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Microbiome variations induced
by delta9-tetrahydrocannabinol
predict weight reduction
in obese mice
Avi Kaye1*, Matthew Rusling1, Amey Dhopeshwarkar2,
Parhesh Kumar2, Lauren Wagment-Points1, Kenneth Mackie2*

and Li-Lian Yuan1*

1Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines
University, Des Moines, IA, United States, 2Gill Center & Department of Psychological and Brain
Sciences, Indiana University, Bloomington, IN, United States
Introduction: Obesity and high-fat diets induce consistent alterations in gut

microbiota composition. Observations from epidemiological reviews and

exper iments also i l lustrate weight regulat ion effects of delta9-

tetrahydrocannabinol (THC) with microbiome shifts. Therefore, we investigated

the weight-loss potential of THC in obese mice models and to elucidate the

contribution of specific gut microbiome changes in THC-induced weight loss.

Methods: High-fat diet induced obese mice were treated with oral THC

supplementation for two weeks and compared with controls. In addition to

measuring weight, fecal samples were obtained at various timepoints, sequenced

for bacterial 16s rRNA content and analyzed using QIIME2. Alpha and beta

diversity were computed followed by linear mixed effects (LME) modeling of

bacterial relative abundance relationship to THC treatment and weight change.

Results: In both male and female mice, the THC group had significantly greater

average weight loss than controls (−17.8% vs. −0.22%, p<0.001 and −13.8% vs.

+2.9%, p<0.001 respectively). Male mice had 8 bacterial taxonomic features that

were both significantly different in relative abundance change over time with

THC and correlated with weight change. An LME model using three bacterial

features explained 76% of the variance in weight change with 24% of variation

explained by fixed effects of feature relative abundance alone. The model also

accurately predicted weight change in a second male mouse cohort (R=0.64,

R2=0.41, p=<0.001). Female mice had fewer significant predictive features and

were difficult to model, but the male-produced 3-feature model still accurately

predicted weight change in the females (R=0.66, R2=0.44, p<0.001).

Conclusion: Using a stepwise feature selection approach, our results indicate

that sex-specific gut microbiome composition changes play some role in THC-

induced weight loss. Additionally, we illustrated the concept of microbiome

feature-based modeling to predict weight changes.
KEYWORDS

tetrahydrocannabinol, microbiome, weight loss, sex-specific responses, linear mixed-
effects model
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1 Introduction

With a tripling in prevalence between 1975 and 2016, obesity was

declared a global epidemic by theWorld Health Organization (World

Health Organization, 2021). Obesity particularly affects the United

States population which suffers from a 41.9% obesity rate as of March

2020 (Centers for Disease Control, 2021). Obesity increases the risk of

numerous diseases such as heart disease, type 2 diabetes, stroke and

various types of cancer (Mitchell et al., 2011). Even when controlling

for diet, variations in the human genome alone are insufficient to

explain differences in obesity rates (Gilbert et al., 2018). However,

interactions between host genetics and environmental exposures such

as diet may strongly influence obesity (Benson et al., 2010).

Furthermore, it is evident that immune system function and

metabolism are inextricably connected as energy-rich conditions

activate adipocytes to release inflammatory mediators like TNF

(Hotamisligil and Erbay, 2008). These observations connecting

immune function with metabolism have inspired investigations

into the influence of gut microbiota on metabolism and body mass.

The gut microbiome is inexorably tied to weight and

metabolism regulation (Carmody and Bisanz, 2023). For example,

one group of researchers could classify lean versus obese individuals

with over 90% accuracy using just host microbial community

composition (Knights et al., 2011). Obesity consistently alters the

gut microbiome with implications for energy utilization and storage

in mammals (Davis, 2016) including humans (Liu et al., 2017;

Bisanz et al., 2019). A simple transfer of microbiota from obese mice

into lean germ-free mice can induce increased total body fat and

energy harvest capacity (Turnbaugh et al., 2006). Conversely, there

are patterns of microbiome composition associated with weight

reduction and lower levels of inflammation (Ferrarese et al., 2018).

Probiotics in obese individuals has been shown to change intestinal

microbiota with accompanying energy metabolism remodeling,

regulated parasympathetic activity, and increased expression of

genes involved in thermogenesis, glucose and lipid metabolism

(Sivamaruthi et al., 2019). Weight loss tends to be associated with

abundance of a subset of bacterial taxonomies rather than a global

composition change (Ferrarese et al., 2018; Stanislawski et al., 2021;

Bliesner et al., 2022). Some studies detected increases in alpha

diversity – measures of species richness in a population – with

weight loss (Koutoukidis et al., 2022) while others detected no

difference (Michael et al., 2020).

Various mechanisms have been proposed to explain the

connection between gut microbiome composition and weight,

highlighting a bidirectional gut–brain axis whose importance has

become increasingly clear (Mayer et al., 2022). Centrally, the GI

system collects information about the environment and transmit

signals via the Vagus nerve to stimulate secretion of peptides like

GLP-1, peptide YY and ghrelin that influence feeding behavior

(Bonaz et al., 2018; Yin et al., 2022). Central nervous system (CNS)

activity in-turn affects intestinal stability including local transport,

secretion and permeability via autonomic, endocrine and immune

pathways that influence microbiome composition (Bonaz et al.,

2018; Yin et al., 2022). In the gut, intestinal microbiome regulates

local physiology through interactions with the Enteric Nervous

System (ENS) interactions (De Vadder et al., 2018). Numerous
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bacteria can break down carbohydrates, especially in the phyla

Bacteroidetes which is decreased with malnutrition (Ottman et al.,

2012). Specific bacteria can produce short chain fatty acids (SCFA)

such as butyrate which increases mitochondrial activity, improves

insulin sensitivity, prevents inflammation, induces gut motility and

increases intestinal barrier function (Registad and Kashyap, 2013;

Chakraborti, 2015). SCFAs also impact ENS integrity by promoting

neuronal survival and neurogenesis (Vicentini et al., 2021). Amino

acid metabolism is also involved in weight regulation as evidenced

by decreases in glutamate-processing bacteria in obese mice and

humans (Liu et al., 2017). Additionally, lipopolysaccharides (LPS)

released from the cell wall of gram-negative bacteria modulate

intestinal function and signaling (Brown et al., 2023). The

endocannabinoid system (ECS) plays an integral role in the gut-

brain axis, impacting weight regulation and microbiome

composition (de Azua and Lutz, 2019).

The ECS is a regulatory network of lipid mediators that primarily

act as retrograde messengers to regulate pre-synaptic neurotransmitter

release (Lu and Mackie, 2021). The two main cannabinoid receptors,

CB1 and CB2, are inhibitory G proteins with CB1 primarily expressed

in the CNS and CB2 on immune cells (Vemuri et al., 2008). The best

characterized endogenous endocannabinoids (eCBs) include 2-

arachidonoyl glycerol (2-AG) and N-arachidonoyl ethanolamine

(AEA). However, much of our knowledge about the ECS is derived

from research on delta9-tetrahydrocannabinol (THC), the main

psychotropic component of cannabis. The affinity and efficacy of

THC varies from that of eCBs, causing each to have a unique

pharmacology (Lu and Mackie, 2021). The ECS broadly influences

mammalian physiology (Mir et al., 2023). For instance, eCB receptors

and ligands are present in the ENS, gut epithelium and

enteroendocrine cells such as glucose-dependent insulinotropic

polypeptide cells (K cells) and cholecystokinin (I cells). These, in

turn, modulate brain functions indirectly via circulating metabolic

factors and directly via activation of the Vagus nerve (Cuddihey et al.,

2022; Srivastava et al., 2022). Accordingly, the ECS strongly regulates

gut motility and permeability, energy homeostasis through glucose

and lipid metabolism, and inflammation (Cuddihey et al., 2022;

Srivastava et al., 2022; Mir et al., 2023). eCB activity can thereby

modulate metabolism and body weight by diverse mechanisms (Cani

et al., 2016; Iannotti andDi Marzo, 2021). Furthermore, there is strong

evidence that microbiota composition influences activity of the eCB

system and vice versa (Hasenoehrl et al., 2016).

