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Introduction: The microbial interactions within the human microbiome are

complex, and few methods are available to identify these interactions within a

longitudinal microbial abundance framework. Existing methods typically impose

restrictive constraints, such as requiring long sequences and equal spacing, on

the data format which in many cases are violated.

Methods: To identify microbial interaction networks (MINs) with general

longitudinal data settings, we propose a stationary Gaussian graphical model

(SGGM) based on 16S rRNA gene sequencing data. In the SGGM, data can be

arbitrarily spaced, and there are no restrictions on the length of data sequences

from a single subject. Based on the SGGM, EM -type algorithms are devised to

compute the L1-penalizedmaximum likelihood estimate of MINs. The algorithms

employ the classical graphical LASSO algorithm as the building block and can be

implemented efficiently.

Results: Extensive simulation studies show that the proposed algorithms can

significantly outperform the conventional algorithms if the correlations among

the longitudinal data are reasonably high. When the assumptions in the SGGM

areviolated, e.g., zero inflation or data from heterogeneous microbial

communities, the proposed algorithms still demonstrate robustness and

perform better than the other existing algorithms. The algorithms are applied

to a 16S rRNA gene sequencing data set from patients with cystic fibrosis. The

results demonstrate strong evidence of an association between the MINs and the

phylogenetic tree, indicating that the genetically related taxa tend to have more/

stronger interactions. These results strengthen the existing findings in literature.

Discussion: The proposed algorithms can potentially be used to explore the

network structure in genome, metabolome etc. as well.
KEYWORDS

Gaussian graphical model, microbial interaction network, EM algorithm, longitudinal
data, relative abundance
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1 Introduction

Microorganisms thrive in communities in large numbers. They

interact with their host and with one another in various ways, such

as commensalism, synergism, competition, parasitism, and

predation. This complex set of interactions can be depicted in the

form of microbial interaction networks (MINs) (Faust and Raes,

2012). Traditionally, such interactions have been inferred using

culture-based methods, which can only accommodate a small

number of microbial strains (Gause, 1934; Staley and Konopka,

1985; Harcombe, 2010). Since most microbes cannot be cultivated,

the estimated interactions under laboratory conditions could be

misleading. Underpinned by advances in next-generation

sequencing (NGS) technologies, a complete microbiome profile

can be measured at a relatively low cost, allowing researchers to

investigate microbial interactions in situ. However, the complexities

of these high-throughput data, such as their high dimensionality,

zero inflation, and compositional nature, pose substantial

challenges to identifying MINs (Faust and Raes, 2012). Currently,

the primary way to infer MINs is the pairwise method, in which the

cooccurrence or mutual exclusion pattern of two species is

compared using measures such as Pearson or Spearman

correlation (Qin et al., 2010; Zhou et al., 2010; Arumugam et al.,

2011; Barberan et al., 2012). An emerging method is based on

conditional independence, i.e., the conditional joint distribution of

two taxa given all the other microbiome members. Conditional

independence is conceptually superior to the pairwise method since

it removes the effects of all the other taxa when measuring the

relationship between the two taxa of interest (Kurtz et al., 2015;

Chen et al., 2017; Viles et al., 2021). Furthermore, if the data follow a

normal distribution, then the precision matrix, i.e., the inverse of

the covariance matrix, directly reflects the conditional

independence relationship among microbes. With such an

appealing interpretation, precision matrices have become the ideal

tools for exploring the structure of MINs (Fang et al., 2017; Yoon

et al., 2019; Yuan et al., 2019; Jiang et al., 2020; Tian et al., 2023).

In particular, the authors in (Kurtz et al., 2015) proposed a

conditional independence-based pipeline named SParse InversE

Covariance Estimation for Ecological Association Inference

(SPIEC-EASI) to estimate MINs. In SPIEC-EASI, L1-penalized

maximum likelihood estimation of the precision matrix is

employed to identify high-dimensional MINs. Mathematically, the

L1-penalized maximum likelihood estimation of the precision matrix

has been studied extensively in the literature (Yuan and Lin, 2007;

Avella-Medina et al., 2018; Wang and Jiang, 2020). Algorithms have

been proposed to compute such estimates, e.g., graphical LASSO

(Friedman et al., 2008; Friedman et al., 2019) and the neighborhood

method (Meinshansen and Bühlmann, 2006). In SPIEC-EASI,

graphical LASSO computes the precision matrix recursively based

on the coordinate descent algorithm. In contrast, the neighborhood

method computes the neighborhood of each node and then combines

these neighborhoods to form an estimate of the network. However, a

prerequisite of SPIEC-EASI is that the data should be independent.

Although independence is a reasonable assumption if the data are

cross-sectional, in many other cases, data sets are longitudinal, in

which multiple observations are made on the same subject. In such
Frontiers in Microbiomes 02
studies, the observations from the same subject are typically

correlated and violate the assumption of SPIEC-EASI. There have

been studies to estimate the network from the correlated data. The

time series models, e.g., vector autoregression, have been employed to

address the correlation between observations within the same cluster

(Bach and Jordan, 2004; Qiu et al., 2016; Chen et al., 2017; Epskamp

et al., 2018; He et al., 2022). In particular, the authors in (He et al.,

2022) used autoregression in the proposed ARZIMM model to

characterize the longitudinal absolute abundance data for the

microbiome study. However, time series methods require the data

for each subject to be long enough and equally spaced, which is not

usually satisfied in reality. Functional data analysis has also been used

to decipher the conditional correlation for high-dimensional data

(Zhu et al., 2016; Li and Solea, 2018; Qiao et al., 2019; Solea and Li,

2020). For example, for electroencephalogram (EEG) data (Qiao

et al., 2019), proposed a functional graphical model to estimate a

network of brain reactions, and (Solea and Li, 2020) proposed the

copula Gaussian graphical model for a network of functional

magnetic resonance imaging (fMRI) data. Functional data analysis

based methods require the data to be densely spaced and the sample

size to be large. The requirements inherited in these existing methods

are often violated for longitudinal data sets in human

microbiome studies.

In this paper, we consider the estimation of MINs from

irregularly spaced longitudinal 16S rRNA gene sequencing data.

