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Introduction: Hyperuricaemia (HUA), one of chronic diseases, has an increased

prevalence and is related to diseases such as gout, arthritis, infectious diseases,

etc. Antimicrobial resistance (AMR) in the gut is considered as an atypical chronic

disease, and poses risk to human health. The gut microbiome has been proved to

be a reservoir for AMR and play an important role in HUA patients. The microbial

characteristics of the gut in individuals with HUA have been previously explored,

however, the characteristics of the resistome in individuals with HUA have

remained largely unexplored.

Methods: Thus, we investigated the landscape of the AMR in individuals with HUA

and without HUA, and the potentially influential factors in a case-control study

using metagenomics-based approaches.

Results: We found that drinking juice and abnormal stool were risk factors

associated with HUA. The taxonomic diversity of gut microbiota in individuals

with HUA was lower than that in non-HUA individuals. Notably, a higher

abundance and diversity of the resistome (entire antimicrobial resistance

genes) was observed in individuals with HUA (median: 1.10 vs. 0.76, P = 0.039,

U-test), especially in tetracycline resistance genes (median: 0.46 vs. 0.20, P <

0.001, U-test), which are associated with more complex mobile genetic

elements (MGEs) in individuals with HUA. Furthermore, we found that a higher

abundance of the resistome was positively correlated with uric acid (UA) levels

and affected by several host-associated factors (mainly dietary habits).

Specifically, pork consumption and the consumption of root and tuber

vegetables were identified as contributing factors. We also found a higher

abundance of virulence genes (VGs), mostly related to adherence,

antimicrobial activity, competitive advantage, and exoenzymes, in the gut

microbial community of individuals with HUA.

Discussion: All findings revealed higher activity of the resistome and

pathogenicity of the microbiota in individuals with HUA, indicating a higher

health risk in the elderly HUA population.
KEYWORDS

hyperuricaemia, microbiota, resistome, metagenomics, elderly people
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/frmbi.2024.1384703/full
https://www.frontiersin.org/articles/10.3389/frmbi.2024.1384703/full
https://www.frontiersin.org/articles/10.3389/frmbi.2024.1384703/full
https://www.frontiersin.org/articles/10.3389/frmbi.2024.1384703/full
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frmbi.2024.1384703&domain=pdf&date_stamp=2024-07-11
mailto:lvziquan1984@126.com
mailto:lianglihy@usc.edu.cn
https://doi.org/10.3389/frmbi.2024.1384703
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiomes#editorial-board
https://www.frontiersin.org/journals/microbiomes#editorial-board
https://doi.org/10.3389/frmbi.2024.1384703
https://www.frontiersin.org/journals/microbiomes


Liu et al. 10.3389/frmbi.2024.1384703
Highlights
Fron
• A higher abundance and diversity of resistome were

observed in hyperuricaemic (HUA) individuals than in

non-hyperuricaemic individuals.

• A positive correlation was identified between the resistome

and uric acid (UA) levels, and host-associated factors were

correlated with a higher abundance of the resistome in

individuals with HUA.

• The microbiota of HUA individuals was associated with

higher abundance of resistome and VGs than those in non-

HUA individuals , which may pose a threat to

human health.
Introduction

Chronic diseases represent a pressing global health issue, with

the percentage of deaths caused by them increasing from 67% to

74% over the past decade (Thomas et al., 2023). With progress of

urbanisation and economic growth, people’s lifestyles and dietary

patterns have greatly changed in last several decades; this has been

accompanied by higher incidence of chronic diseases such as

diabetes, hypertension, and hyperuricaemia (HUA) (Luo and

Wang, 2022). Moreover, the mortality rates associated with these

chronic diseases, particularly among elderly individuals (aged ≥ 60)

have shown an increase from 2005 to 2020, indicating a heightened

risk to elderly people (Cai et al., 2022a). Another study revealed that

the proportion of deaths caused by chronic diseases among

residents (aged ≥ 65) in China rose annually from 2004 (89.82%)

to 2018 (91.41%) (Xia et al., 2021). In addition to deaths, chronic

diseases impose an economic burden on society, especially in

countries like India and China that have a large proportion of

large elderly population (Xu and Yang, 2022). Furthermore, many

countries are entering an ageing society stage, with China officially

entering this stage (Fang et al., 2020). Hence, the attention on the

elderly population with chronic diseases has escalated globally

owing to increased mortality rates and economic burdens.

