity showed no significant differences in

b-diversity between any GOLD stages (Supplementary Figure 2B).

We then examined the data at the genus and order level. Despite

the homogeneity in the phyla, there were clear changes in the relative

abundance of specific microbial taxa between GOLD stages at both the

genus (Figure 1A) and order (Figure 1B) levels. In this data, the dashed

lines represent the level of expression in Gold Stage 1. Data to the left

of the line shows decreases, while data to the right of the line

shows increases. Changes that are significant do not cross the

dashed line and are in blue. Compared to GOLD stage I, there were

significant decreases in the abundance of three Ruminococcaceae
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(Acetanaerobacterium, UBA1819, and 5) (Figure 1A) while the

abundance of Streptococcus increased as GOLD stage increased

(Figure 1A). At the order level, Erysipelotrichales and

Desulfovibrionales were significantly decreased in GOLD stages 2, 3,

and 4 when compared to GOLD stage I (Figure 1B). Overall, as COPD

severity increases, as measured by GOLD stage, there are more

significant changes in the microbiome.

Next, we wanted to better understand the potential functional

impacts of these changes in bacterial taxa that were associated with

COPD GOLD stage. To do this, we performed a PICRUSt2 analysis to

predict the function of the metagenome (Douglas et al., 2020). In our

dataset, PICRUSt2 analysis found that there were 161 upregulated

pathways (Shown in red) and 20 downregulated pathways (Shown in

blue) in COPD GOLD stage 2 compared to stage 1 (Supplementary

Figure 3A), while there were 180 upregulated pathways and 154

downregulated pathways in COPD GOLD stage 3 compared to stage

1 (Supplementary Figure 3B). Finally, there were 117 upregulated

pathways and 308 downregulated pathways in COPD GOLD stage 4

compared to stage 1 (Supplementary Figure 3C). A summary of the

differential pathways via PICRUSt2 and DESeq2 analysis is provided in

Supplementary Table 1.
Microbial taxa correlate with lung function
and dietary variables

Certainly, the stage of COPD is not the only relevant clinical

characteristic that could alter the microbiome. Dietary intake can also

dramatically affect the microbiome. Because previous studies have

shown that dietary intake can influence the rate of lung function

decline, we wanted to look at dietary factors and lung function
TABLE 1 Baseline patient characteristics (n = 54).

Characteristic
COPD Stage 1

n = 4
COPD Stage 2

n = 31
COPD Stage 3

n = 15
COPD Stage 4

n = 4 Range

Mean ± SD or n (%)

Sex, n (% female) 0 (0%) 21 (68%) 12 (80%) 3 (75%)

Age, years 69.75 ± 11.32 63.48 ± 8.50 60.46 ± 10.78 57.75 ± 1.5 49 - 79

Race, n (% white) 2 (50%) 14 (45%) 7 (47%) 3 (75%)

BMI (kg/m2) 30.44 ± 2.89 37.40 ± 9.78 36.51 ± 15.16 32.80 ± 12.91 16.4 - 64.1

Pack-Years Smoking, pack-years 78.5 ± 49.89 55.10 ± 38.33 39.85 ± 34.56 37.5 ± 15.00 10 - 175

FEV1 (L) 2.56 ± 0.45 1.48 ± 0.45 1.07 ± 0.22 0.88 ± 0.87 0.37 - 3.17

FVC (L) 3.85 ± 0.65 2.41 ± 0.64 2.12 ± 0.33 1.89 ± 0.81 1.31 - 4.63

FEV1 (% Predicted) 86.25 ± 8.09 61.87 ± 7.81 43.85 ± 5.71 30.75 ± 26.89 15 - 98

Fiber, g 26.92 ± 26.12 36.17 ± 36.12 22.33 ± 8.90 24.79 ± 11.56 5.48 - 166.04

Total Omega Fatty Acids, g 2.67 ± 4.96 0.63 ± 1.73 0.37 ± 0.30 0.20 ± 0.26 0.02 - 10.1