The ECS is dysregulated in metabolic syndrome and obesity with

increased total levels of circulating eCB ligands and inflammatory

mediators (Di Marzo, 2008; Izzo et al., 2009; Martins et al., 2015).

Mechanistically, increased dietary fat exposure appears to trigger eCB

synthesis through Vagus-mediated effects (DiPatrizio et al., 2015).

Observations of increased eCB levels in obesity resulted in the

development of a CB1 antagonist Rimonabant, that while

successfully inducing weight loss, it was discontinued due to the

adverse psychiatric effects (Foll et al., 2009). Interestingly, despite

THC’s reputation as an appetite stimulator, epidemiological studies

reliably demonstrate a decreased body mass index (BMI) in chronic

cannabis users compared with non-users (LeStrat and Le Foll, 2011;

Sansone and Sansone, 2014; Alshaarawy and Anthony, 2019). A

proposed mechanism for reduced BMI with cannabis use is a
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downregulation of CB1 following chronic THC exposure, thus

decreasing sensitivity to the orexigenic actions of eCBs (Clark et al.,

2018). Conversely, increased dietary fat exposure and increased

incretin levels in obesity upregulate CB1, decrease eCB sensitivity

and result in heightened AEA and 2-AG production (Chia et al.,

2017). Effects of THC on body mass appear to be dependent on

baseline conditions, as low weight individuals with cancer or HIV see

an increase in appetite (Sansone and Sansone, 2014) andmice models

of anorexia experience less weight loss (Verty et al., 2011). ECS

alterations with adiposity appear to be connected with changes in gut

microbiome composition due to shared roles in metabolic and

inflammatory regulation (Geurts et al., 2011).

Recent studies have elucidated a bidirectional relationship

between gut microbiota composition and eCB tone that

subsequently influences weight (Ellermann et al., 2020). In general,

microbiome dysbiosis induced by antibiotics alters circulating eCB

levels while probiotic treatment re-establishes equilibrium (Guida

et al., 2018; Manca et al., 2020). On the flip side, alterations in the ECS

are known to induce changes in the host microbiome (Dione et al.,

2020). The ECS can alter epithelial barrier function and chloride

secretion through CB1 receptors in intestinal epithelial cells and can

decrease cytokine release via CB2 interactions on immune cells all of

which impacts microbe composition (Cuddihey et al., 2022). In

regards to obesity, there is strong evidence of a microbiota-to-

adipose tissue regulatory loop impacting endocannabinoid system

tone. (Muccioli) While the ECS influences gut permeability and

adipogenesis, LPS modulates eCB-driven adipose tissue metabolism

(Muccioli et al., 2010). Several gut bacterial families such as

Peptostreptococcacaeae, Akkermansiaceae and Veillonellaceae are

associated with variations in circulating endocannabinoid levels

beyond variations in body fat mass and dietary fatty acid intake

(Castonguay-Paradis et al., 2020). Additionally, in lean mice, an

abundance of bacteria producing SCFA produce anti-inflammatory

effects, partially through ECS modulation (Vijay et al., 2021).

Previous experiments demonstrated that THC administration

prevented further weight and fat mass gain and microbiome

changes in diet-induced obesity (DIO) model mice without

impacting gut microbiota or weight in lean mice (Cluny et al.,

2015). The purpose of the current research is to investigate the

potential for use of THC for weight reduction in obese mice models

and to further elucidate the roles of gut microbiome changes in

THC-induced weight loss. Current evidence discussed above

suggests that THC administration alone will increase weight loss

in obese mice accompanied by shifts in microbiota accounting for a

significant portion of the change in body mass. A secondary goal of

this research is to examine the potential of using advanced statistical

modeling of gut microbiome patterns to predict specific functional

outcomes – in this circumstance, weight change.
2 Materials and methods

2.1 Experimental animals and diet

Adult male or female mice (initially purchased from KOMP, UC

Davis, Davis, CA and Jackson Laboratory, Bar Harbor, ME,
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respectively, and bred at Indiana University) on a C57BL/6J

background were used in this study. Mice were housed in

polycarbonate cages on a 12-hour light:dark cycle and were

provided ad libitum access to water and defined high fat rodent

chow (containing sucrose and 58% of the total calories from fat)

(D12331;Research Diets, New Brunswick, NJ). High fat diet (HFD)

began on postnatal day 21. Mice were weighed every week at baseline

to assess weight gain. Mice with weight greater than or equal to 40

grams (for females) and greater than or equal to 45 grams (for males)

were considered obese and used for experiments. At the age between

90 and 120 days, these mice on HFD reached the weight threshold

mentioned above. Animals were maintained on HFD throughout the

experimental study unless otherwise stated. All experimental

procedures were approved by the Institutional Animal Care and

Use Committee of Indiana University Bloomington.
2.2 Oral THC treatment

Mice were weighed daily, prior to drug administration. THC was

formulated in sweetened condensed milk (Wild Harvest® organic

sweetened condensed milk, Eden Prairie, MN) at a ratio of 1:19. DIO

mice were fed orally (p.o; not gavage) with a dose of THC (10 mg/kg)

daily. Controls were fed the only “vehicle” (VEH) for drug delivery;

henceforth, controls may be referred to as VEH. In the first cohort,

there were 6 mice in each experimental group for each sex. The

experiment lasted for two weeks. Percent weight change from

baseline over the experimental duration (day=1 to day=15) was

compared between THC and VEH using a two-tailed student’s t-

test. The experimental design flow is outlined in Figure 1A.
2.3 Genomic DNA isolation

Fecal samples were collected on day=1, 2, 3, 4, 9 and 15 from

each mouse (n=24) for a total of 142 samples (two samples were

unable to be collected). Two to three fecal pellets were aseptically

collected per animal and placed in individually labeled sterile tubes

and 200 microliters of DNAse-free water was added. Samples were

then stored at −80°C until processing. Fecal genomic DNA was

extracted using the DNeasy PowerSoil (Qiagen) isolation kit. The

protocol for DNA isolation provided by the manufacture was

followed, with the exception that the initial vortex step was

extended to 20 minutes to thoroughly homogenize the samples.

The purified gDNA was quantified, as described above, and stored

at −20°C in the supplied 10 mM Tris Buffer.
2.4 16S rRNA gene amplicon sequencing

The gDNA isolated from feces was used as the template for PCR

amplification of the V4 variable region of the 16S rRNA gene

sequence with region-specific primers (515F-816R). Amplicon

sequencing was performed by the Institute for Genomics and

Systems Biology at the Argonne National Laboratory (Argonne,

IL) on the Illumina MiSeq Platform.
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2.5 QIIME2 gut microbiome identification
and composition analysis

Sequences were evaluated using the QIIME2microbiome analysis

platform version 2023.2 (Bolyen et al., 2019). The sequence data was

demultiplexed and denoised utilizing DADA2 with the truncation

parameters of f=250 and r=230 (Callahan et al., 2016). An example

denoised output table from QIIME2 is provided in Supplementary

Figure 1. Minimum feature frequency was set to 3. Sampling depth

was set to 21,790 features for rarefaction, thereby removing 7/142

(4.9%) of fecal samples from the analysis.

