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Composting livestock manure using microorganisms is a safe and resourceful

practice. The continual fluctuations in physicochemical parameters during

composting are intricately linked to the composition of microbial communities.

This study investigated the dynamics of microbial communities during the

composting of cow manure and tobacco straw using amplicon sequencing and

shotgun metagenomics. The sequencing results revealed major genera such as

Sphaerobacter, Actinomadura, Thermomonospora, Flavobacterium, Bacillus,

Hydrogenophaga, Pseudomonas, Lysinibacillus, Aneurinibacillus, and

Azotobacter. Metagenomic analysis highlighted that the phylum Proteobacteria

constituted the largest proportion. Furthermore, the presence of the genus

Rhodococcus, known to cause human and animal diseases, gradually decreased

over time. These findings offer initial insights into the microbial community

composition and function during cow manure and tobacco straw composting.
KEYWORDS

composting, cow manure, high throughput sequencing, metabolism, microbial
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1 Introduction

In recent years, the Chinese livestock and poultry breeding

industry has experienced rapid growth, with an annual production

volume of animal manure reaching 3.8 billion tons (Ma et al., 2018).

However, the comprehensive utilization rate of this manure remains

suboptimal, posing significant ecological and environmental risks

that ultimately affect human and animal health (Niu and Ju, 2017; Liu

et al., 2022). Furthermore, substantial volumes of crop residues—such

as wheat, corn, rice straw, and discarded tobacco leaves—which could

be valuable organic fertilizers, are often regarded as waste

(Yadvinder-Singh et al., 2005). Effective management of these

animal manures and agricultural wastes is imperative for

sustainable agriculture. Composting is broadly recognized as an

effective method for disposing of agricultural and livestock waste,

yielding a final product suitable for agricultural and horticultural use,

aligning with sustainable strategies. Tobacco straw and cow manure

composting is an effective method to reduce environmental impact.

Tobacco straw, which is a byproduct during cigarette manufacturing,

is disposed by burning (Yang et al., 2022). Composting, comprising

aerobic composting and anaerobic digestion, is vital for treating and

recycling these organic wastes. Aerobic composting, being less reliant

on specialized equipment than anaerobic digestion, has proven more

convenient and time-efficient (Meena et al., 2021).

Generally, composting occurs in three stages: mesophilic,

thermophilic, and curing/mature phases (Papale et al., 2021).

Throughout this process, aerobic microorganisms decompose organic

waste into humus-like substances, enhancing soil quality as an

amendment. Microorganisms metabolize organic matter, releasing

energy and nutrients that aid in compost maturation. Microbial

growth and reproduction are facilitated during compost maturation

(Duan et al., 2020). Water-soluble small-molecule organic matter is

absorbed and used by microorganisms for reproduction, whereas

macromolecular organic matter is decomposed by extracellular

enzymes secreted by microorganisms. Some water-soluble small-

molecule organic matter is converted into substances for microbial

reproduction and utilization, whereas the remainder transforms into

simple inorganic substances through microbial metabolism (Zhao

et al., 2017; Yu et al., 2019a; Yu et al., 2019b). Additionally, the high-

temperature environment generated by microbial decomposition of

organic matter in the pile eliminates weed seeds, roundworm eggs, and

pathogenic bacteria in the feces (Bhattacharya and Pletschke, 2014).
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The microbiome plays a critical role in composting. The

community structure of microorganisms undergoes dynamic

changes during composting, influenced by factors such as

proportions of composting materials, and composting methods

and conditions (Wang et al., 2017; Li et al., 2020). Understanding

microbial communities throughout composting is crucial for system

comprehension and optimizing compost quality. Additionally, the

intricate actions of numerous microorganisms are directly

influenced by various environmental factors in composting,

including temperature, moisture, carbon/nitrogen ratio, oxygen

levels, and pH (Insam et al., 2010). The composition and

dynamics of microbial communities in composts have been

explored using both culture-dependent and culture-independent

methods (Chow et al., 2014; Petersen et al., 2015). Nonetheless, our

understanding of microbial community structures, especially fungal

communities, in specific crop and livestock waste composting

processes remains limited because of the complexity of microbial

interactions and the incomplete nature of current studies.