The SPIEC-EASI pipeline can be seen as a special case of the

proposed algorithms. The inferences are considered under three

conditions. In the first condition, we assume that all subjects share

an autocorrelation parameter t during the trial. For this case, we

propose a model named the homogeneous SGGM to characterize

MINs. For the homogeneous SGGM, a recursive graphical LASSO

algorithm is proposed to compute the L1-penalized maximum

likelihood estimate (MLE) of the network. In the second

condition, the homogeneous SGGM is extended to the

heterogeneous SGGM, allowing different subjects to have their

own autocorrelation parameter. For the heterogeneous SGGM, an

expectation-maximization (EM)-type algorithm is devised to

compute the L1-penalized MLE of the network. In the third

condition, the autocorrelation parameters are further allowed to

depend on covariates such as sex and race. We show how the

algorithm in condition two can be adapted to accommodate the

extension. Extensive simulation studies are conducted to compare

the proposed algorithms with existing algorithms, including the

SPIEC-EASI pipeline and the GGMselect algorithm family (Giraud

et al., 2012). The comparisons are conducted under different

scenarios, aiming to investigate the robustness of the algorithms

to violations of the assumptions of the SGGM. This is necessary

since the 16S rRNA gene sequencing data are highly irregular and

may fail to exactly satisfy the premises of the proposed models and

algorithms. For all the scenarios considered, the proposed

algorithms exhibit better performance for network selection than

that of other existing algorithms.

In the final part, the proposed models are employed to study a

longitudinal gut microbiome data set from a cohort with cystic

fibrosis in New Hampshire (Madan et al., 2012). To validate the

proposed algorithms, with the estimated MINs, we measure the
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correlation between the estimated MINs and the corresponding

phylogenetic tree. A permutation test is proposed to determine the

significance of such a correlation. The results demonstrate strong

evidence for the positive correlation between the MINs and the

phylogenetic tree, indicating that genetically related taxa also tend

to have more/stronger interactions. These findings strengthen the

discoveries that have been reported in other studies (Chaffron et al.,

2010; Eiler et al., 2012) and provide an empirical basis for using

phylogenetic trees as a tool to explore microbial interactions in

future studies (Chung et al., 2022).

The paper is organized as follows. In theMaterials and methods

section, we introduce stationary Gaussian graphical models

(SGGMs) and three related inference algorithms. In the Results

section, we compare the performance of the proposed algorithms

with that of the conventional methods under different scenarios and

demonstrate the superiority of the proposed algorithm. We then

considered the gut microbiome of subjects with cystic fibrosis. The

homogeneous version of the proposed algorithm is employed to

identify the MINs of the microbiome. The plausibility of the

estimated MINs is discussed. The Discussion section includes a

brief review of the models.
2 Materials and methods

2.1 Data generation process

Let yitik = (yitik1, · · ·, yitikp)
T denote observations of some

transformed abundance data of a microbiome with p taxa from

subject i at time tk (1 ≤ i ≤ m, 1 ≤ k ≤ ni) so thatkit is appropriate to

assume that yitik ∼ Np(μ,S), where μ = E(yitik ) and S = Var(yitik ).

The precision matrix is defined as Ω = S−1. Then, the nip vector

yi = (yTi1,⋯, yTini )
T represents all the observations on subject i, and

vector y = (yT1 ,⋯, yTm)
T represents the observations on all the m

subjects with n =om
i=1ni. For the correlations between the

observations, we assume that the observations from different

subjects are independent, i.e., cov(yi1tik1 , yi2tik2 ) = 0p�p for i1 ≠ i2, k1
≥ 1, k2 ≥ 1. For observations from the 1 same subject, we assume

cov(yitik1 , yitik2 ) = DHik1k2D where D = diag(s1,···,sp) with s 2
1 ,⋯,s2

p

diagonal elements of S, while Hik1k2 is the correlation matrix

between Yitik1
and Yitik2

for which the following form is assumed:

Hik1k2 = Fik1k2 ⊙R (1)

The symbol in (Equation 1) stands for the Hadamard product of

matrices Fik1k2 and R. Here, R is the correlation matrix with respect

to covariance matrix S, while matrix Fik1k2 = (fik1k2 )p�p defines the

dampening rates at which the components ofHik1k2 decrease as time

goes from tik1 to tik2 . For example, (Fik1k2 )12 is the dampening rate

of correlation cor(Yitik1 1
,Yitik1 2

) to correlation cor(Yitik1 1
,Yitik2 2

).

Theoretically, dampening rates can vary from taxon to taxon and

depend on the time points as long as the resulting matrix Hik1k2 is

positive definite. However, in this paper, for subject i, we assume

that the components of Hik1k2 have the same dampening rate.

Furthermore, they depend on time points (tik1 , tik2 ) only through

the distance between tik1 to tik2 , i.e., fik1k2 = gi( tik1 − tik2
�� ��) for some
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decreasing function 0 ≤ gi(·) ≤ 1. Motivated by studies on the

longitudinal regression model (Diggle et al., 2002), we assume

function gi(·) has the form of exp ( − ti tik1 − tik2
�� ��p). For p = 0, we

have fik1k2 = exp ( − ti), which is referred to as the uniform

correlation and can be used to model the spatial correlation. For

example, specimens may be collected at different body sites from the

same subjects, for which the uniform correlation seems to be a

reasonable assumption. On the other hand, the cases of p > 0 can be

used to model the irregularly spaced temporal correlation, which

typically decreases as the time span tik1 − tik2
�� �� increases. In

particular, functions exp (ti tik1 − tk2
�� ��) and exp (ti tik1 − tik2

�� ��2)
have been used in the marginal regression model for low-

dimensional longitudinal data. Here, the parameters tis, which
are referred to as autocorrelation parameters, measure the

dampening rates that are shared by all the components of yit , (i =

1,⋯,m).

Without loss of generality, we always employ the correlation

function exp (ti tik1 − tik2
�� ��) in the following and assume that the

observations have been centered so that m = 0. Let Si denote the

covariance matrix of the observation vector yi. The density function
of y is then given by

 f (yjW, t) =
Ym
i=1

fi(yijSi, t),

where fi(yijSi, ti) = (2p)−nip=2jSij−1=2 exp ( − yTi o−1
i yi=2)with

 oi =

       W−1 e−ti ti1−ti2j j W−1 ⋯ e−ti ti1−tin1j jW−1

e−ti ti2−ti1j j W−1       W−1 ⋯ e−ti ti2−tin2j jW−1

           ⋮            ⋮   ⋮            ⋮

e−ti tini−ti1j jW−1 e−ti tini−ti2j jW−1 ⋯         W−1

0
BBBBB@

1
CCCCCA

(2)

Since the number of unknown parameters in Ω is much larger

than the sample size in the context of the gut microbiome, the

maximum likelihood estimate of Ω is unidentifiable, and sparsity is

typically assumed in the literature. To this end, penalized maximum

likelihood estimation (MLE) is usually adopted, e.g., the SPIEC-

EASI model in (Kurtz et al., 2015). The SPIEC-EASI pipeline

employes the L1-penalty to achieve the sparsity of Ω for cross-

sectional observations. Here, we adopt the same strategy for

longitudinal data and use the minimizer of the following L1-

penalized negative log-likelihood function as the estimate of

network Ω

(^Ω, t̂ ) = arg  min
Ω,t

−2 log (f (yjΩ, t)) + nl Ωj j1f g (3)

We refer to model (Equations 2, 3) the stationary Gaussian

graphical model (SGGM). Here, stationarity stems from the fact

that the same network Ω is shared by all the subjects and at all time

points. If the data are independent observations, then (3) can be

solved by the graphical LASSO algorithm (Friedman et al., 2008) or

the neighborhood method (Meinshansen and Bühlmann, 2006),

and SGGM is just reduced to the SPIEC-EASI model. However,

since the data are longitudinal and can correlate to each other, the

performance of the SPIEC-EASI pipeline is not guaranteed when

solving (3).