Numerous chronic diseases are linked to nutritional and metabolic

disorders, especially those directly caused by malnutrition or metabolic

dysregulation (Li et al., 2022). HUA, one of the chronic diseases

resulting in arthritis and gout, has witnessed an increased prevalence

in recent years worldwide (Yu and Cheng, 2020) as well as in Chinese

adults (from 2015 to 2019, the prevalence rose from 11.1% to 14.0%.)

(Liu et al., 2014; Zhang M. et al., 2021) and elderly (from 2010 to 2019,

the prevalence maybe rose from 6.4% to 10.0%) (Song et al., 2018).

Gout is triggered by urate crystals accumulating in joints, causing pain

and inflammation (Riches et al., 2009), and prolonged exposure to high

UA levels can result in UA stones and a higher likelihood of kidney

disease (Fan et al., 2019). HUA directly or indirectly increases the risk

of other chronic diseases (Yadav et al., 2013); several studies have

indicated a significant association between HUA and chronic diseases

such as obesity, metabolic syndrome, and diabetes (Li et al., 2013; King

et al., 2018; Feng et al., 2022; Lee et al., 2022).
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Disruptions in purine metabolism and uric acid (UA) excretion

contribute to HUA (Qin et al., 2022). Approximately two-thirds of

UA is eliminated through the kidneys and the remainder is

decomposed by gut microbiota (Chu et al., 2021). When uric acid

is secreted into the intestinal lumen, it is rapidly metabolised by

microbes in the intestine, such as Escherichia coli, Clostridia and

Pseudomonas (Crane, 2013). Once the dysbiosis of gut microbiota

occurs, the above pathway would be disrupted, resulting in an

imbalance between UA production and excretion, thus causing

HUA; this emphasises the essential role of the gut microbiota in the

HUA (Lv et al., 2020; Wang et al., 2022). Researches have found that

dysbiosis of the gut microbiota is associated with an increased risk

of infectious diseases in humans (Cai et al., 2022b; Maciel-Fiuza

et al., 2023). Additionally, HUA is a risk factor for infection-related

deaths in incident dialysis patients (Yoshida et al., 2020), and is

related to patients with sepsis (Sreekanth and A. Maldar, 2022). All

evidences indicate that HUA patients are possibly susceptible to

bacterial infection via their gut microbiota dysbiosis.

Antimicrobial resistance (AMR) poses an urgent global threat to

human health. AMR in the gut is considered an atypical chronic

disease. This concern is supported by four main pieces of evidence:

(1) the gut microbiome serves as a reservoir for AMR in humans

(Anthony et al., 2021); (2) the AMR may persist in the human gut for

extended periods and their elimination may prove challenging (Lee

et al., 2023); (3) the antimicrobial resistance genes (ARGs) could be

acquired by opportunistic bacteria and/or pathogenic bacteria,

complicating the treatment of infectious diseases and increasing the

risk of transmission and infection (Zhang B. et al., 2021); (4) the severe

infections could be caused by resistant bacteria derived from gut

microbiota (Libertucci and Young, 2019). Therefore, it is necessary to

investigate the landscape of AMR in HUA patients gut, and to assess

the risk caused by AMR when administering antibiotic treatment to

patients with HUA, it may be necessary to consider the presence of

AMR. However, studies thus far have largely focused on alterations in

the gut microbiome in the HUA population and associations between

microbiome diversity and HUA (de Oliveira and Burini, 2012; Klein

et al., 2018; Liang et al., 2022; Wei et al., 2022); the association between

the AMR and HUA remains largely unknown.

Hence, this study aimed to depict the landscape of the AMR of

60 elderly people with HUA and non-HUA (30:30) in a large

community in Shenzhen, China, and explore its associations with

demographics, gut microbiota, resistome (entire ARGs) and mobile

genetic elements (MGEs) (Figure 1). This study introduces a novel

perspective into the existing research on the gut microbiome’s

association with HUA.
Results

Dietary habits associated with incidence
of HUA

Following a rigorous diagnostic and exclusion process

(Figure 1A), individuals with HUA and non-HUA individuals

were divided into a case group (n=30) and a control group

(n=120), respectively. A total of 62 factors in 5 main categories
frontiersin.org
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were used for univariate analysis (Supplementary Table S1).