Omega 3, g 7.24 ± 11.86 3.11 ± 2.91 2.50 ± 0.85 1.47 ± 0.61 0.63 - 25

Omega 6, g 35.21 ± 49.70 21.40 ± 12.24 17.21 ± 7.38 11.65 ± 4.32 4.85 - 109.7

Omega 6:3 ratio 7.01 ± 1.76 7.90 ± 2.22 7.12 ± 1.99 8.06 ± 0.43 2.94 - 13.41
SD, Standard Deviation; BMI, Body Mass Index; FEV1, Forced Expiratory Volume in 1 second; FVC, Forced Vital Capacity.
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together. To do this, we performed canonical correlation analysis to

evaluate the correlation between the microbiome, dietary covariates

(i.e., fiber, total omega, omega-3, omega-6, and n6:n3 ratio), and lung

function (i.e., FEV1% predicted, FEV1 and FVC). A network plot and

heatmap showed the strength of the association between the

microbiome and these parameters (Supplementary Figure 4). When

both lung function and dietary considerations were considered in the

model, the lung function outcome FEV1% predicted, and FEV1 were

negatively associated with Rikenella and Lachnospiraceae (NK4B4

group). Likewise, FEV1% predicted was also negatively associated with

Lachnospiraceae (UCG.008), Angelakisella, and Merdibacter.

Conversely, FEV1 and FVC were positively associated with

Desulfovibrio (Supplementary Figure 4A). On the other hand,

dietary parameters total omega and omega-3 were positively

associated with Succinivibrio (Supplementary Figure 4B). In

summary, both lung function parameters and dietary parameters

are associated with significant alterations in the microbiota.
Mediation analysis

To understand if the relationship between diet and lung function in

COPD subjects was mediated by the gut microbiota, we performed a
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mediation analysis. Specifically, mediation analysis was performed

using dietary parameters as the exposure (fiber, total omega, omega-

3, omega-6, and n6:n3 ratio) and lung function parameter (FEV1%

predicted, FEV1 and FVC) as outcome, and microbiome diversity

metric Bray-Curtis as the mediator using the MODIMA method. In

Figure 2, the first column of data shows how each dietary component

influences FEV1% predicted, FEV1, and FVC. The second column

shows how each dietary component influences beta diversity (PCo1

and PCo2) of the microbiome. The third column depicts how the

microbiome associated with the dietary component influences FEV1%

predicted, FEV1, and FVC. Higher levels of total omega fatty acids

(Figure 2A), Omega-3 (Figure 2B), and Omega-6 fatty acids

(Figure 2C) were associated with higher FEV1% predicted. Similarly,

higher levels of total omega fatty acids (Figure 2D), Omega-3

(Figure 2E), and Omega-6 fatty acids (Figure 2F) were associated

with higher FEV1. Finally, levels of total fiber (Figure 2G), total omega

fatty acids (Figure 2H), and Omega-3 fatty acids (Figure 2I) were

associated with higher FVC. We identified lung function FEV1%

predicted, FEV1 and FVC, at least partially, to be significantly

mediated by the microbiome when considering either fiber, total

omega, omega-3, or omega-6 as exposure (Figure 2). However, this

analysis method only provides a global test of community-level

mediation, not the effects of individual components.
FIGURE 1

Differentially abundant taxa between different COPD Gold stages. Differentially abundant taxa at the (A) genus level and (B) order level in COPD Gold
Stage 2 v 1 (left panel), COPD Gold Stage 3 v 1 (middle panel), and COPD Gold Stage 4 v 1 (right panel) using the corncob method with Benjamini-
Hochberg (BH) correction for multiple comparisons. Blue lines indicate taxa that are significantly different between the compared GOLD Stages.
Specifically, if the blue line is positive, then the indicated taxa is increased in GOLD Stage 2,3,4 compared to Stage 1; however, if the blue line is
negative, then the indicated taxa is decreased in GOLD Stage 2,3,4 when compared to Stage 1.
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To better understand the effects of individual components of the

microbiome, we performed a causal compositional mediation model

(CCMM). Mediation analysis via CCMM showed indirect mediation

effects of several taxa (Figure 3). Specifically, mediation analysis was
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performed using dietary parameters as the exposure (fiber, total omega