Notably, in model (2, 3), we assume the same correlation

dampening rate ti for all the taxa in the microbiome of subject i.
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This assumption is motivated by the characteristics of the gut

microbiome, where the taxa are typically influenced by the same

perturbation sources, such as diet change and disease development.

However, even if this assumption is violated and different taxa have

different dampening rates, model (2, 3) can still be used as a

working model for identifying the network structure, in which ti
can be regarded as the mean dampening rate of the whole

microbiome. In such cases, models (2, 3) still outperform the

SPIEC-EASI pipeline, and the latter ignores the correlation

structure of longitudinal data. We demonstrate this point through

simulation studies in Section 3.1.

In the following sections, we propose three algorithms to

identify the network Ω in (3) based on different dampening rate

ti models. An algorithm for the homogeneous SGGM is first

considered, and two extensions are proposed that allow the

algorithms to deal with cohorts of heterogeneous subjects. These

algorithms integrate the graphical LASSO algorithm with other

algorithms, e.g., the EM algorithm, to find the penalized maximum

likelihood estimator of Ω.
2.2 Homogeneous SGGM

In this section, we consider identifying Ω under the assumption

t1 = ⋯ = tm = t .
Thus, it is assumed that correlations between observations at

different time points dampen at the same rate for each subject in the

cohort. From the density function (2), the log-likelihood function

for y = (yT1 ,⋯ yTm)
T is given by

ln(S, t jy) = −
1
2o

m

i=1
(p log ( Fij j) + ni log ( Sj j) + yTi (Fi ⊗S)−1yi) (4)

up to a constant. Here,⊗ stands for the Kronecker product. We

use the formulas Si =  Fi ⊗S and Sij j = Fij jp Sj jni . Note that with
formula (Fi ⊗S)−1 = F−1

i ⊗S−1, the last term in (Equation 4) can

be rewritten as

yTi (Fi ⊗S)−1yi = yTi (F−1
i ⊗S−1)yi =o

ni

j=1
o
ni

k=1

f−
ijky

T
itij W yitik

  =o
ni

j=1
o
ni

k=1

tr(f−
ijkyitik y

T
itij W ) = tr o

ni

j=1
o
ni

k=1

f−
ijkyitik y

T
itij

 !
W

 !

 ≜ trSi(t)W,

(5)

where Si(t) =oni
j=1oni

k=1f
−
ijkyitk y

T
itij and F−1

i = (f−
ijk)ni � ni. By

substituting (Equation 5) into (4), we have

ln(W, t jy) = −
1
2 o

m

i=1
p log ( Fij j) − n log ( Wj j) + n tr (�S(t)W )

( )
(6)

where n =om
i=1ni,�S(t) =

1
no

m
i=1Si(t). Here, we use �S(t) to

emphasize that matrix �S is a function of unknown parameter t.
With (Equation 6) in hand, the sparse network can be achieved by

minimization the L1-penalized negative log-likelihood function (3),

i.e.,
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min
W,t

−2ln(W, t jy) + nl Wj j1f g (7)

for given tuning parameter l > 0. The minimization problem

(Equation 7) can be solved through a block coordinate descent

procedure. First note that for a given t, the solution of Ω can be

obtained through the following minimization:

min
W

− log Wj j + tr(�S(t)W ) + l Wj j1f g (8)

which has the same form as the GGM for independent data

when the empirical covariance matrix is given by �S(t).
Consequently, the graphical LASSO algorithm can be used to

compute the sparse estimate of W in (Equation 8). On the other

hand, given W, the minimization of (7) with respect to t does not

involve any L1 penalty term and consequently can be carried out

through the maximization of the likelihood function (6) with

respect to t. The conventional Newton algorithm can be used in

this step. This process continues until convergence is achieved. This

algorithm will be referred to as homogeneous longitudinal graphical

LASSO (LGLASSO), for which the details are summarized in the

following table.
1: procedure Given Initial Value t0 And Ω0, Tuning

Parameter l And Error Tolerance e > 0:

2: With t = t0, solve optimization problem (8) with

respect to Ω using graphical

LASSO and let Ŵ be the resulting estimate of Ω.

3: With W = Ŵ, solve optimization problem (6) with

respect to t. Let t̂ be the resulting estimate of t.

4: if t0 − t̂j j< e and j(W0 −Ŵ )ij j < e for 1 ≤ i ≤ j ≤ p then

5: Stop and output (t̂ ,  Ŵ ).

6: else

7: Let t0 = t̂ ,W0 = Ŵ, return to Step 2.
Algorithm 1. Identify the network based on the homogeneous SGGM.
2.3 Heterogeneous SGGM

In the homogeneous SGGM, we assume that a single correlation

parameter t applies to all the subjects. In real data analysis, this

parameter may vary across subjects. In this section, we consider

network identification without assuming t1 = ⋯ = tm. Instead, we
assume that the parameters ti’s are independent random variables

from the exponential distribution ti ∼ exp (a). Consequently, the
joint density function for yi, tif gmi=1 is

Ym
i=1

fi(yijS, ti)a exp ( − ati) (9)
frontiersin.org

https://doi.org/10.3389/frmbi.2024.1366948
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Zhou et al. 10.3389/frmbi.2024.1366948
from which the likelihood function for S and a is given by

Ln(W,ajy) =
Z
t1,⋯,tm

Ym
i=1

fi(yijS, ti)ai exp ( − ati)dt1 … tm (10)

With (Equations 9, 10) in hand, the sparse estimate for the

network can then be obtained by minimizing the following L1-

penalized negative log-likelihood function:

min
W,a

−2ln(W,a) + nl Wj j1f g (11)

where ln(W,a) = log (Ln(W,ajy)). Since no explicit form for

ln(W,a) is available, the expectation-maximization (EM)

algorithm is proposed here to find the solution to (11)