Significant differences (P < 0.05) were observed between the two

groups in terms of drinking juice, keeping pets, exercise, abnormal

stool, coarse grain and animal offal. Subsequently, 6 factors were

used for multivariant logistic analysis via collinearity-test method

for excluding confounders. Finally, drinking juice (OR = 2.271, 95%

CI: 2.006~5.087, P = 0.012) and abnormal stool (OR = 4.061, 95%

CI: 1.200~13.744, P = 0.024) were risk factors associated with HUA

(Figure 2A). The adjusted model showed good fit through the

Hosmer-Lemeshow test (c² = 2.301, P = 0.593), and the receiver

operator characteristic (ROC) curve was 0.935 (Figure 2B).
More complex taxonomic diversity in non-
hyperuricaemic individuals

Lachnospiraceae, Bacteroidaceae, and Ruminococcaceae were

the predominant bacterial families in both groups (Figure 3A).

The relative abundance of Bifidobacteriaceae was higher in the NH

group (7.72%) than in the H group (4.48%) (P < 0.001, Z-test).

Enterobacteriaceae accounted for 5.04% in the NH group, while it

only accounted for 1.83% in the H group (P < 0.001, Z-test). At the

genus level, Prevotella constituted 14.50% in the NH group but was

not listed among the top 15 genera in the H group. Conversely,

Pseudomonas was ranked fourth in the H group but not in the NH
Frontiers in Microbiomes 03
group (Figure 3B). These data indicate that the bacterial

composition at the genus level in the two groups was distinct.

Subsequently, the diversity and similarity of microbial

communities at the genus level in the H group and NH group

were analysed using a-diversity indices (Shannon, InvSimpson,

Observed species) and b-diversity analyses (principal coordinate

analysis [PCoA]). The a-diversity in the H group (Shannon:

median 2.47, interquartile range [IQR]: 2.08–2.86; Observed

species: median 65.00, IQR: 54–77.5) was significantly lower than

that in the NH group (Shannon: median 2.87, IQR: 2.34~3.18, P =

0.020, U-test; Observed species: median 86.50, IQR: 69–93.5, P =

0.004, t-test, Figure 3C). Moreover, the microbial community

composition between the H and NH groups was significantly

different (P < 0.001, permutational multivariate analysis of

variance (PERMANOVA), Bray-Curtis; Figure 3D).

To better explore the potential biomarkers for HUA, we

employed Linear Discriminant Analysis Effect Size (LEfSe) to

identify specific genera between the two groups. The results

indicated 20 significantly different bacterial genera between the

two groups (Figure 3E). Bacillus, Bacteroides, Escherichia, Klebsiella,

Pseudomonas, and Streptococcus were enriched in the H group,

whereas Catenibacterium, Clostridium, Collinsella, Coprococcus,

Faecalibacterium, Gemmiger, Lactobacillus, Mitsuokella, Prevotella,

Roseburia, Ruminococcus, Blautia, Lachnospira, and Proteus were

enriched in the NH group.
FIGURE 1

Flowchart of study design.
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Higher abundance of ARGs in
hyperuriacaemic individuals

The entire ARGs in gut was called resistome. A total of 18 ARG

types (417 subtypes) and 19 ARG types (406 subtypes) were

identified in the H and NH groups, respectively (Figure 4A). In

general, 102 ARG subtypes were unique to the H group and 91 to

the NH group, and 315 subtypes were shared between the two

groups (Supplementary Figure S1). Although there were certain

commonalities, the distribution patterns of resistome across

samples were not consistent (Supplementary Figure S2). Total

abundance of resistome in the H group (median: 1.10, IQR: 0.93–

1.76) was significantly higher than that in the NH group (median:

0.76, IQR: 0.52–1.41, P = 0.039, U-test, Figure 4B). Specifically, the

abundance of tetracycline resistance genes in the H group (median:

0.46, IQR: 0.33–0.65) was significantly higher than in the NH group

(median: 0.20, IQR: 0.15–0.37, P < 0.001, U-test). Similarly,

vancomycin resistance genes in the H group (median: 0.03, IQR:

0.02–0.05) was significantly higher than in the NH group (median:

0.01, IQR: 0.004–0.02, P < 0.001, U-test, Figure 4B). Furthermore,

tetracycline resistance genes were the predominant ARGs,

comprising 31.66% and 18.18% in the H and NH groups,

respectively (Supplementary Figure S3).

We further analysed diversity of resistome between two groups using

a-diversity and b-diversity. The a-diversity was significantly greater in

the H group (Shannon, median: 3.13, IQR: 2.83–3.62; InvSimpson,

median: 13.47, IQR: 11.47–20.67) than that in NH group (Shannon,

median: 2.80, IQR: 2.37–3.20, P = 0.030, t-test; InvSimpson,median: 8.37,

IQR: 6.51–22.98, P = 0.040, U-test, Figure 4C). Furthermore, different

compositions of resistome were observed between the two groups (P =

0.004, PERMANOVA, permutations = 999, Figure 4D).