fatty acid, omega-3, omega-6, and n6:n3 ratio) and lung function

parameter FEV1% predicted, FEV1 and FVC as outcomes, and

individual bacterial taxa as the mediator using the CCMM method.
FIGURE 2

The GI microbial community partially mediates diet and lung function interactions in COPD subjects. Mediation analysis was performed with dietary
parameters as the exposure and lung function parameters FEV1, FVC, and FEV1 % predicted as the outcome, and community composition as the
mediator using the MODIMA method. Mediation analysis was performed using FEV1 % predicted as the outcome and (A) Omega, (B) Omega-3, and
(C) Omega-6 as the exposures. Mediation analysis was performed using FEV1 as the outcome and (D) Omega, (E) Omega-3, and (F) Omega-6 as the
exposures. Finally, mediation analysis was performed using FVC as the outcome and (G) Fiber, (H) Omega, and (I) Omega-3 as the exposures.
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While mediation analysis did not reveal a significant direct effect (DE)

or total indirect effect (TIDE) between diet (fiber, total omega, omega-

3, omega-6, and the ratio of omega-6 to omega-3), the microbiome,

and FEV1% predicted, FEV1 and FVC significant indirect component-

wise mediation effects were observed. Specifically, for fiber, indirect

component-wise mediation effects were seen for one bacterial taxon,

CAG-56 (IDE of 0.044 with a CI of 0.009, 0.099), on FEV1% predicted.

For total omega fatty acids, indirect component-wise mediation effects

were seen for three bacterial taxa,Holdemanella (IDE of 0.024 with a CI

of 0.004, 0.049),CAG-352 (IDE of 0.019 with a CI of 0.0003, 0.045), and

Merdibacter (IDE of 0.012 with a CI of 0.002, 0.027), on FEV1%

predicted. For omega-3 fatty acids, indirect component-wise mediation

effects were seen for three bacterial taxa, CAG-56 (IDE of 0.032 with a

CI of 0.002, 0.087), CAG-352 (IDE of 0.040 with a CI of 0.005, 0.086),

and Merdibacter (IDE of 0.024 with a CI of 0.003, 0.052), on FEV1%

predicted. For omega-6 fatty acids, indirect component-wise mediation

effects were seen for one bacterial taxon, Merdibacter (IDE of 0.023

with a CI of 0.001, 0.054), on FEV1% predicted. For the ratio of omega-

3 to omega-6 fatty acids, indirect component-wise mediation effects

were seen for three bacterial taxa, Holdemanella (IDE of -0.106 with a

CI of -0.217, -0.022), Paraprevotella (IDE of -0.054 with a CI of -0.131,

-0.003), and Bacteroides (IDE of -0.060 with a CI of -0.201, -0.001), on

FEV1% predicted. Similar results were seen for each dietary parameter,

with either FEV1 or FVC as the outcome variable (Figure 3). A

summary of the mediation analysis is shown in Supplementary Table 2.
Discussion

COPD is a chronic lung disease principally caused by tobacco

smoking. It is characterized by airway inflammation, obstruction on

pulmonary function tests, chronic cough, and phlegm production.

Because it is a lung disease, most microbiome studies have focused on

the flora of the lungs (Leung et al., 2017; Dicker et al., 2021; Madapoosi

et al., 2022) through sampling of bronchoalveolar lavage fluid, lung

tissue, or sputum. These studies have firmly established that individuals

who suffer from COPD have an altered lung microbiome compared to

healthy individuals. While the lung microbiome is known to contribute

to COPD progression (Qu et al., 2022), the function of the gut

microbiome remains understudied. In this analysis, we sought to

better understand how the gut microbiome changes in the different

stages of COPD. Importantly, we also wanted to understand how

dietary intake of key factors such as fiber and omega 3 and 6 fatty acids

influence the gut microbiome in COPD.

We began our analysis by determining whether there were changes

in the gut microbiome at the phylum level between the different stages

of COPD (Supplementary Figure 1). While we did not identify

dramatic changes between stages of COPD at this very high level,

our data compares favorably to previous studies showing that

Firmicutes and Bacteroidetes phyla dominated the gut microbial

communities in those with COPD (Trompette et al., 2014; Chiu

et al., 2021; Dicker et al., 2021). Likewise, other studies have not

identified changes in gut microbiota in different stages of COPD (Qu

et al., 2022). We went on to look at alpha diversity (Supplementary

Figure 2A) and beta diversity (Supplementary Figure 2B) at the phylum

level between the stages of COPD. We did not measure any changes at
Frontiers in Microbiomes 07
this level. This is similar to previously published studies (Qu et al.,

2022). This indicates that our methods and patient selection compare

favorably to those already published.