Therefore, we aimed to delineate changes in microbial

communities during composting using high-throughput

sequencing to confirm the metabolic pathways critical in the

composting process.
2 Materials and methods

2.1 Experimental design and
sample collection

In March 2020, three natural composting piles containing cow

manure and tobacco straw at a ratio of 4:1 were prepared in Panzhihua,

Sichuan, China. For the composting piles, which were approximately

2.5 m × 1.5 m × 1.5 m (length × width × height), tobacco straw was

used as the bulking material. These piles maintained approximately

65% moisture content and a 32:1 C/N ratio. The characteristics of the

raw materials are itemized in Table 1. Before the mature state, three

artificial turnings were performed on days 9, 15, 20, and 26, as the

compost temperature reached 65°C for 27 days. Sub-samples were

collected from nine different points at three depths (30 cm, 60 cm, and

120 cm from the top) of the composting piles on days 0, 9, 15, 20, and

26, representing initial, mesophilic, thermophilic, cooling, and

maturation phases, respectively. The sub-samples were mixed and
TABLE 1 The physicochemical characteristics of the raw materials.

pH Moisture
content (%)

Total organic carbon
(g/kg)

TN (g/kg) C/N NO3
−-N NH4

+-N

Cow manure 8.98
± 0.53a

69.48 ± 5.67a 385.0 ± 12.06a 17.30
± 0.517a

22.29
± 0.69a

102.1
± 10.2

988.4
± 21.6

Tobacco
straw

7.25
± 0.47b

13.57 ± 3.89b 336.0 ± 26.83a 5.26 ± 0.507b 64.42
± 1.12b

nd nd
fr
Data are mean ± SE (n = 3). Different lowercase letters in a column indicate statistically significant differences at p < 0.05.
TN, total nitrogen; TN, total nitrogen; C/N, the ratio of total organic carbon to TN.
"n.d" means "Not determined.
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divided into three portions. One portion was stored at −80°C for DNA

extraction, one portion was stored at 4°C for the measurement of

ammonium and nitrate, and the remaining portion was air-dried for

physicochemical analyses.
2.2 Physicochemical parameter analysis

Digital thermometers were used to measure temperature near

the composting piles and at the surface, core, and bottom of the

composting piles daily. pH was measured after shaking fresh

samples in water at a 1:10 (w/v) ratio at 120 r/min for 60

minutes, and moisture content was determined by oven-drying to

a constant weight at 105°C (Abid and Sayadi, 2006). The total

organic carbon (TC) content was determined using the dry

combustion method. Total nitrogen (TN) content was assessed

using the Kjeldahl method (Kimberly and Roberts, 1905; Abad et al.,

2002). Ammonium (NH4
+-N) and nitrate (NO3

−-N) were extracted

using 2 mol/L KCl and analyzed using a dual-channel flow analyzer

(AA3, Seal Analytical, Norderstedt, Germany) (Ren et al., 2023).
2.3 Amplicon and
metagenomic sequencing

DNA was extracted as described earlier (Liu et al., 2011). The

extracted DNA underwent purification using a DNA gel

purification kit (Omega, Norcross, GA, USA) as per the

manufacturer’s instructions. DNA quality was verified through

electrophoresis in a 1.0% agarose gel, and concentration was

determined using a spectrophotometer (NanoDrop 2000, Thermo

Fisher Scientific, Waltham, MA, USA).

The primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and

806R (5′-GGACTACVSGGG-TATCTAAT-3′) incorporating adapter

and barcode sequences (Caporaso et al., 2012) were used to amplify the

16S rRNA gene V4 hypervariable region. PCR amplification was

performed in a 25.0-µL reaction solution comprising 12.5 µL Taq-HS

PCR Forest Mix, 0.2 µL of each primer, 1.0 µL template DNA, and 11.1

µL ddH2O. Purified PCR products with concentrations exceeding 10

ng/µL and OD 260/OD 280 ≈ 1.8 were sequenced on the Illumina

MiSeq platform at Shanghai Personalbio Technology Co., Ltd.

(Shanghai, China). Details of the data analysis are provided in the

Supplementary Material.

Amplicon sequence reads were processed using QIIME2

v2019.4 (Bokulich et al., 2018) following official tutorials (https://

docs.qiime2.org/2019.4/tutorials/). Initially, raw sequence data

underwent demultiplexing using the demux plugin, followed by

primer cutting using the QIIME 2 Cutadapt plugin (Martin, 2011).

Quality filtering involved QIIME’s split_libraries_fastq.py script,

discarding reads with Phred quality scores <29 and consecutive,

high-quality base calls less than 90% of the read’s length. Removal

of chimeric, singleton, and non-bacterial sequences, such as

chloroplast and mitochondrial sequences, was conducted using

the debulr plugin (Schuler et al., 2016). Non-singleton amplicon
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sequence variants (ASVs) were aligned using mafft (Katoh et al.,

2002). Subsequently, after rarefaction, an estimation of the Shannon

diversity index was performed using the diversity plugin in

QIIME2. Taxonomy was assigned to the ASVs via the classify-

sklearn naïve Bayes taxonomy classifier in the feature-classifier

plugin against the SILVA database (Pelin Yilmaz et al., 2014).