LEfSe was used to explore the specific differences in ARG

subtypes between the two groups. The results showed that 25 and

8 ARG subtypes were significantly enriched in the H and NH

groups, respectively (Figure 4E). Specifically, tetracycline resistance

genes (tetQ, tet40, tetO, tetM, tet32, tet37, and tetP), macrolide-

lincosamide-streptogramin (MLS) resistance genes (ermF, ermC,

ermG, ermX, and lsa), vancomycin resistance genes (vanR, vanU
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and vanS), and several multidrug resistance genes were significantly

present in the H group (Figure 4E).

More ARGs associated with potential pathogens in

hyperuriacaemic individuals.

A total of 9,265 assembled contigs carrying ARGs was obtained from

all metagenomics data, in which the 3,957 and 3,835 ARG subtypes were

identified in the H and NH group, respectively, after excluding 1,474

contigs without exactly genus information (Supplementary Table S2).

We further determined the ARGs subtypes in selected six potential

pathogens and six non-pathogens that associated with HUA from LEfSe

analysis. Total of non-duplicated ARG subtypes in potential pathogens in

genus level including Klebsiella, Escherichia, Bacteroides, Streptococcus,

Pseudomonas, and Bacillus possessed higher number in H group than

those in NH group (175 vs. 147) (Figure 5A), and similar and opposite

results were found in non-assembly data (128 in H group vs. 47 in NH

group) (Supplementary Figure S4) and non-pathogens including

Prevotella, Ruminococcus, Blautia, Roseburia, Lachnospira,and Alistipe

(35 in H group vs. 47 in NH group) (Figure 5B).

Furthermore, we also determined the number of ARG subtypes

in pathogens and non-pathogens in H and NH group. We found

that all pathogens in H group harbour significant higher number of

ARG subtypes than those in NH group, especially in Escherichia

genus (899 Vs. 550, P < 0.01, Z-test) (Figure 5C). However, the

number of ARG subtypes in non-pathogens in H group was similar

or lower than those in NH group (Figure 5D). In addition, multi-

drug resistance genes were likely appeared in Escherichia, and the

florfenicol resistance genes were found only in Bacillus in the H

group. Above data indicates that potential pathogens harbour a

greater diversity and number of ARGs in HUA individuals.
Correlations between ARGs and UA

We further revealed that the ARG number (r = 0.358, P =

0.005), Shannon index (r = 0.24, P < 0.001) and InvSimpson index

(r = 0.333, P = 0.010) were significantly correlated with the UA

levels; however, they were negatively correlated with gut microbiota

(Figure 6A). Procrustes analysis demonstrated a strong consistency
A B

FIGURE 2

Logistic regression analysis of risk factors for HUA. (A) Forest plot reveals the results of multivariate logistic regression analysis. Red dots represent
odds ratios (OR). The error bars represent 95% confidence intervals. After screening through univariate analysis (P < 0.05) and collinearity-test (VIF <
3), drinking juice, keeping pets, exercise, abnormal stool, coarse grain, and animal offal were included in the univariate analysis. (B) The receiver
operator characteristic (ROC) curve.
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of ARGs and gut microbiota in the H group (M2 = 0.534, P = 0.001,

permutations = 999), but not in the NH group (M2 = 0.977,

P = 0.001, permutations = 999, Figure 6B).

Logistic regression analysis was performed to investigate the

association between the ARGs and HUA. After excluding collinearity

factors, age, sex, BMI, education, household income, exercise, basal

metabolic rate (BMR), gut bacterial indicators (Shannon, number, and

InvSimpson), and ARG indicators (Shannon, number, and

InvSimpson) were included in our model using a forward selection
Frontiers in Microbiomes 05
method. We found that ARG number (OR = 1.090, 95%CI: 1.04–1.13,

P < 0.001) and ARG InvSimpson (OR = 0.910, 95%CI: 0.836–0.992, P =

0.031)/gut bacterial number (OR = 0.941, 95%CI: 0.901–0.983, P =

0.006) were positively and negatively associated with HUA, respectively

(iterated three times, Figure 6C). The goodness and reliability of this

model were confirmed using the Hosmer–Lemeshow test (c² = 8.586, P

= 0.378 > 0.05) and diagnostic receiver operating characteristic (ROC)