Remaining sequences were aligned using the FastTree2

program to produce a rooted phylogenetic tree (Price et al., 2010).

Alpha diversity was analyzed with Shannon and Chao1 indices

while beta diversity was investigated by applying weighted UniFrac

distance (Lozupone et al., 2007). Difference in diversity between

treatment groups were analyzed by pairwise ANOVA in QIIME2.

For the taxonomic analysis, feature sequences were assigned with

q2-feature-classifier utilizing a classifier trained on the Greengenes

13_8 99% – which identifies bacterial taxonomic identity using 250
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bases from the 16S gene region – to generate amplicon sequence

variants (ASVs) using DADA2 (McDonald et al., 2012). Taxonomy

bar-plots were produced at the phylum (2), class (3), order (4),

family (5), genus (6) and species (7) taxonomic levels. Features are

listed as p_phylum_c_class_o_order_f_family_g_genus_s_species.

An example bar plot output from QIIME2 is provided in

Supplementary Figure 2. Absolute abundance values were

converted to relative abundance, thus normalizing data for

subsequent analysis. We subsequently eliminated unnamed

taxonomic features and features in less than 50% of samples.

Two additional QIIME2 plugins were utilized in the

examination: 1) q2-sample-classifier, which attempts to predict

metadata based on microbiome composition (Bokulich et al.,

2018a); 2) q2-longitudinal, which inspects changes in alpha/beta

diversity or metadata over time (Bokulich et al., 2018b).

For transparency, recorded information on the mice including

weight and key bacterial relative abundance is provided in

Supplementary Tables 1 and 3 respectively for males and

Supplementary Tables 2 and 4 respectively for females. Full

relative abundance tables can be provided upon request.
A

B C

D E

FIGURE 1

Weight change comparisons by treatment. (A) Experimental design flow chart. (B, C) Bar graph comparison in average weight over time by treatment
in male (n=12) (A) and female (n=12) (B) mice. 95% confidence interval error bars displayed are in grams. Linear trend lines illustrate weight change
over time with line statistics provided in the legend. (D, E) Daily weight change over time by treatment in male (C) and female (D) mice. 95%
confidence interval error bars displayed are in percent weight change.
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2.6 Differential gut microbiome analysis
and modeling

Differences in gut microbiome composition and weight change

modeling were performed using R (R Core Team, 2018). To

investigate correlations between relative abundance, weight change

and the effect of THC supplementation, linear mixed effects (LME)

modeling was performed utilizing the lme4 package (Bates et al.,

2015). LME overcomes several limitations of linear regression and

ANOVA by accounting for baseline variability amongst individuals

(Brown, 2021). Fixed slope random effects modeling is also

recommended for experiments with smaller sample sizes and when

predictor variance is anticipated to have similar impact on outcome

variance between individuals; these parameters match our

requirements (Harrison et al., 2018). Specialized LME R2 values

were obtained with the r.squaredGLMM plugin command which

produces two outputs: 1) Marginal R2 (R2M) which represents the

variance explained by the fixed effects alone of the model and is ideal

for comparing predictors; 2) Conditional R2 (R2C) which accounts

for both the fixed and random effects and can be interpreted as

variance explained by the complete model (Nakagawa et al., 2017).

Bacterial features correlated with weight change were identified as

weight change LME modes with a significant interaction between the

feature relative abundance and timepoint.

Based on bacterial taxonomic features that both have

significantly different abundance change between THC and VEH

and predict weight change, LME models were generated to predict

weight change based on bacterial relative abundance. To limit bias,

the “best” models were chosen based on the combination of

taxonomic features that yielded the highest R2C value regardless

of potential biological explanation for including the specific

features. Significance of individual LME models was evaluated

using a likelihood ratio test (LRT) of model’s fit against the fit of

a “null” LME model that only accounts for random effects of

individual mice [null_model = lmer(weight_change ~ 1 + (1 |

ratid)]. This essentially tests whether the predictive variables

improve predictive value of the model beyond accounting for

natural variation between individuals.

The “best” fit model was used to predict weight change in a

second mouse cohort of both male (THC n=10, VEH n=6) and

female (THC n=8, VEH n=3) mice using linear regression of

predicted against actual weight change. In the second cohort,

fecal samples were collected on day=1, 4, 9 and 15.

Plots were produced using the ggplot2 package in R (Wickham,

2016) or in QIIME2 (Bolyen et al., 2019).
3 Results

3.1 THC induces weight loss in obese mice

Over the 15-day duration of the experiment, in female mice, the

THC-supplemented group (n=6) lost an average of 13.8% (95% CI

−16.7% – −10.9%) of their body weight compared with an average

gain of 2.9% (95% CI 0.9% – 4.9%) of body weight in controls (n=6)
Frontiers in Microbiomes 05
(t-test p<0.001). In male mice, the THC-treated group (n=6) lost an

average of 17.8% (95% CI −14.8% – −20.8%) of their body weight

compared with an average loss of 0.23% (95% CI −1.8% – 1.4%) of

body weight in controls (n=6) (t-test p<0.001) (Figures 1B, C). The

greatest amount of weight loss in the THC group tended to occur

between days 3 and 9, especially in male mice, with a stabilization of

weight by day 15 (Figures 1D, E).
3.2 Male and female mice microbiome
composition differs at baseline

At baseline, male and female mice have significantly different

alpha diversity when measured by both Shannon (t-test p<0.001)

and Chao 1 (t-test p<0.01) (Figure 2A). Likewise, weighted Unifrac

beta diversity is also different at baseline by sex (pairwise ANOVA

p=0.001) (Figure 2B). Accordingly, all subsequent taxonomic

analysis were divided by sex.
3.3 Microbiome diversity analysis

In male mice, THC supplementation increased Shannon alpha

diversity with a significant difference by day 9 (p<0.05) (Figure 3A).

However, the trend was different in female mice with a convergence

in alpha diversity between treatment groups (Figure 3A). For male

mice, with all treatment days (days 2–15) pooled, there was a

significant difference (p<0.05) in beta diversity between THC-

treated and baseline in addition to THC-treated and VEH

(Figure 3B). When separated by day, there was only a significant

difference (p<0.05) in beta diversity between treatment groups on day

9 (Figure 3C). In female mice, with all treatment days pooled, there

was a significant difference in beta diversity between THC and VEH

mice (p<0.05) (Figure 3D). However, when separated by day, there

was no individual timepoint with a significant difference (Figure 3E).
3.4 Taxonomic analysis in male mice

Due to baseline microbiome composition differences,

taxonomic analysis was performed separately for male and female

mice. In male mice, there were 24 bacterial taxonomic features with

significant (p<0.05) differences in relative abundance change over

the experimental duration between THC and VEH based on LME

models (Table 1). There were also 24 bacterial taxonomic features

with significant LME models predicting weight change over time

(Table 2). 8 of the bacterial features, listed in Table 3 for

convenience, were both significantly impacted by THC

supplementation (Figure 4) and correlated with weight change

(Figure 5). 7 of the 8 bacterial features identified displayed an

inverse relationship between relative abundance and percent weight

change from baseline (Table 4; Figure 5). Combinations of the 8

bacterial taxonomic features were subsequently utilized to produce

a combined LME model with the strongest predictive value of

weight change independent of timepoint and final treatment.
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3.5 Building a 3-feature LME model to
predict weight change using specific
bacterial taxonomic feature
relative abundance

The next goal was to investigate the utility of modeling weight

change only utilizing bacterial features significantly altered by THC

supplementation and compare to an ideal weight change model which

accounts for treatment (THC or VEH) and timepoint (Figure 1C). Out

of all combinations of bacterial taxonomic features in male mice, the

model with the highest predictive value for weight change of the fixed

effects (i.e., R2M), henceforth called the “3-feature model,” contained

three: p_Bacteroidetes_c_Bacteroidia_o_Bacteroidales_f_Rikenellaceae

(Rikenellaceae), p_Bacillota_c_Clostridia_o_Clostridiales_

f_Ruminococcaceae (Ruminococcaceae) and p_Proteobacteria_

c_Alphaproteobacteria_o_Rickettsiales (Rickettsiales).