(Dempster et al., 1977). Since we are considering the negative

log-likelihood function in (11), the maximization in the EM

algorithm will be replaced by the minimization. The correlation

parameters t = (t1,⋯, tm) will be taken as the so-called missing

data. Recall in the first step of the EM algorithm that the

conditional distribution of missing data t given y, S = S0, a =

a0 has to be derived from (2) and (9) as follows:

             g(t jy,S0,a0) =
Ym
i=1

g(tijyi,S0,a0)

∝
Ym
i=1

Fij j−p=2exp ( − yTi (F
−1
i ⊗S−1

0 )yi=2) exp ( − a0ti)

(12)

For (12), the expectation of the complete log-likelihood

function for (y, t) to (12) has to be computed. Given the joint

density function (9) of (y, t), the expectation of its logarithmic

transformation can be shown to be

Q(W,ajW0,a0) =o
m

i=1
pEg log ( Fij j)f g − n log ( Wj j) + ntr(S(0) W )

  − 2m log (a) + 2ao
m

i=1
Egti + nl Wj j1

(13)

whe r e �S(t) = 1
nom

i=1Si(ti), S
(0) = Eg�S(t) =

1
no

m
i=1EgSi(ti) i n

which Si( · ) is defined in the previous section. In the second step of

the EM algorithm, the minimum point of theQ function in (13) has to

be computed. This, again, is implemented through a block coordinate

descent algorithm. First, for fixed Ω, it is straightforward to show that

the minimum of the Q function with respect to a is attained at

â =
1

1
mom

i=1Egti
, (14)

i.e., the reciprocal of the sample mean of the conditional

expectation of ti with respect to density (12). Then, for a given a
in (Equation 14), the minimization of (13) with respect to Ω is

equivalent to

min
W

− log Wj j + tr(S(0) W ) + l Wj j1
n o

(15)

which can be solved through the graphical LASSO algorithm.

The difficult part of this algorithm is to find the expectation Eg�S(t),
which may not have an explicit form given that �S(t) is a nonlinear
function of t and the complex form of density function g(t);
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therefore, this expectation will be computed through a Monte

Carlo method. This algorithm will be referred to as the

heterogeneous longitudinal graphical LASSO, for which the

details are summarized in the following table. Given initial values

a0 and Ω0, tuning parameter l and error tolerance e > 0, the

following algorithm is applied.
2.4 Covariate-adjusted SGGM

In the previous section, we assumed that EtI = 1=a is constant

across the subjects. In this section, we further relax this constraint,

and a can be a function of the covariates. Specifically, we assume

ti ∼ exp(ai), where ai has the following form:

ai = exp (a0 + a1xi1 +⋯+aqxiq) = exp (aTxi): (16)
1: procedure GIVEN INITIAL VALUES a0 AND Ω0, TUNING

PARAMETER l AND ERROR TOLERANCE e > 0:

2: Sample t ij(i = 1,⋯,m) from the distribution (12)

with Ω = Ω0;

3: Estimate E(t ), EgSi(t i) and S(0) by 1
hoh

j=1t i,
1
ho

h
j=1Si(t ij) and

1
mhom

i=1oh
j=1Si(t ij) respectively

4: Update a by â in (14), Ω by Ŵ, the solution to (15),

in which E(t) and S(0) are replaced by their estimates in

Step 3.

5: if a0 − âj j < e and (W0−Ŵ )ij
�� ��

1< e then

6: Stop and output (â , Ŵ , t̂ ı ́ , i = 1,⋯,m).

7: else

8: a0 = â and W0 = Ŵ, return to Step 2.
Algorithm 2. Identify the network based on the heterogeneous SGGM.

Here, xi =  (1, xi1,⋯, xiq)
T represents covariates such as sex and

race, and a = (a0,⋯,aq)
T represents unknown parameters. The

model (Equations 9–15) and Algorithm 2 in the previous section can

then be revised straightforwardly to accommodate the current

regression model (Equation 16). Specifically, first replace the

parameter a in (Equations 9, 10) by exp(aTxi). Then, the

conditional distribution of missing data is given by

g(t jy,S0,a0) =
Ym
i=1

g(tijyi,S0,a0)

  ∝
Ym
i=1

Fij j−p=2exp ( − yTi (F
−1
i ⊗S−1

0 )yi=2) exp ( − exp (aT
0 xi)ti)

(17)

Based on (Equation 17), the L1-penalized likelihood estimation

of the MIN (11) is then given by
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min
W,a

−2ln(W,a) + nljΩ j1f g (18)

For the same reason, we need to use the EM algorithm to solve

the optimization problem (Equation 18). The conditional distribution

of missing value ti, i = 1,⋯,mf g is given by (12), witha0 replaced by

exp(aT
0 xi), from which the Q function is given by

Q(W,ajW0,a0) =o
m

i=1
pEg log ( Fij j)f g − n log ( Wj j) + ntr(S(0)W)

   − 2o
m

i=1
aTxi − exp (aTxi)Egti
� �

+ nl Wj j1;
(19)

Given the penalizedQ function (Equation 19), the current estimate

of the networkΩ and parametera, defined as theminimumpoint ofQ,

can be computed by the block coordinate descent algorithm. However,

unlike (14), in the current case, the estimate of a does not admit an

explicit form. We have to use numerical methods such as Newton

algorithms to find the minimizer of theQ function (19). Specifically, we

solve the following problem by using the BFGS algorithms:

â = min
a o

m

i=1
( − aTxi + exp (aTxi)Egti)

( )
(20)
Fron
1: procedure GIVEN INITIAL VALUES a0 AND Ω0, TUNING

PARAMETER l AND ERROR TOLERANCE e > 0:

2: Sample t ij(i = 1,⋯,m) from the distribution (17);

3: Estimate E(t ),EgSi(t i) and S(0) by 1
hoh

j=1t i ,
1
ho

h
j=1Si(t ij)

and 1
mhom

i=1oh
j=1Si(t ij) respectively

4: Update a by â the solution to (20), Ω by Ŵ, the

solution to (15), in which E(t) and S(0) are replaced by

their estimates in Step 3.

5: if a0 − âj j   <   e and (W0 − Ŵ )ij
�� ��

1   <   e then

6: Stop and output (â , Ŵ , t̂ ı ́, i = 1,⋯,m).

7: else

8: a0 = â and W0 = Ŵ, return to Step 2.
Algorithm 3. Identify the network based on the covariate-
adjusted SGGM.
Using â in (Equation 20), the estimate of the MINΩ is given by

the solution of Equation (15) through the graphical LASSO

algorithm. The algorithm is summarized in the following.