curve area (0.900) to be satisfactory after adjustment, as evidenced by

and the combined with 0.900 value (Figure 6D).
A B

D

E

C

FIGURE 3

Microbial community profiles between the H group and NH group. (A) Distribution of bacteria between the H group and NH group under family
level. The proportion of bacteria less than 2% was categorized into ‘other’. (B) Distribution of the top 15 bacteria between the H group and NH group
under genus level. (C) a-diversity. Boxplots show the distribution of data around the median and IQR. P values lower than the threshold for
significance (* < 0.05, ** < 0.01) were shown. (D) b-diversity. Analysis was using Bray Curtis distance and test by PERMANOVA (Bray-Curtis, P < 0.05,
permutations = 999). (E) Linear discriminant analysis (LDA) effect size (LEfSe) analysis indicating the most differential bacteria between the H group
and NH group. (LDA SCORE ≥ 103).
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Susceptibility of HUA individuals to ARGs

We included 5 demographic factors, 5 physiological factors,

and 20 dietary intake levels to investigate the potential factors that
Frontiers in Microbiomes 06
may affect the differences in ARGs between the two groups. In

total, 10 factors (8 of the 10 factors were associated with dietary

consumption) were found to be significantly associated with the

ARGs (Figure 7A). Pork consumption had the highest explanatory
A

B

D

E

C

FIGURE 4

Composition, diversity and specificity of ARGs between the H group and NH group. (A) Number of ARG types and subtypes. The horizontal axis
represents ARG types, and the vertical axis represents ARG subtypes. (B) Abundance of ARG types. Boxplots show the distribution of data around the
median and IQR. P values lower than the threshold for significance (* < 0.05, ** < 0.01) were shown. (C) a-diversity. (D) b-diversity. Analysis was
using Bray Curtis distance and test by PERMANOVA (Bray Curtis, P = 0.004, permutations = 999). (E) LEfSe analysis indicating the most differential
ARGs between the H group and NH group (LDA SCORE ≥ 103). MLS, Macrolide-Lincosamide-Streptogramin.
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power (R² = 0.04, PERMANOVA, P = 0.014). We conducted a

similar separate analysis for the H and NH groups. Our data

showed more factors contributing to the effects on the ARGs in the

H group (eight in the H group and three in the NH group)

(Supplementary Figure S5), especially diet-related factors,
Frontiers in Microbiomes 07
associated with the ARGs in HUA individuals, indicating a

higher complexity.

Kyoto Encyclopaedia of Genes and Genomes (KEGG)

pathway analysis revealed differentially enriched genes between

the two groups and indicated different microbial compositions
A

B

D

C

FIGURE 5

Host distribution of ARGs based on assembly contigs. (A) Network analysis between ARGs and potential pathogens based on assembly contigs.
(B) Network analysis between ARGs and non-pathogens based on assembly contigs. (C) The distribution of the number of ARG subtypes in potential
pathogens. (D) The distribution of the number of ARG subtypes in non-pathogens. P values lower than the threshold for significance (* < 0.05,
** < 0.01) were shown.
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and metabolic functions between the two groups (H vs. NH,

Figure 7B). The differentially genes between the H and NH

groups were found to be enriched in pathways related to ARGs,

amino acid biosynthesis and metabolism, phenylalanine,

tyrosine, tryptophan biosynthesis, and energy metabolism. This

emphasizes the differences in microbial composition between the

H and NH groups, particularly in functions related to

inflammation, immune response, bacterial secretion, and

protein export. All these suggest that the microbiota in H
Frontiers in Microbiomes 08
group was prone to possess the higher ability of colonisation

and pathogenesis in gut.

We further analysed virulence-associated genes in these two

groups and identified 2682 and 2705 VGs in the H and NH groups,

respectively (Supplementary Figure S6). Genes related to adherence (P

< 0.001, U-test), antimicrobial activity/competitive advantage (P <

0.001, U-test), and exoenzymes (P < 0.001, U-test) were significantly

upregulated in the H group (Supplementary Figure S7). This finding

further confirmed our observations in KEGG analyses.
A

B

DC

FIGURE 6

Correlation analyses between ARGs and UA. (A) Spearman correlation analysis. (B) Procrustes analysis. Longer lines between two dots indicate
greater discordance between microbials and ARGs. Significant correlations (999 permutations) were detected in all comparisons. (C) Forest plot. The
error bars represent 95% confidence intervals. (D) The ROC curve.
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Discussion

The analysis of risk factors for HUA revealed that drinking juice

is one of the risk factors, while exercise and moderate coarse grains

are protective factors. These findings are consistent with

conclusions drawn from existing literature, highlighting the

significant impact of dietary structure and exercise on the

occurrence of HUA in elderly individuals (Ashida et al., 2015;