Male� Produced 3�Feature Model :Weight _Change( % )∼−77:2

± 95:6� ½Rikenellaceae� + −1007:6 ± 501:8� ½Rickettsiales�
+ −9:6 ± 39� ½Ruminococcaceae� − 0:1 ± 3:3 + (1jratid)
The fixed effects of the bacterial features in the 3-feature

model explained 23.7% of the variation in weight change alone
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while the final model, which includes random effects of individual

mice, yielded an R2C of 0.75 (Supplementary Figure 3A).

Furthermore, the model’s fit was significantly greater than the

null model (chi-squared p<0.001), confirming that the addition of

bacterial features improved prediction of weight change beyond

accounting for random effect of individual mice (Supplementary

Figure 3A). The 3-feature model explained more variation in weight

change than one only accounting for final treatment, THC or VEH

(20.5%) (Supplementary Figure 3B). Adding final treatment to the

3-feature model fixed effects increased the percent variation

explained to 36.3% and yielded a final R2M of 0.79

(Supplementary Figure 3C). When investigating the effect of

timepoint (day) on weight change, the addition to fixed effects of

the original 3-feature model only marginally increased the R2M

(0.25) and R2C (0.77) (Supplementary Figure 3D). The fixed effect

of timepoint alone was very poor at explaining variation in weight

change with an R2M of 0.06 (Supplementary Figure 3F). The ideal

LME model explained 31.2% of the variation in weight change with

the fixed effects and yielded an R2M of 0.80 (Supplementary

Figure 3E). Therefore, the fixed effects of the male-produced 3-

feature model reached 76% of the predictive value of the optimal

model by simply utilizing the relative abundance of three bacterial

taxonomic features.
A

B

FIGURE 2

Microbiome diversity statistics at baseline by sex. (A) Box and whisker plot of alpha diversity values measured by Shannon and Chao1 and divided by
sex. Result of t-test comparing male to female mice is displayed in the top right of each graph. (B) QIIME2-produced box and whisker plots of beta
diversity values at baseline measured by weighted Unifrac and divided by sex. Result of pairwise ANOVA comparing meta to female mice is displayed
in the bottom left of the plot.
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3.6 Testing the 3-feature model on a
second experimental cohort of male mice

To test the validity of the 3-feature model, the exact same

experimental protocol was repeated on a second cohort of male

mice. A different group of mice will naturally be exposed slightly

different environmental conditions and differ genetically; therefore,

their gut microbiome composition will be different than the original
Frontiers in Microbiomes 07
cohort. Again, the THC cohort (n=10) had significant weight loss

compared to controls (n=6) with the mice losing 12.5% (95% CI

−10.1% – −14.9%) and 0.41% (95% CI −1.47% – 0.61%) respectively

(t-test p<0.001) (Figure 6A). A large 71.7% of variation in weight

change was explained by treatment and temporal effects in LME

modeling (Supplementary Figure 4A).When the 3-feature model was

applied to the second cohort, the fixed effects from relative abundance

of the bacterial features explained 39.0% of the variation in weight
A

B
C

D
E

FIGURE 3

Microbiome diversity analysis. All plots in the figure were produced by QIIME2. (A) Scatter plot of alpha diversity values measured by Shannon
divided by treatment for male (n=12) and female (n=12) mice. Trendlines are produced by LME model [Shannon ~ day × Q(treatment)] with 95% CI in
shading. Pairwise ANOVA indicated a significant difference (p<0.05) in males on day 9 and in females (p<0.05) on days 2, 3 and 4. (B, D) Box and
whisker plots of beta diversity measured by weighted Unifrac in male (B) and female (D) mice. THC and VEH groups are days 2–15 pooled.
Significant beta diversity differences (p<0.05) by pairwise ANOVA were identified between baseline vs. THC and THC vs. VEH in males; females had a
significant difference between THC vs. VEH. (C, E) Scatter plot of beta diversity values measured by weighted Unifrac and divided by treatment in
male (C) and female (E) mice. Trendlines are produced by first distances LME models [Distance ~ day × Q(treatment)] with 95% CI in color shading.
Males had a significant difference (p<0.05) on day 9.
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change and was a significantly greater fit than the null model (chi-

squared p<0.001) (Figure 6B). There was also a significant correlation

between predicted weight change from the male 3-feature model

against actual weight change in the second mouse cohort (Pearson

correlation R=0.64, R2=0.41, p<0.001) (Supplementary Figure 4B).
3.7 Taxonomic analysis and weight change
modeling in female mice

In female mice, there were 14 bacterial taxonomic features with

significant differences in relative abundance change over the

experimental duration between THC (n=6) and VEH (n=6) based

on LME models (Table 5). There were also 12 bacterial taxonomic

features with significant LMEmodels predicting weight change over

time (Table 6). Six of the bacterial features were both significantly

impacted by THC supplementation and correlated with weight

change (Table 7) and none of which matched a key feature

identified in the male mice. Upon visual analysis of the

scatterplots relating bacterial relative abundance to weight change,

only one significantly impacted by THC, p_Actinobacteria_c_

Coriobacteriia_o_Coriobacteriales (Coriobacteriales), was not

drastically impacted by outliers (Figure 7A). Producing an

effective LME weight change model that explained a significant

portion of the variance of timepoint and treatment (Supplementary

Figure 5C) was more difficult in the female mice than in male mice.

The best model in females also contained three bacterial features: p_

Actinobacteria_c_Actinobacteria_o_Actinomycetales (Actino

mycetales), p_Actinobacteria_c_Actinobacteria_o_Coriobacteriales

(Coriobacteriales) and p_Bacillota_c_Bacilli_o_Lactobacillales_f_

Lactobacilliaceae_g_Lactobacillus_s_Salivarius (L. salivarius), but

only explained 14.6% of the variance in weight change, yielded an

R2C of 0.357, and was only marginally more significant of a fit than

the null model (p=0.02) (Supplementary Figure 5A).

Female� Produced 3�Feature Model :Weight _Change( % )

= −87 ± 83:7� ½Actinomycetales� + 38:8 ± 62:3

� ½Coriobacteriales� + 114:7 ± 182:1½L :  Salivarius� − 5:1 ± 2:7

The addition of timepoint substantially improved the model

with fixed effects explaining 33.1% of variation in weight, thus

indicating that other changes occurring during the experimental
TABLE 1 Bacterial taxonomic features with significantly different change
in relative abundance between THC and VEH in male mice.