Remark: (1) All three algorithms described above leverage the

graphical LASSO algorithm to achieve efficiency even though

graphical LASSO itself is devised for independent data. (2) Note

that correlation ti for subject i is a random variable. The forecast of

ti, t̂ ı́ is given by the expectation of distribution (12), which is one of
tiers in Microbiomes 06
the outputs in Algorithms 2 and 3. (3) The proposed algorithms can

generate a solution path for a given sequence of tuning parameters

l. To select the optimal network Ω from the candidate networks,

model selection criteria can be used, e.g., Akaike information

criterion (AIC), Bayesian information criterion (BIC), or cross-

validation (CV). In the numerical studies in the next section, we use

the extended BIC (EBIC) that is dedicated to the graphical model to

select l (Foygel and Drton, 2010).
3 Results

3.1 Simulation

In this section, we compare the proposed algorithms, which are

referred to as longitudinal graphical LASSO (LGLASSO)

algorithms, with other existing network selection methods. These

methods include graphical LASSO (Friedman et al., 2008; Friedman

et al., 2019), neighborhood (Meinshansen and Bühlmann, 2006),

GGMselectC01 and GGMselect-LA algorithms (Giraud et al., 2012;

Bouvier et al., 2022). The graphical LASSO and neighborhood

algorithms have been used in the SPIEC-EASI pipeline in (Kurtz

et al., 2015) to select MINs and both are based on the L1-penalty. On

the other hand, the GGMselect algorithm family provides different

ways to construct and select the candidate models, e.g.,

GGMselectC01 employs the estimation procedure in (Wille and

Bühlmann, 2006) to construct the candidate models, while

GGMselect-LA uses the Fisher random variable to define the

criterion for network selection. We demonstrate that the

proposed longitudinal graphical LASSO algorithms can

outperform these existing algorithms for simulated high-

dimensional longitudinal microbiome data.

Let TP,P,FP,N,TN be the numbers of true positive edges, real

positive edges, false-positive edges, null edges, and true null edges,

respectively. In the following, we use the true/false positive rate (TPR/

FPR) to measure the performance of each algorithm. They are defined

as TPR = TP/P, FPR = FP/N. Also, for the conventional indices

sensitivity/specificity, we have sensitivity = TPR, specificity = TN/N

The simulations consist of three scenarios. In the first scenario,

we consider cases where the data follow the SGGM in Sections 2.2

and 2.3. Recall that the SGGM assumes that all the taxa in the

microbiome share a common dampening rate ti for subject i. We

refer to such microbiomes as having a homogeneous community. In

the second scenario, we consider the microbiomes that violate such

homogeneity, i.e., having heterogeneous communities. In scenario

three, we consider the left-censored microbiome data, which aims

to test the robustness of the SGGM with respect to zero inflation.

The zero-inflation phenomena are widely observed in 16S rRNA

gene sequencing experiments and violate the assumptions of the

SGGM. Both the homogeneous and heterogeneous versions of

LGLASSO in Sections 2.2 and 2.3 are investigated in each

scenario. We use the receiver operating characteristic (ROC)

curve to show the superiority of our algorithms over the graphical

LASSO and the neighborhood algorithms in all scenarios. In the

case of the heterogeneous LGLASSO, we also use (TPR,FPR) to

compare the performances of the algorithms in which the networks
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are selected through the extended BIC (EBIC). The methods of

GGMselect-C01 and GGNselect-LA have their own model selection

approaches for network selection. The EBIC for the Gaussian

graphic model is given by

EBIC(G) = −2ln(G) + Gj jlog(n) + Gj jlog(p)=T (21)

where ln is the log-likelihood function, n is the sample size, G is

the network of interest, |G| is the number of edges in G, p is the

number of nodes, and T is the tuning parameter. In (Equation 21),

we choose a typical value T = 2 for model selection.

3.1.1 Scenario 1: homogeneous
microbial community

Since homogeneity/heterogeneity involves both microbial

community and LGLASSO algorithms, we will use more specific

names, homogeneous-subject LGLASSO (heterogenoussubject

LGLASSO), to refer to the algorithm to avoid confusion in the

following sections.

In a homogeneous microbial community, for each subject, all

taxa in the microbiome share a common correlation-dampening

rate. Based on whether the subjects share dampening rates, we have

the homogeneous-subject LGLASSO in Section 2.2 and

heterogeneous-subject LGLASSO in Sections 2.3 and 2.4,

respectively. We first consider the former case. Specifically, we

consider networks with p = 80 nodes shared by all m = 10 subjects.

The precision matrix corresponding to this network is generated

through the R package BDgraph (Mohammadi and Wit, 2019) with

an edge density equal to 0.1. For subject i (1 ≤ i ≤ m), there are ni
observations where ni follows Poisson distribution with the mean

value of 10. The spaces between two consecutive time points tij and

ti(j+1) are generated by max{Dij, 0.5}, where Dij follows a Poisson

distribution with a mean value of 1. Then, the data for subject i are

generated with the real autocorrelation parameter in Algorithm 1

given by t.
First, the homogeneous-subject LGLASSO, graphical LASSO,

and neighborhood algorithms are carried out for the simulated

data set, from which their respective solution paths are computed.

For each path, the connection probability pij for any given node
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pair (Vi,Vj) is then computed as the proportion of networks that

have (Vi,Vj) connected among all the networks on the path. The

processes are replicated 50 times, and the final estimate for pij is

the average of these 50 estimates of pij. With these pij (1 ≤ i ≤ j ≤

80) in hand, the ROC curve is computed based on the R package

pROC (Robin et al., 2011) and displayed in Figure 1 under the two

indicated situations t = 0.14,0.018. In both cases, the proposed

homogeneous-subject LGLASSO algorithm outperforms the

graphical LASSO and the neighborhood algorithms. The

differences between these ROC curves are more evident for t =

0.018 than t = 0.14. We interpret this phenomenon as the

proposed LGLASSO can better handle the correlated

longitudinal data than other algorithms.

Next, we consider the heterogeneous-subject LGLASSO and

covariate-adjusted LGLASSO algorithms proposed in Sections 2.3

and 2.4, respectively. For ease of exposition, we consider the

heterogeneous-subject LGLASSO as a special covariateadjusted

LGLASSO in which vector 1 is the only covariate. As in Scenario

1, we still consider a network with p = 80 nodes and an edge density

equal to 0.1. For each subject ofm = 10 subjects, the spaces between

consecutive observations are generated similarly. Since the

dampening rate t is an exponential random variable in the

heterogeneous-subject LGLASSO, we generate random samples as

the individual tis from the following two settings, Et = 0.14,0.018.

Then with the same replication scheme as above, the ROC curves

are computed and plotted in Figure 2. Similar to the case of

homogeneous-subject LGLASSO, these ROC curves also

demonstrate the superiority of heterogeneous-subject LGLASSO

over other methods, especially for the higher correlation case

Et = 0.018.