Danve et al., 2021). Additionally, this study identified for the first

time that abnormal stool was the risk factors for HUA. Abnormal

stool characteristics partially reflect the intestinal condition of the

subjects, which is closely related to the gut microbiota and indicates

a possible dysbiosis of microbiota.
Frontiers in Microbiomes 09
Recent studies have highlighted a link between ARGs and

various chronic diseases, including diabetes, cirrhosis, and

chronic kidney disease (Shamsaddini et al., 2021; Pan et al., 2022;

Shuai et al., 2022). A previous study found that gut microbial

diversity was negatively correlated with HUA; however, the gut

resistome was not investigated (Yang et al., 2021). One study

indicated that patients with HUA and with high UA levels have a

weakened immune system and are potentially susceptible to

pathogenic infections (Yu et al., 2023). Notably, our study found

that elderly individuals with HUA had a higher abundance of ARGs

in their gut than those without HUA. Furthermore, the abundance

of ARGs in individuals with HUA was positively correlated with UA

levels and the incidence of HUA. As the resistome in the gut
A

B

FIGURE 7

Host associated factors on gut resistome. (A) Effect size of host factors on gut resistome were calculated by PERMANOVA (permutations = 999). P
values lower than the threshold for significance (* < 0.05) were represented as red bars. (B) Differential pathways between the H and NH groups. The
horizontal axis ‘GeneRatio’ represents the proportion of different genes within a given pathway relative to the total number of different genes. The
p.adjust values are Bonferroni-corrected p-values, indicating the statistical significance of the enrichment. The size of the circles correlates with the
count of different genes associated with corresponding pathway.
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microbiota is considered an atypical chronic disease, a higher

abundance of the resistome increases the risk to human health.

However, as the number of elderly individuals with HUA increases

annually, health risks and socioeconomic burdens become more

severe (Maresova et al., 2019). One study discovered that the burden

of ARGs increases with human ageing (Tavella et al., 2021). Hence,

more attention should be given to elderly individuals with HUA and

higher resistome abundance to find an effective way of reducing

resistome abundance and associated pathogens in the human gut.

The study identified 20 different species in the two groups, with

Bacillus, Bacteroides, Escherichia, and Klebsiella being enriched in

group H. Uricase, which is responsible for converting purines into

urea and UA, is abundant in Bacillus (DeBosch et al., 2014).

Escherichia secretes the key enzyme, xanthine dehydrogenase

(XDH), which is crucial for purine oxidative metabolism (Wang

et al., 2017). Our study corroborates the findings of a hospital

population study, which revealed a significant reduction in gut

microbial diversity in patients with HUA, accompanied by a notable

increase in Bacteroides and a decrease in Ruminococcaceae (Liang

et al., 2022). In the NH group, bacteria such as Lactobacillus and

Clostridium were enriched. Lactobacillus is known to absorb and

utilise purines, thereby reducing the intestinal absorption of dietary

purines and lowering serum UA levels (Yamada et al., 2016).

Additionally, Clostridium has been associated with UA

decomposition (Yu et al., 2018). The core microbiome of HUA

may be related to the gut microbiota, which is enriched in purine

metabolism-related proteins, and Bacteroides is an important

component (Liu et al., 2023). A close relationship between

Klebsiella and elevated UA levels has been revealed (Yang et al.,

2021). Our data on the composition of the gut microbiome in

individuals were consistent with the findings of previous studies.

Emphasis should be placed on the fact that Aureimonas, a common

human opportunistic pathogen in the environment (Becker et al.,

2022), was enriched in HUA individuals in this study; however, the

relationship between Aureimonas and HUA remains unclear. A

recent study found that hippuric acid derived from Alistipes

indistinctus promotes intestinal UA excretion to alleviate HUA

(Xu et al., 2024). In our study, we also observed that the total

relative abundance of Alistipes in the H group (126.94) was lower

than that in the NH group (150.96). Our results indicated a

potential increase in the diversity, number and abundance of

ARGs in the gut microbiota of patients with HUA. In addition,

bacteria associated with HUA may have elevated levels of these

ARGs. Furthermore, Procrustes analysis and logistic regression

revealed a synergy between the diversity of ARGs and bacterial

populations, which might collectively be associated with UA levels

and the occurrence of HUA.

Pork consumption was the predominant factor associated with

the gut resistome in individuals with HUA. This may be attributed to

Guangdong being one of the largest pork-consuming regions in

China. One study revealed high concentrations of tetracycline

resistance genes in water samples from the coastal areas of

Guangdong (Xu et al., 2019), whereas another revealed high

concentrations of multidrug resistance genes in chicken and pork

from Guangdong retail markets (Zhang et al., 2018). In the present

study, tetracycline and multidrug ARGs were the most abundant
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subtypes. The above evidence suggests that water, meat, and human

guts in Guangdong Province are contaminated with higher ARGs.