Alpha diversity metrics were used to summarize the microbial

community structure concerning richness, evenness, or both

(Willis, 2019). Metrics included Chao1 (Chao, 1984), observed

species, Faith’s PD (Faith, 1992), Shannon (Simpson, 1949),

Simpson, Pielou’s evenness (Pielou, 1966), and Good’s coverage

(Good, 1953). The Shannon diversity index (H) was calculated

using the “diversity” function in the Vegan package (Oksanen

et al., 2015).

For metagenomic sequencing, DNA underwent fragmentation

into approximately 400-bp fragments using an ultrasonic disruptor

(Covaris M220, Gene Company Limited, Hong Kong, China),

followed by Illumina library construction using a NEXTFLEX

Rapid DNA-Seq Library Prep kit (PerkinElmer, Waltham, MA,

USA). Sequencing occurred on an Illumina PE150 instrument

(Illumina, San Diego, CA, USA). Quality filtering of the data was

conducted through a laboratory information management system

(LIMS) within the open-source Galaxy platform (https://

usegalaxy.org/). Clean reads from the metagenomic dataset were

assembled into contigs using the SOAP denovo assembler (Li et al.,

2010). Subsequently, the contigs were annotated using the

MGRAST (metagenomics Rapid Annotation using Subsystem

Technology, Version 4.0) platform in the public project

id2017chunjie (http://metagenomics.anl.gov/) with the Kyoto

Encyclopedia of Genes and Genomes (KEGG) Orthology (KO)

database. Protein sequences translated from open reading frames

(ORFs) were aligned with the National Center for Biotechnology

Information (NCBI) database using the Basic Local Alignment

Search Tool (BLAST) with an E-value < 10−5 (Ma et al., 2016).

Mapping of sequences to KEGG pathways was performed by

importing the BLAST results into MEGAN, using the “KEGG

viewer” module (He et al., 2016). To assess the carbon utilization

potential within the microbial communities during cow manure

and tobacco straw composting, non-redundant genes were cross-

referenced with the carbohydrate-active enzyme database (CAZy)

using DIAMOND software (e < 1e−5) (Buchfink et al., 2015).

Proteins exhibiting the highest sequence similarity underwent

screening and were further subjected to CAZy analysis, searching

against sequence libraries encompassing glycoside hydrolases

(GHs), auxiliary activities (AAs), carbohydrate-binding modules

(CBMs), glycosyltransferases (GTs), polysaccharide lyases (PLs),

and carbohydrate esterases (CEs).
2.4 Statistical analysis

Differences in physicochemical properties, bacterial Shannon

diversity index, and 16S rRNA gene abundance were tested using

one-way ANOVA. Additionally, bacterial community structure was
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visualized via non-metric multidimensional scaling (NMDS) using

the Bray–Curtis dissimilarity matrices in the Vegan package

(Oksanen et al., 2020).
3 Results and discussion

3.1 Physicochemical properties

Temperature stands as a crucial indicator throughout

composting, reflecting the composting process and alterations in

microbial activities (Zheng et al., 2015). The cow manure and

tobacco straw composting mixture’s temperature rapidly

increased to 50°C within 1 week (Figure 1A, Supplementary Table

S1). Sustained high temperatures persisted for the subsequent 20

days, reaching 63°C on the 20th day, increasing the average

temperature of the entire process by 20°C compared with the

environment, significantly enhancing the fermentation process.

The degradation of organic matter generates thermal energy,

especially during the initial and thermophilic phases (Lu

et al., 2009).

Initially, the moisture content of the compost was at

approximately 59.7% and gradually decreased within the first 15

days of composting (Supplementary Table S1). Water evaporation

results from heat generated by microbial reactions during

composting, reducing moisture content in the compost pile

(Miller and Finstein, 1985). Generally, the pH value correlated

positively with composting time (Figure 1B, p = 0.006), increasing

from the initial 6.5 to the final 7.82. Electrical conductivity

reduced from 4.12 mS/cm to 2.44 mS/cm during composting
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(Figure 1C) and correlated negatively with composting time (p

< 0.0001).