We then employ the EBIC (21) to select the optimal model from

the solution path. Specifically, two covariates x1 and x2 are

introduced in which x1 ∼ N(0,1) and P(x2 = 0) = P(x2 = 1) = 0.5.

The three settings for their coefficients (a1, a2) in Equation (16) are

(a1, a2) = (0,0), (0.5, 0.5),(1,1) while the intercept is always a0 = 4.

Note that with (a1, a2) = (0,0), the covariates have no effect on the

dampening rate, and therefore, the model reduces to the

heterogeneous-subject LGLASSO in Section 2.3. For each
FIGURE 1

ROC curves for the homogeneous-subject LGLASSO, graphical LASSO, and neighborhood algorithms. The data are generated based on the
homogeneous SGGM in Section 2.2. The dampening rates for the left and right plots are t = 0.36,0.018, respectively.
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simulated data set, the pairs (TPR,FPR) can be computed. The

process is replicated 50 times and the averages of these 50 (TPR,

FPR) are listed in Table 1. Note that for GGMselect-C01 and

GGMselect-LA listed in Table 1, we used their own model

selection method instead of the EBIC. From Table 1, we can see

that the proposed LGLASSO algorithm obtains the highest TPR and

lowest FPR in most cases. In other words, with the EBIC as the

model selection method, the heterogeneous-subject LGLASSO

algorithms still have the best performance among the

algorithms considered.
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3.1.2 Scenario 2: heterogeneous
microbial community

In Section 2.1, we mentioned that the taxa from the same

subject are supposed to share the same correlation-dampening rate.

In this section, we show by simulation that even if the microbiome

fails to satisfy this assumption, the proposed algorithm can still

outperform the conventional methods. Specifically, in the

heterogeneous microbial community, the taxa have different

correlation-dampening rates for each subject. For ease of

exposition, we consider a simple situation where the microbiome
FIGURE 2

ROC curves for the heterogeneous-subject LGLASSO, graphical LASSO, and neighborhood algorithms. The data are generated based on the
heterogeneous SGGM in Section 2.3. The average dampening rates for the left and right plots are Et = 0.14,0.018, respectively.
TABLE 1 Performance comparison of heterogeneous-subject LGLASSO (LGLASSO), graphical LASSO (GLASSO), neighborhood (NH) algorithm,
GGMselect-C01 (C01), and GGMselect-LA (LA).

a = (0,0) a = (0.5,0.5) a = (1,1)

TPR FPR TPR FPR TPR FPR

m = 10 E(ni) = 5 GLASSO 0.489 0.282 0.508 0.299 0.480 0.311

NH 0.522 0.297 0.567 0.311 0.541 0.327

C01 0.138 0.037 0.295 0.126 0.321 0.174

LA 0.328 0.111 0.369 0.125 0.367 0.151

LGLASSO 0.603 0.276 0.617 0.274 0.591 0.256

m = 10 E(ni) = 10 GLASSO 0.545 0.327 0.551 0.314 0.476 0.318

NH 0.654 0.394 0.640 0.371 0.568 0.339

C01 0.528 0.380 0.509 0.320 0.458 0.310

LA 0.583 0.291 0.549 0.252 0.546 0.289

LGLASSO 0.690 0.246 0.671 0.220 0.586 0.203

m = 10 E(ni) = 20 GLASSO 0.631 0.370 0.576 0.329 0.534 0.316

NH 0.737 0.506 0.687 0.412 0.644 0.374

C01 0.852 0.801 0.809 0.744 0.820 0.748

LA 0.746 0.505 0.730 0.473 0.711 0.448

LGLASSO 0.722 0.213 0.732 0.266 0.696 0.239
The data are generated based on the heterogeneous SGGM in Section 2.3.
The bold values are the results of the proposed algorithm LGLASSO.
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consists of two subcommunities, A and B, which have different

correlation-dampening rates tA and tB, respectively. Furthermore,

we assume that these two communities are independent of each

other, i.e., the taxa in community A (B) can correlate with one

another; however, they are independent of the taxa in community

B (A).

Specifically, for p = 80 taxa, we assume the first 40 taxa are in

community A, and the other 40 taxa are in community B. As in

Scenario 1, we first investigate the performance of the

homogeneous-subject LGLASSO algorithm. For m = 10, Eni = 10,

tA = 0.018, with a given tB, the data for communities A and B are

generated by the same method as that in Scenario 1. Since we

assume these two communities are independent, the complete data

set is simply a combination of the data sets from communities A

and B. Three solution paths for the homogeneous-subject GLASSO,

graphical LASSO, and neighborhood algorithms are then computed

based on the combined data set from which the estimates of the

connection probability pijs are computed the same way as in

Scenario 1. Based on these pijs, the ROC curves are plotted in

Figure 3 for the three settings, tB = 0.36,0.049, and 0.018. Obviously,

for heterogenous communities, the proposed homogeneous-subject

LGLASSO still outperforms the other two methods, especially when

the correlation is higher (i.e., tB = 0.018)

Next, we consider the performance of the heterogeneous-

subject LGLASSO. The data are generated from heterogeneous

subjects with heterogeneous microbial communities. For ease of

exposition, we focus on the heterogeneous-subject model in Section

2.3, and the covariate-adjusted model in Section 2.4 is omitted here.

Specifically, for subject i, the corresponding microbiome consists of

two microbial communities that have correlation dampening rates

tiA and tiB (1 ≤ i ≤m) and satisfy tiA ∼ exp(a1), tiB ∼ exp(a2). The

parameter settings for (EtiA, EtiB) include the following three cases:
(EtiA, EtiB) = (0.036,0.36),(0.036,0.14),(0.036,0.049). For each (a1,

a2) pair, 10 random samples are generated for (tiA,tiB) from the

corresponding exponential distributions, which are used as the real

autocorrelation parameters for the 10 subjects. With (tiA,tiB), ni
measurements for subject i are then generated in the same way as in
Frontiers in Microbiomes 09
Figure 3 with Eni = 10. With these data, the heterogeneous-subject

LGLASSO, graphical LASSO, and neighborhood algorithms are

carried out, and the resulting ROC curves are presented in

Figure 4. These ROC curves demonstrate that with heterogeneous

communities and heterogeneous subjects, the proposed algorithm

LGLASSO still outperforms graphical LASSO and neighborhood

methods when the correlations between data are reasonably high.

3.1.3 Scenario 3: zero-inflated
relative abundances

In this section, we consider the performance of the algorithms

when the data generated from the SGGM are left-censored. Left-

censored data represent the transformed zero-inflated relative

abundance of 16S rRNA gene sequences. An example of such

transformations is shown in Section 3.2 in the real data analysis.