Separate analyses of the H and NH groups indicated that the factors

influencing gut ARGs composition differed under varying HUA

conditions. In individuals with HUA, the influencing factors were

primarily sex, dietary habits (including juice, rice, and vegetables),

and education level. In contrast, in individuals without HUA, the

influencing factors were limited to dietary habits, specifically fat

consumption and diversity. These results indicate that lifestyle

habits and personal characteristics of the subjects could be external

factors affecting the variation in their gut ARG composition.

Pathway analysis revealed that in individuals with HUA, genes

of the gut microbiota were enriched in inflammation, immunity,

and bacterial survival, including vancomycin resistance,

lipopolysaccharide biosynthesis, bacterial secretion system, and

amino acid metabolism. This aligns with the higher abundance of

genes related to adherence, antimicrobial activity, and exoenzymes

in individuals with HUA. Additionally, the more complex

relationship between MGEs and ARGs/microbes in individuals

with HUA indicated a higher frequency of ARGs transmission in

these individuals. These data suggest that the microbiota of

individuals is associated with higher antimicrobial resistance and

pathogenicity, which may increase the risk to human health.

Combined with our findings, dietary habits may vary the

composition of the gut microbiota and reconstruct the gut

resistome, resulting in an imbalance of microbiota with the

excretion of UA and potentially raising UA levels, which may

initiate or exacerbate HUA.

Our study has some limitations. First, we focused exclusively on

the elderly population, which may not be a representative of the

entire population. Second, as an observational study, our findings

establish a correlation rather than causality; further studies are

required to elucidate the causal relationships.
Conclusion

Our study offers a comprehensive overview of the gut AMR in

the elderly population and presents novel insights into the

relationship between AMR and HUA. It also suggests a positive

association between the gut AMR and host-associated factors.

These findings highlight that individuals with HUA possess a

higher risk of AMR, and potential intervention approaches are

needed to be applied to reduce AMR in HUA individuals gut based

on significant host-associated factors.
Methods

Study design and participants

A flowchart of the study design is shown in Figure 1. A total of

1,032 volunteers were recruited through advertising posters and

face-to-face introductions in a large community in Shenzhen City

from March 1st 2018 to July 31st 2022. Each volunteer was assigned

a unique number to avoid duplicate enrolment. Subsequently,
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participants provided stool samples and completed a questionnaire.

Individual consent forms were translated into Mandarin, and

consent was obtained from all volunteers. We did not recruit

volunteers for whom consent could not be obtained. All

participants retained the right to withdraw from the study at

any stage.

Given the study’s focus on elderly people; we applied the

following exclusion criteria: age less than 65 years, absence of

stool samples, and lack of questionnaire data. After exclusion, 504

participants were included in this study. Subsequently, subjects

were included based on HUA diagnostic criteria: 1) a normal purine

diet, 2) blood uric acid (UA) levels exceeding 360 mmol/L for

females and 420 mmol/L for males, respectively (Luo et al., 2022).

We also excluded individuals who were missing key covariate data

such as age, gender, BMI, smoking status, alcohol consumption,

education level, and income level, and also who had serious illnesses

like other gastrointestinal disorders, HIV, or cancer and consumed

antibiotics within the past month. Finally, 30 participants with

HUA were included in the case group. A matching ratio of 1:4 was

used to randomly select participants (n = 120, 1:4) without HUA as

the control group. After 1:1 matching by age and sex, the 30

participants in the case group and the 120 participants in the

control group were respectively divided into the H group and the

NH group for subsequent analysis.
Metadata collection and process

Demographics, lifestyle, medical history, and physical activity

data were collected using a questionnaire. Participants’ habitual

dietary intake was assessed using a food frequency questionnaire

that recorded their food consumption over a week. Trained nurses

from the community health centre measured the weight, height,

waist circumference, hip circumference, and blood pressure. All

data were entered using EpiData Version 3.1 with a double-

entry method.
DNA extraction and
metagenomic sequencing

All stool samples were placed in a low-temperature transportation

box and promptly sent to the laboratory (within 8 h) and were stored at

-80°C until they were ready for genomic DNA extraction. The genomic

DNA was extracted using Tiangen Magnetic Beads (Beijing, China).