Taxon
p-

value

THC
change

(%)

VEH
change

(%)

Bacteroidetes; Bacteroidia;
Bacteroidales; Bacteroidaceae

* −7.785% −0.283%

Bacteroidetes; Bacteroidia;
Bacteroidales; Odoribacteraceae

** 3.281% 0.268%

Bacteroidetes; Bacteroidia; Bacteroidales;
Odoribacteraceae; Odoribacter

* 2.758% 0.233%

Bacteroidetes; Bacteroidia; Bacteroidales;
Prevotellaceae; Prevotella

* 0.013% −0.012%

Bacteroidetes; Bacteroidia;
Bacteroidales; Rikenellaceae

* 1.578% 0.540%

Bacillota; Bacilli; Lactobacillales;
Lactobacillaceae;

Lactobacillus; salivarius
* 0.429% 3.080%

Bacillota; Clostridia;
Clostridiales; Peptococcaceae

* 0.152% −0.004%

Bacillota; Clostridia;
Clostridiales; Ruminococcaceae

** 5.585% 2.225%

Bacillota; Clostridia; Clostridiales;
Ruminococcaceae; Ruminococcus

** 1.678% 0.314%

Proteobacteria; Alphaproteobacteria *** 0.464% 0.019%

Proteobacteria;
Alphaproteobacteria; Rickettsiales

*** 0.465% 0.021%

Proteobacteria; Betaproteobacteria * −0.804% 0.070%

Proteobacteria;
Betaproteobacteria; Burkholderiales

* −0.804% 0.074%

Proteobacteria; Betaproteobacteria;
Burkholderiales; Alcaligenaceae

* −0.810% 0.071%

Proteobacteria; Betaproteobacteria;
Burkholderiales;

Alcaligenaceae; Sutterella
** −1.080% 0.035%

Proteobacteria; Deltaproteobacteria;
Desulfovibrionales;

Desulfovibrionaceae; Bilophila
* 0.038% 0.006%

Proteobacteria; Deltaproteobacteria;
Desulfovibrionales;

Desulfovibrionaceae; Desulfovibrio
* 0.095% 0.015%

Proteobacteria; Epsilonproteobacteria * 0.048% 1.974%

Proteobacteria;
Epsilonproteobacteria;
Campylobacterales

* 0.048% 1.974%

Proteobacteria; Epsilonproteobacteria;
Campylobacterales; Helicobacteraceae

* 0.048% 1.974%

Tenericutes *** 1.543% −0.439%

Tenericutes; Mollicutes *** 1.543% −0.439%

Tenericutes;
Mollicutes; Mycoplasmatales

*** 1.511% −0.419%

(Continued)
TABLE 1 Continued

Taxon
p-

value

THC
change

(%)

VEH
change

(%)

Tenericutes; Mollicutes;
Mycoplasmatales; Mycoplasmataceae

*** 1.511% −0.419%
fr
Individual bacterial taxonomic features were modeled using the LME: lmer([taxon] ~ day ×
treatment + (1 | ratid)). Features listed on the table had a significantly different slope of the
LME model (indicating difference in relative abundance change) between THC (n=6) and
VEH (n=6). The model p-value refers to the interaction treatment × day. THC and VEH
percent relative abundance change over the 15-day experiment are also listed. [* = p<0.05, ** =
p <0.01, *** = p<0.001].
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duration outside those microbiome features better account for body

mass changes (Supplementary Figure 5B).

In the second mouse cohort females, as observed in male mice and

in the first female cohort, THC (n=8) induced significant weight loss in
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2 weeks compared with VEH (n=3) (Figure 7B), generating an average

weight loss of 15.8% (95% CI −12% – −19.4%) and 1.3% (95% CI

−5.6% – 3%) body weight respectively (t-test p<0.001). The female-

generated 3-feature model better explained variation in the second

female cohort with an R2M of 0.319, was a significantly greater fit than

the null model (p<0.001) (Supplementary Figure 6B) and accurately

predicted weight change (Pearson correlation R=0.73, R2=0.54,

p<0.001) (Figure 7C). The 3-feature model produced from the male

mice was very poor at explaining variation in weight change in the

original female mice cohort (Supplementary Figure 6C). But

interestingly, when comparing predicted weight change from the

male-produced 3-feature model against actual weight change in the

female mice using linear regression, the model’s predictions still

significantly correlated with the real-world results (Pearson

correlation R=0.66, R2=0.44, p<0.001) (Figure 7D). Surprisingly, the

male-generated 3-feature model described a large variation in weight

change for the second female cohort (Supplementary Figure 6D), had

the most accurate weight change prediction (Pearson correlation

R=0.89, R2=0.79, p<0.001) and profoundly greater fit than the null

model (p<0.001) (Figure 7E).

4 Discussion

The goal of our present investigation was to determine the

efficacy of THC supplementation in reducing weight in obese mice

and to reveal potential contributions of gut microbiome changes to

the THC-induced body mass decrease.
4.1 THC supplementation induces weight
loss in obese mice regardless of sex

While previous research demonstrated that low-dose THC

administration can prevent weight gain in DIO mice (Cluny

et al., 2015), our current experimental data strongly support the

hypothesis that adding THC to the diet will initiate weight loss in

the obese animal model. The effects held for both males and females
TABLE 2 Bacterial taxonomic features with significant models predicting
weight change over time in male mice.

Taxon
p-

value
Coefficient

Bacteroidetes; Bacteroidia;
Bacteroidales; Bacteroidaceae

* 22.50616

Bacteroidetes; Bacteroidia; Bacteroidales;
Bacteroidaceae; Bacteroides

* 18.77231

Bacteroidetes; Bacteroidia;
Bacteroidales; Odoribacteraceae

* −71.84106

Bacteroidetes; Bacteroidia;
Bacteroidales; Rikenellaceae

* −142.04226

Bacteroidetes; Bacteroidia; Bacteroidales;
Rikenellacea; Alistipes; indistinctus

* 9185.39929

Deferribacteres ** −128.88402

Deferribacteres; Deferribacteres ** −128.88402

Deferribacteres; Deferribacteres; Deferribacterales ** −128.88402

Deferribacteres; Deferribacteres;
Deferribacterales; Deferribacteraceae

** −128.88402

Deferribacteres; Deferribacteres; Deferribacterales;
Deferribacteraceae; Mucispirillum

* −80.74148

Bacillota; Bacilli; Lactobacillales; Enterococcaceae *** 729.02815

Bacillota; Bacilli; Lactobacillales;
Enterococcaceae; Enterococcus

** 630.35377

Bacillota; Bacilli; Lactobacillales; Lactobacillaceae * 32.5253

Bacillota; Bacilli; Lactobacillales;
Lactobacillaceae; Lactobacillus

* 32.24164

Bacillota; Clostridia;
Clostridiales; Mogibacteriaceae

* 1269.81785

Bacillota; Clostridia;
Clostridiales; Ruminococcaceae

* −60.01989

Bacillota; Clostridia; Clostridiales;
Ruminococcaceae; Ruminococcus

** −98.32073

Proteobacteria ** −38.84509

Proteobacteria; Alphaproteobacteria *** −1176.60235

Proteobacteria; Alphaproteobacteria; Rickettsiales *** −1174.71325

Proteobacteria; Deltaproteobacteria ** −45.59683

Proteobacteria;
Deltaproteobacteria; Desulfovibrionales

** −45.61599

Proteobacteria; Deltaproteobacteria;
Desulfovibrionales; Desulfovibrionaceae

** −45.61599

Proteobacteria; Deltaproteobacteria;
Desulfovibrionales;

Desulfovibrionaceae; Desulfovibrio
* −1840.782
Individual bacterial taxonomic features were used to predict weight change using the LME:
lmer(weight_change ~ Q[[taxon]] + (1 | ratid)). Features with a statistically significant
correlation between relative abundance and weight change are listed along with the p-value for
the correlation and the model coefficient (Q). [* = p<0.05, ** = p<0.01, *** = p<0.001].
TABLE 3 List of bacterial taxonomic features that both predict weight
change and had significant difference in relative abundance change
between THC and VEH in male mice.