Despite the lack of changes at the phylum level, we did measure

changes in the gut microbiome in both the order (Figure 1B) and

Genus level (Figure 1A) with increasing COPD stage. One of the most

consistent changes was increased Streptococcus species in stages II, III,

and IV compared to stage I (Figure 1A). This data is consistent with

previous reports of increases in Streptococcus species in the gut

microbiome of COPD patients compared to control (Bowerman

et al., 2020). Bowerman et al. report increased abundances of both

Streptococcus sp000187445 and Streptococcus vestibularis. In that

study, these strains were correlated with reduced lung function

(Bowerman et al., 2020). Likewise, in a study of acute exacerbations

of COPD, researchers found an increased abundance of both

Streptococcus parasanguinis_B and Streptococcus salivarius in the

fecal microbiome (Chan et al., 2015). Interestingly, streptococcus

species are also increased in the upper GI tract microbiome of current

smokers compared to never smokers (So et al., 2018).

We went on to examine what effect the differing microbiome

could have. Compared to the microbiome of stage I COPD, Stages

II, III, and IV had multiple proteins that are predicted to be

differentially expressed. Many of these genes were upregulated up

to nearly 30-fold, suggesting that this could make a dramatic

difference in the microenvironment. This suggests that the

changes in the composition of the microbiota have the potential

to create physiologic differences. We observed changes in predicted

functional protein families for lipid, xenobiotic, and amino acid

metabolism. Like previous studies, we found significant correlations

between lung function (FEV1% predicted, FEV1 and FVC) and the

intestinal microbiota; FEV1% predicted and FEV1 were negatively

associated Rikenella and Lachnospiraceae (NK4B4 group). Likewise,

FEV1% predicted was also negatively associated Lachnospiraceae

(UCG.008), Angelakisella, and Merdibacter. Conversely, FEV1 and

FVC were positively associated with Desulfovibrio.

Diet is also an important factor influencing both COPD and the

composition of the intestinal microbiota (Sorli-Aguilar et al., 2016;

Jang et al., 2020; Lai et al., 2022; Kawashima et al., 2024). Dietary

fiber content changes the composition of the GI microbiota by

altering the ratio of Firmicutes to Bacteroidetes (Trompette et al.,

2014; Chiu et al., 2021; Dicker et al., 2021), which can directly affect

how the gut microbiota metabolizes fiber. The metabolism of fiber

by the GI microbiota results in the production of short-chain fatty

acids (SCFA), which have been shown to have anti-inflammatory

properties. Intestinal microbiota-mediated production of various

SCFAs is important for host systemic immunity (Meijer et al., 2010;

den Besten et al., 2013; Trompette et al., 2014). SCFAs aid in the

control of both asthma and allergic inflammation in the lungs

(Trompette et al., 2014; Saeed et al., 2020). For example, mice fed a

high-fiber diet had increased circulating levels of SCFAs and were

protected against allergic inflammation in the lung, whereas a low-

fiber diet decreased levels of SCFAs and increased allergic airway

disease (Saeed et al., 2020). In addition, recently in mouse models of

cigarette smoke induced COPD, it was found that fecal microbiota

transfer of “healthy” microbiota mitigated inflammation, alveolar

destruction, and impaired lung function associated with COPD.
frontiersin.org

https://doi.org/10.3389/frmbi.2024.1426150
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Qiu et al. 10.3389/frmbi.2024.1426150
Furthermore, COPD markers correlated with the relative

abundance of Muribaculaceae, Desulfovibrionaceae and

Lachnospiraceae family members. Finally, glucose and starch

metabolism were significantly downregulated in the COPD-

associated microbiota, and supplementation of mice or human
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patients with complex carbohydrates improved disease outcomes

(Budden et al., 2024).