The purity and integrity of the extracted DNA were evaluated by 1%

agarose gel electrophoresis. The DNA was quantified using the Qubit®

dsDNA Assay Kit by Qubit® 2.0 Fluorometer (Thermo Fisher

Technologies, CA, USA). Approximate 1 mg of DNA was used for

library construction using the NEBNext® Ultra DNA Library Prep Kit

for Illumina (NEB, CA, USA). Preliminary quantification was

performed using Qubit 2.0 after library construction, and

subsequently, the insert size of the DNA library was checked using

Agilent 2100 (Agilent, CA, USA). The effective concentration of the

library was accurately quantified using the Q-PCR method (the

effective concentration of the library > 3 nM). Paired-end sequencing
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reads were generated using an Illumina NovaSeq platform (Illumina,

CA, USA) by Novogene Co., Ltd. All metagenomic sequence data had

been uploaded to the public NCBI sequence read archive (SRA)

database under the BioProject number PRJNA1059748.
Metagenomic analysis

Raw reads were quality-filtered using fastp (Chen et al., 2018) to

remove sequences with a quality value > 38 or ambiguous

nucleotides > 10. In cases where there was potential host

contamination, default alignment was performed using Bowtie2

software (version 2.2.4, http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml) with the following parameters (Karlsson et al., 2013):

–end-to-end, –sensitive, –I 200, –X 400. The reads with a match

consistency ≥ 90% were filtered out. After quality filtering,

approximately 10 GB of clean data were obtained for each

sample. MetaPhlAn version 4.0.4 (17 Jan 2023) was used to

analyse the relative abundance data at the family and genus levels

(Truong et al., 2015). The abundances of ARGs, virulence genes

(VGs), and MGEs were calculated using ARGs-SOP (Version 2.0)

with default parameters using the SARG.2.2, VFDB, and Mobile

Genetic Element Databases, respectively (Liu et al., 2022). To

identify the hosts of antibiotic resistance genes, we used

MEGAHIT version1.0.4-beta to assemble the data (Nielsen et al.,

2014), and the contigs longer than 500 bp were kept for subsequent

analyses. The filtered contigs were annotated for species using

Kraken2 and we used DIAMOND to search the protein

sequences against the SARG.2.2 database to identify ARGs

containing contigs. The relative abundance of the KEGG pathway

was determined using HUMANN3 (Franzosa et al., 2018).
Statistical analysis

For risk factors analyses, univariate analysis was conducted

using the chi-square test or Fisher’s exact test (expected frequency <

5, use Fisher’s exact test; expected frequency > 5, use chi-square

test). A collinearity-test was performed on the variables to select

those with a variance inflation factor (VIF) < 3 for subsequent

multivariate logistic regression analysis (VIF < 3 indicates no

collinearity). Variables with P < 0.05 and VIF < 3 in previous

analyses were further included in multivariable logistic regression

model (enter, P < 0.05; excluded, P > 0.1, forward selection). We

used the Wilcoxon rank-sum test (Mann–Whitney U-test) or t-test

(depending on whether the data were normally distributed) to

compare the number of observed features (i.e. richness),

InvSimpson (i.e. richness), and Shannon index (i.e. diversity)

(Anderson, 2001). The Z-test was used to compare the

proportions of microbiota. We conducted PCoA (based on Bray–

Curtis distances) to explore the similarities and differences in

microbiota/ARGs/MGEs between the H and NH groups (Nocelli

et al., 1999). LEfSe was used to distinguish differences in microbiota

and ARGs between and within the H and NH groups (Segata et al.,

2011). We also used Spearman’s correlation analysis to evaluate the

linear associations between ARGs richness and diversity, and UA
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levels. All analyses were performed in R v3.6.1 (R Foundation for

Statistical Computing, Vienna, Austria). P values < 0.05 were

considered statistically significant. Heatmaps were generated

using the heatmap package, while most other graphs such as box

plot and bar chart were produced using the ggplot2 package (Chen

et al., 2020). The a-diversity indices (Shannon, observed species,

InvSimpson) of bacterial communities, ARGs, and MGEs for each

sample were calculated using vegan package in R (Barberán et al.,

2012). The b-diversity analysis was conducted using PCoA based on

Bray–Curtis distances via vegan package (Cao et al., 2020), and

PERMANOVA was used for statistical analysis (Anderson, 2001).

We conducted Procrustes analysis based on Bray–Curtis

dissimilarity to investigate the relationship between ARGs and gut

microbiota. Network analyses between potential pathogens and

ARGs were visualised using Gephi v0.9.2 (Chen et al., 2020).
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