Key bacterial taxonomic features in male mice

•Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae (Bacteroidaceae)

•Bacteroidetes; Bacteroidia; Bacteroidales; Odoribacteraceae (Odoribacteraceae)

•Bacteroidetes; Bacteroidia; Bacteroidales; Rikenellaceae (Rikenellaceae)

•Bacillota; Clostridia; Clostridiales; Ruminococcaceae (Ruminococcaceae)

•Bacillota; Clostridia; Clostridiales; Ruminococcaceae;
Ruminococcus (Ruminococcus)

•Proteobacteria; Alphaproteobacteria (Alphaproteobacteria)

•Proteobacteria; Alphaproteobacteria; Rickettsiales (Rickettsiales)

•Proteobacteria; Deltaproteobacteria; Desulfovibrionales; Desulfovibrionaceae;
Desulfovibrio (Desulfovibrio)
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with 17.8% and 13.8% decreases in body weight respectively in two

weeks compared with no change in weight for controls. The greatest

degree of weight loss tended to occur between days 4 and 9 from

intervention onset with a stabilization by day 15. The same trend

occurred in a second cohort of male and female mice. It has been
Frontiers in Microbiomes 10
proposed that exogenous low efficacy eCB1 agonists like THC can

reduce the binding of lower affinity, high efficacy CB1 agonists like

2-AG in high eCB tone conditions like obesity (Le Foll et al., 2013).

Returning ECS activity towards equilibrium will thus theoretically

reduce inflammation, improve gut barrier function and reduce
A B

C D

E F

G H

FIGURE 4

Bacterial relative abundance change over time comparison by treatment in male mice. Scatter plots displaying the relative abundance of 8 individual
bacterial taxonomic features (identified at the top of each panel A–H) over time (Day) with treatment group identified by color. The trendlines are
linear regressions of relative abundance over time separated by treatment. All 8 bacterial features have significantly different LME slopes between
THC (n=6) and VEH (n=6).
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adipogenesis (Cuddihey et al., 2022). There is also increasing

evidence of a microbiota-to-adipose tissue regulatory loop with

reciprocal effects on ECS tone (Muccioli et al., 2010). Therefore, our

research focus turned towards answering whether THC

administration altered gut microbiome composition and if those

changes potentially contribute to weight change.
Frontiers in Microbiomes 11
4.2 Approach to taxonomic analysis and
determining THC-induced changes

We implemented a step-wise approach to select bacterial

features of interest. Upon taxonomic analysis, we identified sex-

specific gut microbiome changes of distinct bacterial taxonomic
A B

C D

E F

G H

FIGURE 5

Relationship between percent weight change from baseline and bacterial relative abundance in male mice. Scatterplots displaying the percent weight
change from baseline against relative abundance for 8 individual taxonomic features (identified at the top of each panel A–H). Plot points are separated
by treatment and indicated by color. Trendline is the result of a significant LME modeling of percent weight change against relative abundance.
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features that are both significantly impacted by THC administration

and correlated with weight change. Initially, we observed that male

and female mice had different gut microbiome composition at
Frontiers in Microbiomes 12
baseline post-DIO protocol, paralleling past research into sex-

based differences in gut microbiota in response to high-fat diet

(Bridgewater et al., 2017; Martin et al., 2017). Furthermore, there is

evidence of brain region variances in eCB levels between males and

females (Rubino and Parolaro, 2011), sex-dependent effects of THC

use on brain function (Cooper and Craft, 2018), and sex differences

in interactions between hormones, the immune system and gut

microbiota (Vemuri et al., 2019). It is therefore not surprising that

THC differentially affected microbiota in males and females. Our

data further stress the importance of considering sex when

investigating gut microbiome composition and obesity.

We subsequently utilized bacterial taxonomic features whose

abundance significantly changes between THC and VEH and

correlates with weight change to generate models to predict percent

weight change based solely on bacterial relative abundance. We

decided to utilize LME modeling as opposed to linear regression or

two-way ANOVA due to its ability to account for natural baseline

inter-individual variation and correlation between observations by

distinguishing random from fixed effects (Murphy et al., 2022). To

limit bias, the final models were chosen based on the combination of

bacterial taxonomic feature predictors that explain the largest degree

of variation in weight change (i.e., highest R2M value) without

considering biological explanation for their inclusion.
4.3 Microbiome-based weight change
modeling in male mice

The LME “3-feature” weight change model produced from male

mice included Ruminococcaceae, Rikenellaceae and Rickettsiales –

all of which inversely correlated with weight – and alone explained

23.7% of variation in weight change. Furthermore, the model was

profoundly more accurate than a “null” model that only accounts

for random effects of individual mice (p<0.001). For comparison, an

idealized model utilizing final treatment and timepoint explained
TABLE 4 LME models of percent weight change from baseline against
bacterial relative abundance for eight individual taxonomic features in
male mice.

Bacterial Taxonomic
Feature

p-
value

Coefficient R2M
|

R2C

Bacteroidetes; Bacteroidia;
Bacteroidales; Bacteroidaceae

0.0322 22.506 0.0402
|

0.7069

Bacteroidetes; Bacteroidia;
Bacteroidales; Odoribacteraceae

0.0255 −71.841 0.0491
|

0.6821

Bacteroidetes; Bacteroidia;
Bacteroidales; Rikenellaceae

0.012 −142.042 0.0674
|

0.7009

Bacillota; Clostridia;
Clostridiales; Ruminococcaceae

0.00291 −60.0199 0.0603
|

0.7068

Bacillota; Clostridia; Clostridiales;
Ruminococcaceae; Ruminococcus

0.0426 −98.321 0.0301
|

0.6853

Proteobacteria; Alphaproteobacteria 2.14e-6 −1176.602 0.2171
|

0.7330

Proteobacteria;
Alphaproteobacteria; Rickettsiales

2.11e-6 −1174.713 0.2182
|

0.7326

Proteobacteria; Deltaproteobacteria;
Desulfovibrionales;

Desulfovibrionaceae; Desulfovibrio

0.0491 −1840.702 0.0300
|

0.6671
Model statistics for the LME of individual taxonomic features [lmer(weight_change ~ Q
[[taxon]] + (1 | ratid))]. Includes p-value for the model, coefficient (Q), marginal R2 (R2M)
and conditional R2 (R2C).
A B

FIGURE 6

Testing the 3-feature LME model on a second cohort of male mice. (A) Scatter plot and linear regression lines of percent weight change from
baseline over time divided by treatment – VEH (n=10) and VEH (n=6). 95% confidence intervals in gray shading. (B) Scatterplot of predicted weight
change percentage based on the 3-feature model against actual weight change in the second mouse cohort. Linear regression line is superimposed
on the plot with the associated p-value and R2 for the regression.
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31.2% of the variation, meaning that our 3-feature model reached

76% the predictive value of that idealized model.

To validate our model, we proceeded to test it on a second

cohort of mice that followed the same experimental protocol. This

analysis assessed external validity since the baseline microbiome of

a different group of mice will have some dissimilarities simply due

to environmental differences. The 3-feature model successfully

predicted weight change in the second cohort (R=0.64, p<0.001)

and explained an even larger fraction (39.1%) of the variation in

weight change.

Despite avoiding artificial selection of predictors based on

biological reasoning, most of the bacterial features identified as

significant contributors in the 3-feature model have previously

known relationships with metabolism and weight regulation.