Here, we investigate the influence of zero inflation on the

performance of the proposed algorithms. As in Scenario 1, we

consider left-censored homogeneous-subject LGLASSO with m =

10, Eni = 10 (1 ≤ i ≤ m) and t = 0.018. Under this setting, the data

are first generated in the same way as in Scenario 1. Using the

generated data, we consider the following censoring scheme: given

0< q1< 1, for each taxon, all observations with values less than

quantile yq1 are replaced by yq1 with a probability of q2. This

censoring scheme is motivated by the observation that the smaller

the relative abundance is, the higher the probability is that this

taxon is missed by the sequencing experiments. Here, we consider

six combinations of (q1, q2), i.e., (0.1,0.3),(0.1,0.5),(0.1,0.7),(0.4,0.3),

(0.4,0.5),(0.4,0.7). For each of these combinations, the ROC curves

corresponding to the respective solution paths of the homogeneous-

subject LGLASSO, graphical LASSO, and the neighborhood

algorithms are shown in Figure 5. Obviously, even though the

proposed homogeneous-subject LGLASSO algorithm outperforms

the other algorithms, zero inflation can significantly affect its

performance, and the advantage of LGLASSO diminishes when

the proportion of zero is high. The same investigations are carried

out for the heterogeneous-subject LGLASSO. The procedure is the

same as the above homogeneous case except that the dampening
FIGURE 3

ROC curves for the homogeneous-subject LGLASSO, graphical LASSO, and neighborhood algorithms. The data are generated from homogeneous
SGGM with a heterogeneous microbiome. The dampening rates, from left to right, are (tA,tB) = (0.018,0.36), (0.018,0.049), and
(0.018,0.018), respectively.
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rate is random with Eti = 0.018 for (1 ≤ i ≤ m). The resulting ROC

curves are depicted in Figure 6, from which we can see a similar

pattern as the ones in Figure 5.
3.2 Gut microbial interaction network and
phylogenetic tree

In this section, a longitudinal data set from a cohort of children

with cystic fibrosis was investigated using the homogeneous version

of the proposed algorithm in Section 2.2. Specifically, stool samples
Frontiers in Microbiomes 10
from thirty-eight children were collected from children aged 6

months to 51 months old (Madan et al., 2012). The number of

observations from each child ranged from 2 to 17. Each observation

consisted of the abundance of 16,383 amplicon sequence variants

(ASVs) of the 16S rRNA gene. These sequences were then collapsed

to the genus level using the R package DADA2 (Callahan et al.,

2016). The sequences that had no genus-level information were

dropped. Then, all the taxa with a proportion of nonzero

observations less than 10% were combined, which was referred to

as the composite taxon. There were 83 total remaining taxa. The

observations of zeros for each of these 83 taxa were replaced by the
FIGURE 4

ROC curves for the heterogeneous-subject LGLASSO, graphical LASSO, and neighborhood algorithms. The data are generated from heterogeneous
SGGM with a heterogeneous microbiome. The average dampening rates, from left to right, are (EtiA, EtiB) = (0.036,0.36), (0.036,0.14), and
(0.036,0.049), respectively.
FIGURE 5

ROC curves for the homogeneous-subject LGLASSO, graphical LASSO, and neighborhood algorithms. The data are generated from a left-censored
homogeneous SGGM model. The first number in parentheses is the quantile, and the second is the probability, which are the parameters for
data censoring.
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minimum abundance of that taxon divided by 10. The log-ratio

transformation was then carried out to obtain the relative

abundance, in which the composite taxon was used as the

reference. Similar log-ratio transformations have been used and

justified in empirical studies (Kurtz et al., 2015; Greenacre

et al., 2021).

The application of the homogeneous model in Section 2.2 to the

transformed data yielded the estimated network, which is displayed

in Figure 7. Based on the modularity maximization algorithm

(Newman, 2006; Blondel et al., 2008), five communities were

identified in the estimated network, which is listed in Table 2.

To show that the estimated network can reveal the true

structure of the underlying network, we investigated the

relationship between the estimated network and the phylogenetic

tree of the 82 taxa (the composite network was excluded here). The

phylogenetic tree constructed from the same data set is presented in

Figure 8 and demonstrates the evolutionary relationship among

these taxa. Our underlying hypothesis is that microbial taxa that are

closer in terms of evolutionary history also have more/stronger

interactions in the human body. To validate this hypothesis, the null

hypothesis is set as follows: the estimated network in Figure 7 is

independent of the phylogenetic tree in Figure 8. Correlation

between the estimated network and phylogenetic tree is employed

to test this hypothesis. In particular, we computed the distances

between two taxa in the estimated network and the phylogenetic

tree. Here, the distance between taxa A and B is defined as the
Frontiers in Microbiomes 11
length of the shortest path from A to B in the estimated network

(phylogenetic tree). If no paths exist between two taxa in the

network (phylogenetic tree), that pair will be excluded from the

following computations. Let d1 and d2 be the distance vectors for all

possible pairs of taxa from the estimated network and phylogenetic

tree, respectively. The correlation between d1 and d2 is used to

measure the relatedness between the network and phylogenetic tree.

This correlation was determined to be r0 = 0.333 for the tuning

parameter selected by the EBIC.

To understand the significance of r0 against the null hypothesis,

we use the permutation method to estimate the null distribution.

Specifically, we keep the structure of the estimated network

unchanged and permute the order of the 82 taxa m = 5000 times

on the estimated network. Let d(i)1 (i = 1,⋯, 5000) be the distance

vectors of the network for the ith permutation. Then, the

correlations r(i) = cor(d(i)1 , d2), i = 1,⋯, 5000, which collectively

depict the null distribution, can be derived. Given r(i), the p value

of r0 is smaller than 1/5000, which means that the correlation

between the estimated network and phylogenetic tree is statistically

significant, i.e., the data support the hypothesis that microbial taxa

wi th c loser evo lut ion his tor ies tend to have more/

stronger interactions.