With regards to fatty acids, recent evidence has highlighted the fact

that these compounds have the potential to remodel the gut

microbiome, and that these changes may modulate lung metabolism
FIGURE 3

Diet and lung function interaction in COPD subjects is partially mediated via specific bacterial taxa. Mediation analysis was performed with dietary
parameters as the exposure and lung function parameters FEV1, FVC, and FEV1 % predicted as the outcome, and individual bacterial taxa as the
mediator using the CCMM method. Mediation analysis was performed using Fiber, total omega, omega-3, omega-6, and n6:n3 ratio (from top to
bottom) as the dietary exposure parameters.
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(Li et al., 2023). While these findings have been mostly in animal

experiments, our study provides important confirmation that the gut-

lung axis can be modified by nutrition intake. Using two different

mediation analyses, we found that the relationship between diet and

lung function was partially mediated by the intestinal microbiota, at

both a community level and individual taxa level. Specifically, fiber

effects on FEV1% predicted via the gut microbiome were driven

primarily by 1 bacterial taxon (e.g., CAG-56). Fiber effects on FEV1

via the gut microbiome were driven by five bacterial taxa (e.g.,

Fusicatenibacter). Likewise, fiber’s effects on FVC via the GI

microbiome were driven by four bacterial taxa (e.g., Prevotella_2). In

other words, our data suggest that as dietary fiber increases the

abundance of CAG-56, Fusicatenibacter, Megasphaera, and

Lachnospiraceae_NK4A136_group increase while decreasing the

abundance of Odoribacter, which together improve lung function

(FEV1% predicted, FEV1, and FVC). Similar results were observed

when evaluating the relationship between total dietary omega-fatty

acids and lung function, which was partially mediated by the intestinal

microbiota at both the community level and individual taxa level. Total

dietary omega-fatty acids effects on FEV1% predicted via the GI

microbiome were driven by 3 bacterial taxa, Holdemanella, CAG-352,

andMerdibacter. Total dietary omega-fatty acids effects on FEV1 were

driven by four bacterial taxa (e.g., Fusicatenibacter). Likewise, total

dietary omega-fatty acids effects on FVC via the gut microbiome were

driven by two bacterial taxa (e.g., Odoribacter). In other words, as total

dietary omega-fatty acids increase the abundance of Fusicatenibacter,

Holdemanella, and Dorea increase while decreasing the abundance

of Odoribacter, which together leads to improved lung function

(FEV1% predicted, FEV1, and FVC). These results are supported by

previously published data as Fusicatenibacter, Megasphaera,

Lachnospiraceae_NK4A136_group, Holdemanella, and Dorea have all

previously been shown to increase with the addition of dietary fiber

(Burns et al., 2018; Myhrstad et al., 2020; Burakova et al., 2022; Huang

et al., 2023; Zhao et al., 2024). Interestingly, the reduction in

Odoribacter and associated improvements in lung function is in line

with similar studies. For example, Nontuberculous mycobacterial

infected mice showed decreased levels of L-arginine in sera, and oral

administration of L-arginine or fecal microbiota transplantation from

supplemented mice mitigated NTM infection and increased

macrophage and Th1 responses. These changes were also associated

with alteration to the gut microbiota, with an increased relative

abundance of Bifidobacterium, Bilophila, and unclassified YS2 and a

decreased relative abundance of Odoribacter, Prevotella, and

Akkermansia (Kim et al., 2022). Similarly, in another study,

Odoribacter was identified to have the strongest impact on the

development of squamous cell lung carcinoma (Chen et al., 2024).

Conversely, increases in Fusicatenibacter and associated improvements

in lung function are similar to studies that identified the changes in the

relative abundance of specific genera, which were associated with

significant alterations in fecal metabolites of patients with

tuberculosis (TB) (Wang et al., 2022). Specifically, Bacteroides,

Parabacteroides, Fusobacterium, and Lachnoclostridium were

enriched in TB patients while Blautia, Roseburia, Bifidobacterium,

unidentified Ruminococcaceae, Fusicatenibacter, and Romboutsia

were enriched in healthy people, all of which was associated with a

decrease the production of SCFAs (Wang et al., 2022). However,
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additional experiments need to be performed to validate a functional

mediation effect of the microbiota in relationship to all dietary and lung

functional parameters. While our study focused on critical dietary

exposures with biological plausibility of impacting the gut microbiome

and lung function, future exploration of additional dietary components,

such as more pro-inflammatory foods, and other potential

confounders, such as sex, age, and race should be included in larger

studies with adequate analysis power. In conclusion, our study

strengthens established associations between the colonization of

Streptococcus and COPD (Leung et al., 2017; Bowerman et al., 2020;

Dicker et al., 2021; Madapoosi et al., 2022; Sim et al., 2022), as well as

provides novel insight into the relationship between diet, the

microbiome, and lung function in subjects with COPD.
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