Regarding Ruminococcaceae, lower abundances have been

correlated with diabetes mellitus (Bajaj et al., 2015), obesity (Feng

et al., 2022), and high-fat diets (Daniel et al., 2014) with increased

abundance in lean mice (Feng et al., 2022). Ruminococcaceae have

known involvement in butyrate production (Daniel et al., 2014) and

7a de-hydroxylation – the conversion of primary to secondary bile
Frontiers in Microbiomes 13
acids (Kakiyama et al., 2013). Interestingly, a human study found

lower abundance of Ruminococcaceae in patients with cirrhosis and a

negative correlation with Bacteroidaceae which paralleled an

observation in our study (Kakiyama et al., 2013). The relationship
TABLE 6 Bacterial taxonomic features with significant models predicting
weight change over time in female mice.

Taxon
p-

value
Coefficient

Actinobacteria; Actinobacteria * −96.1873

Actinobacteria; Actinobacteria; Actinomycetales * −96.2001

Actinobacteria; Coriobacteriia * 62.75089

Actinobacteria; Coriobacteriia; Coriobacteriales * 62.75089

Actinobacteria; Coriobacteriia;
Coriobacteriales; Coriobacteriaceae

* 62.75089

Bacteroidetes; Bacteroidia;
Bacteroidales; Porphyromonadaceae

* 94.89083

Bacteroidetes; Bacteroidia; Bacteroidales;
Porphyromonadaceae; Parabacteroides

* 94.90096

Bacillota; Bacilli; Lactobacillales; Lactobacillaceae;
Lactobacillus; salivarius

* 173.8052

Bacillota; Clostridia;
Clostridiales; Mogibacteriaceae

** 3341.389

Tenericutes * −464.394

Tenericutes; Mollicutes * −464.394

TM7 * −2349.97
Individual bacterial taxonomic features were used to predict weight change using the LME:
lmer(weight_change ~ Q[[taxon]] + (1 | ratid)). Features with a statistically significant
correlation between relative abundance and weight change are listed along with the p-value for
the correlation and the model coefficient (Q). [* = p<0.05, ** = p<0.01, *** = p<0.001].
TABLE 5 Bacterial taxonomic features with significantly different change
in relative abundance between THC and VEH in female mice.

Taxon
p-

value

THC
change

(%)

VEH
change

(%)

Actinobacteria; Actinobacteria * 2.2471% 0.0002%

Actinobacteria;
Actinobacteria; Actinomycetales

* 2.2489% 0.0002%

Actinobacteria; Coriobacteriia * −1.3855% 2.4996%

Actinobacteria;
Coriobacteriia; Coriobacteriales

* −1.3855% 2.4996%

Actinobacteria; Coriobacteriia;
Coriobacteriales; Coriobacteriaceae

* −1.3855% 2.4996%

Bacillota; Bacilli;
Lactobacillales; Lactobacillaceae

* 0.4593% 2.8856%

Bacillota; Bacilli; Lactobacillales;
Lactobacillaceae; Lactobacillus

* 0.4585% 2.8845%

Bacillota; Bacilli; Lactobacillales;
Lactobacillaceae;

Lactobacillu; salivarius
* −0.2430% 0.8041%

Bacillota; Clostridia; Clostridiales;
Lachnospiraceae; Coprococcus

* 1.0932% −0.1847%

Tenericutes; Mollicutes; RF39 * 0.1270% −0.0250%

TM7 ** 0.1066% −0.0162%

TM7; TM7 ** 0.0186% −0.0162%

TM7; TM7_3; CW040 * 0.0120% −0.0162%

TM7; TM7_3; CW040_f:F16 * 0.0120% −0.0162%
Individual bacterial taxonomic features were modeled using the LME: lmer([taxon] ~ day ×
treatment + (1 | ratid)). Features listed on the table had a significantly different slope of the
LME model (indicating difference in relative abundance change) between THC (n=6) and
VEH (n=6). The model p-value refers to the interaction treatment × day. THC and VEH
percent relative abundance change over the 15-day experiment are also listed. [* = p<0.05, ** =
p<0.01, *** = p<0.001].
TABLE 7 LME models of percent weight change from baseline against
bacterial relative abundance for six individual taxonomic features in
female mice.

Bacterial Taxo-
nomic Feature

p-
value

Coefficient R2M | R2C

Actinobacteria; Actinobacteria 0.026 −96.187 0.0657 | 0.4173

Actinobacteria;
Actinobacteria;
Actinomycetales

0.0267 −96.20 0.0655 | 0.4172

Actinobacteria; Coriobacteriia 0.0421 62.751 0.0765 | 0.2686

Actinobacteria;
Coriobacteriia;
Coriobacteriales

0.0421 62.751 0.0765 | 0.2686

Actinobacteria; Coriobacteriia;
Coriobacteriales;
Coriobacteriaceae

0.0421 62.751 0.0765 | 0.2686

Firmicutes; Bacilli;
Lactobacillales;
Lactobacillaceae;
Lactobacillus; salivarius

0.0491 172.805 0.0614 | 0.3696
Model statistics for the LME of individual taxonomic features [lmer(weight_change ~ Q
[[taxon]] + (1 | ratid))]. Includes p-value for the model, coefficient (Q), marginal R2 (R2M)
and conditional R2 (R2C).
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we detected between increased Rikenellaceae and greater weight loss

also has sound biological reasoning. Reduction in Rikenellaceae is

associated with increased adiposity (Vallianou et al., 2021) and

reduced brown adipose tissue (Guzzardi et al., 2022). Conversely,

increased abundance corresponds to reduced visceral adipose tissue

(Tavella et al., 2021) and greater lipid metabolism along with

Ruminococcaceae (Conte et al., 2022). It is less clear why the order

Rickettsiales was consistently detected as a significant predictor for
Frontiers in Microbiomes 14
weight loss. Rickettsiales are obligate intracellular parasites with

limited oxidative metabolism capabilities; accordingly, their

transport systems likely impact host metabolite availability

(Driscoll et al., 2017). While most known genera in Rickettsiales

are associated with pathological conditions, there is some evidence of

specific species participating in positive endosymbiosis with hosts

through amino acid anabolism (Carrier et al., 2021), decreased

inflammation in IBD models (Liu et al., 2020), and fatty acid or
A

B C

D E

FIGURE 7

Taxonomic analysis and testing bacterial feature-based LME weight change models in female mice. (A) Left scatter plot displays the relative
abundance of a single bacterial taxonomic feature over time with treatment group identified by color. The trendline is a linear regression of relative
abundance over time separated by treatment with the corresponding LME equation slope, p-value and R2 matched by color. Right scatterplot
displays the percent weight change from baseline against relative abundance for an individual taxonomic feature. Plot points are separated by
treatment and indicated by color. Trendline is the result of an LME modeling percent weight change with change in relative abundance. The number
on the bottom right is the p-value for the LME model. (B) Scatterplot of percent weight change over time (day) with linear trendlines for THC (n=6)
and VEH (n=6) groups indicated by color. Grey shading is 95% confidence interval with value of percent weight change. (C–E) Each panel is a
scatterplot of predicted weight change percentage based on the respective 3-feature LME model against actual weight change in female mice.
Linear regression line is superimposed on the plot with the associated p-value and R2 for the regression. (C) Testing the female-specific 3-feature
LME model in the second cohort of female mice (THC n=8, VEH n=3). (D) Testing the male-produced 3-feature LME model in the original female
mice cohort. (E) Testing the male-produced 3-feature LME model in the second female mice cohort.
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glycerophospholipid utilization (Driscoll et al., 2017). While we

cannot rule out chance in our consistent Rickettsiales detection, it

is certainly possible there are potentially metabolically beneficial

species within the order. The fact that our agnostic approach to

feature selection mostly detected bacteria associated with

metabolism strengthens the validity of the modeling method.