It should be noted that some related findings have been

reported in the literature. In (Chaffron et al., 2010), the authors

performed a global meta-analysis of previously sampled microbial

lineages in the environment. They found that genomes from
FIGURE 6

ROC curves for the heterogeneous-subject LGLASSO, graphical LASSO, and neighborhood algorithms. The data are generated from a left-censored
heterogeneous SGGM model. The first number in parentheses is the quantile, and the second is the probability, which are the parameters for
data censoring.
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coexisting taxa tended to be more similar than expected by chance,

both with respect to pathway content and genome size. The studies

in (Eiler et al., 2012) also revealed that ecological coherence is often

dependent on taxonomic relatedness. These studies employed

coefficient-based methods such as Fisher’s exact test to infer the

interaction of taxa. This can lead to a misleading conclusion. It is

known that the correlation between two taxa, A and B, may be

induced by their correlation with a third taxon C, even though A

and B are independent if C is fixed. In the current study, the

interaction between the taxa is defined based on the conditional

correlation coefficient, which by its definition eliminates the

possible spurious correlation between taxa A and B induced by

taxon C. Therefore, by using abundance instead of cooccurrence

information and boosted by the proposed methods, we reach a

more convincing and robust conclusion than existing ones in

the literature.
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The results above are derived with the fixed tuning parameter

selected by the EBIC. The correlations between the estimated MIN

and phylogenetic tree are actually robust with respect to the tuning

parameter. To demonstrate this point, let us consider the networks

generated from other tuning parameter choices. Specifically, for each

of the 40 tuning parameters ranging from l = 7 to 13, the same

homogeneous model and the permutation test are carried out. The

estimated and permuted correlations are displayed in Figure 9 in the

form of a boxplot. From left to right, the boxplots in Figure 9

correspond to the tuning parameters increasing from 7 to 13. The

dots linked by the line represent the correlations between the

estimated MINs and the phylogenetic tree, while others correspond

to the correlations computed from the permuted MINs. The most

prominent feature of Figure 9 is that for all 40 cases, the observed

correlations between the MINs and the phylogenetic tree are positive;

in the first half of the boxplots, the estimated correlations are also

significant. It should be noted that even though the estimated

correlations in the second half of the boxplots do not appear

significant, it does not mean that the edges in these estimated

networks do not reflect the true structure. Instead, the insignificance

may stem from the fact that the second half of the networks are

sparser. A sparse network will generate shorter vectors d1, d2, which in

turn increase the variability of the correlation estimates.

Finally, let us compare the results of the proposed algorithm with

those of the SPIECEASI algorithm in (Kurtz et al., 2015). Though in

the original form of the SPIEC-EASI algorithm, the centered log-ratio

transformation was employed for the relative abundances of the taxa,

we use the additive log-ratio transformation here. Note that the

SPIEC-EASI algorithm includes both graphical LASSO and

neighborhood algorithms. We restrict ourselves to networks with
FIGURE 7

Microbial interaction network generated with the homogeneous LGLASSO based on the gut microbiome abundance data in Section 3.2.
TABLE 2 Five communities selected by maximizing the modularity of
the estimated MIN in Figure 7.

C1 Escherichia.Shigella, Clostridium.sensu.stricto, Sarcina, Pseudescherichia

C2 Blautia, Erysipelatoclostridium, Bacteroides, Tyzzerella, Megasphaera,
Intestinibacter,
Enterocloster, Hungatella, Terrisporobacter, Clostridioides,
Clostridium.XlVa, Butyricicoccus

C3 Anaerostipes, Fusicatenibacter, Agathobacter, Faecalibacterium, Dorea,
Collinsella, Faecalimonas, Mediterraneibacter, Romboutsia, Faecalibacillus,
Anaerobutyricum, Roseb Parasutterella, Dialister, Turicibacter

C4 Enterobacter, Citrobacter

C5 Sellimonas, Ruminococcus2
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edges between 20 and 1300, which we believe cover all biologically

meaningful cases. First, we compute the solution path for each

algorithm. For the networks on each solution path, their

correlations with the phylogenetic tree are calculated. Figure 10

displays the correlations for the three solution paths corresponding

to the three algorithms. It is evident that for most of the solution

paths, the networks generated through the proposed algorithm have

higher correlations with the phylogenetic tree than those generated

through the SPIEC-EASI algorithms. The correlations at the

beginning parts of the three paths appear to be comparable. We

attribute this to the fact that the networks at the beginning parts are

much sparser, leading to a smaller sample size when computing the

correlations. A smaller sample size can blur the comparison of
Frontiers in Microbiomes 13
different algorithms, as shown in Figure 9. In other words, if we

assume that the phylogenetic tree represents the true structure of the

MIN, then the proposed algorithms have greater power in the

identification of the MIN than that of the SPIEC-EASI algorithm.
4 Discussion

Identifying microbial interaction networks is critical for

understanding the causal relationship among taxa. However, it

remains a challenging problem since observations of the microbiome

have many distinct features, such as high dimensionality, zero inflation,

and composition. In this study, we study network identification based

on irregularly spaced longitudinal 16S rRNA gene sequencing data. For

microbial abundance data, the correlations between different time

points are typically omitted in practice due to technical difficulties. In

this study, a model named SGGM is proposed to characterize the

correlations in the longitudinal microbial abundance data. Efficient

inference algorithms for estimating microbial interaction networks are

devised based on the SGGM. Through the use of simulated data, our

model and algorithms show that they have more power to identify

microbial interaction networks than conventional methods, where the

correlations are just omitted. Furthermore, the algorithms demonstrate

their robustness when the data do not follow the SGGM strictly, e.g.,

heterogeneous microbial communities and zero inflation. The

proposed method is employed to study the microbiomes from a

cohort with cystic fibrosis disease. The relationship between the

microbial interaction networks and the phylogenetic tree is revealed,

strengthening previous literature results. It is also necessary to highlight

the limitations of SGGM and the related LGLASSO algorithms. First,

SGGM only models the stationary process, i.e., the microbial

correlation structure remains the same during the data collection

process. This may or may not be a valid assumption for a specific

situation. For example, the subjects may get vaccinated during the data

collection period, which may affect how the constituent microbes

interact with each other. If this is the case, SGGM should not be

used. Second, SGGM assumes a constant dampening rate t for all the
FIGURE 9

Boxplots of correlations between the networks and phylogenetic tree that correspond to, from left to right, the tuning parameters l increasing from
7 to 13. For a given boxplot, the red dot represents the correlations from the original estimated networks, and the black dots represent correlations
computed from 5000 permutations of the estimated network. The green dot represents the 1% upper quantile of the 5000 permutation correlations.
FIGURE 8

Phylogenetic tree for the 82 microbial taxa in Section 3.2. Dots with
different colors correspond to different communities listed
in Table 2.
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taxa in the microbiome within the same subject. We only studied the

robustness of the LGLASS algorithms with respect to t under very

simple cases, i.e., two independent sub-microbial communities with

different dampening rates. In reality, things can get very involved. For

example, the whole community may have multiple sub-communities,

and each of them has its own dampening rate, e.g., community A

evolves with a high frequency, community B evolves with a medium

frequency, community C evolves with a low frequency, and

communities A, B, and C are related to each other in some way. In

such cases, it should be cautious to use SGGM to identify the

underlying network. Some form of cross-validation is recommended

in such situations.
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