It is worthy of note that the second mouse cohort had a strong

correlation between g_Akkermansia _s_muciniphilia (A.

muciniphilia) and weight loss, a species with known roles in

glucose and lipid metabolism (Zhang et al., 2019; Xu et al., 2020)

and an inverse relationship with obesity and type 2 diabetes

(Everard et al., 2013; Remley et al., 2016). However, there was no

A. muciniphilia detected at all in the first cohort, so it was not

included in the 3-feature model. Our observation accentuates the

marked influence environmental exposures have on gut

microbiome (Ahn and Hayes, 2021). Therefore, baseline

variability must be carefully considered in any interpretation of

microbiome research on disease models (He et al., 2018).
4.4 Microbiome-based weight change
modeling in female mice

Weight change modeling proved to be much more difficult in

female mice. It is established that sex hormones have differential

effects on gut microbiome composition (Org et al., 2016; McGee

and Huttenhower, 2021) including a bi-directional estrogen-

microbiome axis (Baker et al., 2017). It is logical to expect high

variation amongst females, even in the same environment, due to

fluctuating estrogen levels over time. While some past investigations

could not find differences in gut microbiome tied to menstrual cycle

phases (Krog et al., 2022) other have found large inter-individual

differences in gut microbiome over time (Vandeputte et al., 2021)

and consistent differences in composition based on sex, even with

the same diet intervention (Dominianni et al., 2015).

Nonetheless, we attempted to produce a unique 3-feature model

produced from the female mice, with the best possible R2M of only

0.15 coming from Actinomycetales, Coriobacteriales and L. salivarius

as predictors. There are known metabolic connections for all three of

the features identified. Increased Actinomycetales has previously

correlated with reduced obesity as seen in our model (Tarres et al.,

2012). Coriobacteriales are higher in insulin-sensitive versus insulin

resistant individuals (Yuan et al., 2021) and also correlate with lower

inflammatory markers (Shahinozzaman et al., 2021) again

corroborating our observations. L. salivarius is a well-studied species

commonly added to probiotics due to their immunomodulatory

activity and digestion of starch and amino acids, but their use has

yielded mixed results (Chaves et al., 2017). Our experiments saw a

decrease in their abundance, corresponding to experiments that saw

increased weight with the addition of L. salivarius (Xia et al., 2021).

However, other studies found supplementation prevented DIO (Liang

et al., 2021), reduced stress-induced sugar craving (Nicol et al., 2023)

and improved lipid metabolism (Chen et al., 2022). The true benefits

of L. salivarius thus remains an open question.

Our female-specific 3-feature model performed exceptionally

well in predicting weight change in the second female cohort
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(R=0.73, p<0.001) and explained a larger percentage of weight

change variation at 32%. Interestingly, the male-produced 3-

feature model had the best predictive value for the second female

mouse cohort (R=0.89, p<0.001). And despite not accounting for

much variation in weight change for the first female cohort (R2M

0.0063) the model still could accurately predict weight change

(R=0.66, p<0.001). The 3-feature model’s predictive capacity

demonstrates that variation in the specific bacterial predictors we

identified are strongly correspond to weight status regardless of

their level of abundance.
4.5 Study limitations and future directions

In our study, we did not measure behavioral alterations that

potentially accompany THC supplementation, including changes in

activity or food intake, that may significantly contribute to variation

in weight loss. Manipulating the ECS not only directly alters brain

behavior due to abundant CB1 receptors (Cuddihey et al., 2022), but

there is also evidence microbiota can affect activity in regions like the

hippocampus by altering eCB ligand levels (Chevalier et al., 2020) and

modifying intestinal neural circuits that signal to the CNS (Obata

et al., 2020). It would be prudent for subsequent experiments on ECS

modulation to account for behavior and brain activity changes. Our

investigation only tested one consistent THC dose of 10 mg/kg which

corresponds to a 58mg dose in a 70 kg individual when scaled for

surface area (Nair and Jacob, 2016). 58 mg is close to the median dose

of edibles sampled from Oregon and Washington medical cannabis

dispensaries and therefore closely models real-world consumption

(Vandrey et al., 2015). Future research should analyze dose-

dependent responses, especially since the effect of THC on appetite

is known to shift from hyperphagia to hypophagia with increasing

concentration (Bellocchio et al., 2010). Effects of ECS modulation can

also be isolated utilizing mice with eCB receptor knockouts. Other

trials may also consider examining how weight and microbiome

responds after THC is halted; this approach is a first step to test a

proposed hypothesis that eCB partial agonism leads to receptor

downregulation (Le Foll et al., 2013). Additionally, we do not know

which tissues decreased in mass during weight loss as adiposity was

not measured. Finally, it is worth stating that we cannot infer THC

effects on humans directly from our experiments and our results

should not be misconstrued as advocating the use of cannabis to lose

weight without extensive additional research.

Future investigations into interactions between the microbiome,

ECS and metabolism must continue to account for sex differences.

While there are known sex-dependent effects on the gut

microbiome (Dominianni et al., 2015), a reciprocal modulatory

axis between sex hormones like estrogen and microbiota

composition (Baker et al., 2017) and differential effects on THC

based on sex (Cooper and Craft, 2018), there remains many

inconsistencies in findings on sex differences for the issues

referenced (Cabal et al., 2018). Subsequent experiments should

examine hormonal or other sex-reliant factors.

Our microbiome modeling was also limited by several elements.

First, we cannot prove the features identified are causal of weight

change without performing experiments on germ-free mice. To prove
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a causal effect of abundance on weight change, the specific bacteria

should be directly introduced to mice without other microbial

contamination. Furthermore, because genotype is a determinant of

microbiota in addition to environment (Kovacs et al., 2011), our results

cannot be extrapolated beyond the strain, species and population

tested. Our significant bacterial features tended to come from the

order or genus taxonomic levels. Achieving more specific findings in

the genus or species may require larger sample sizes, continued

advancement in taxonomic databases like Greengenes, and

improvements in sequencing such as using the shotgun approach

and longer reads. Consequently, we eliminated a number of

taxonomies that could not be identified through QIIME2, potentially

impacting our results. Current short-read next generation sequencing

and 16S-based techniques may be inadequate to comprehensively

capture important differences in composition as even microbes

within the same species can produce diverse metabolites and thus

interact with sex hormones or eCB differently (Kim et al., 2020). With

regards to our mathematical strategy, while models utilize LME to

account for variability within populations, the approach does come

with its own set of limitations: LME still does not account for

individual responses to fixed effects and requires its own set of

complicated statistical interpretation (Brown, 2021). Of note, we did

also attempt random forest analysis in R and QIIME2 to identify key

taxonomic features to distinguish THC from VEH mice, to predict

weight change, and to obtain values of feature importance all while

limiting user bias in their selection (Strobol et al., 2007). However,

several issues arose from the technique including over-fitting of data

and selection of features that did not differ by treatment or lack

significant correlation with weight change. Therefore, despite its

limitations, we stand by the use of LME or similar modeling moving

forward in identifying microbiome features of interest.
4.6 Conclusions

Our results demonstrate the weight loss potential of THC in

DIO mice, thereby supporting ongoing efforts to investigate ECS

regulation in combating obesity. We subsequently determined sex-

specific gut microbiome changes related to THC administration and

related to percent body mass change using a process of step-wise

feature selection. Finally, we validated the concept of using

advanced statistical modeling to generate predictions for health

outcomes – such as variation in weight loss – with gut microbiome

composition. Future experiments can expand upon our research to

narrow down bacterial features that beneficially modulate ECS

activity and lead to lowered body mass and adiposity. Based on

recommendations by our lab for transparent microbiome data

access (Kaye et al., 2024), our relative abundance measurements

are readily available in the supplemental material.
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