The overall nutrient content change aligned with the variations

in TN, total phosphorus (TP), and total potassium (TK), initially

increasing and then decreasing, finally peaking at day 15

(Supplementary Table S1). Organic carbon content was the

highest on day 9, followed by a decrease until the composting’s

conclusion (Figure 1D). The changes in NH4
+-N and NO3

−-N

concentrations exhibited reverse trends (Supplementary Table

S1). NH4
+-N concentration peaked at 60.6 mg/kg, greater than its

level during the primary stage (52.1 mg/kg) of composting. The C/N

ratio in the organic matter used for composting influences

microbial fermentation and decomposition. A high C/N ratio

slows microbial decomposition and consumes available N in the

soil. In agreement with Duan et al. (2020), in our study, the C/N

ratio was the highest on the ninth day of composting (26.5) and the

lowest on the 26th day (23.1) (Supplementary Table S1).
3.2 Taxonomic diversity and abundance of
the microbial communities

The bacterial community structure changed during composting

(Figure 2A). The species count was the highest on day 0. The relative

abundance of Chloroflexi was the highest on days 9, 20, and 26. The

relative abundance of Pseudomonas formosensis (Proteobacteria) was

the highest on day 15 (Figures 2B, C). Proteobacteria were the

predominant bacteria during all composting stages (Figures 2C, 3).

Bacterial community composition constantly evolved during

composting, with the relative abundances of genera such as
A B

DC

FIGURE 1

Changes in temperature (A), pH (B), electrical conductivity (C), and organic carbon content (D) in the cow manure and tobacco straw compost
during the composting process.
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Sphaerobacter, Actinomadura, Thermomonospora, Flavobacterium,

Bacillus , Hydrogenophaga , Pseudomonas , Lysinibacillus ,

Aneurinibacillus, Azotobacter, Luteimonas, Nitratireductor,

Devosia, and Streptomyces peaking at high-temperature stages

(Figure 4). Notably, genera involved in lignin degradation, such

as Thermopolyspora and Sphaerobacter (Shivlata and

Satyanarayana, 2015; Kwon et al., 2019), became prominent.

Lignin degradation secreted laccase and lignin peroxidase to

produce polyphenols or phenol, which is a soil improvement

substance that is returned to the field (Zhao et al., 2021).

Metagenomic analysis further revealed an increase in

Sphaerobacter thermophilus with the progress of composting

(Figure 5). The relative abundance of genus Rhodococcus,

including the pathogen Rhodococcus equi affecting animals and

humans (Prescott, 1991), gradually decreased during composting.

During the composing process, the high temperature as the main

abiotic stress is critical for mutualistic interactions of microbial

communities (Zhao et al., 2023). As our results suggest, the bacteria

were increased on the 27th day at 63°C, indicating that mutualistic

interactions of bacteria exist in cow manure and tobacco straw

composting (Figure 2C).

Chao1 index and the number of observed species were lower

from day 9 onward than on day 0 (Table 2), potentially because of

environmental changes during composting, e.g., increasing compost
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temperature (Figure 1). Similarly, Good’s coverage, Pielou’s

evenness, Shannon, and Simpson indices were generally higher in

the initial phase than in the later stages with higher compost

temperature, indicating decreasing community richness and

diversity as composting progressed. In the Bray–Curtis

dissimilarity-based principal coordinates analysis (PCoA), day 0

samples differed from the other samples along axis 1 (Figure 6),

indicating differences in community composition.
3.3 Functional profiles of metagenome

The KEGG category analysis revealed that carbohydrate

metabolism (14.49% of all KEGG categories), amino acid

metabolism (11.60%), energy metabolism (6.51%), and

metabolism of cofactors and vitamins (4.99%) were the most

abundant categories (Figure 7). Comparative KEGG analysis

with lignocellulose-degrading consortia from rainforest compost,

apple pomace-adapted compost (Zhou et al., 2017), and rice

straw-adapted compost (Reddy et al., 2013) demonstrated

similar metabolic patterns, notably in carbohydrate metabolism

and amino acid transport and metabolism. A total of 799,816

genes were assigned to different carbohydrate-active enzymes

(CAZymes) families (298,588 GHs, 257,520 GTs, 14,848 PLs,
A B

C

FIGURE 2

The distribution of microbial taxa in the cow manure and tobacco straw compost during the composting process. (A) The numbers of identified
taxa. (B) The relative abundances of major phyla in the 16S rRNA (NY) gene amplicon data. (C) The relative abundances of major species in the
metagenomic data (NY1).
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FIGURE 3

The distribution of taxa in the cow manure and tobacco straw compost metagenome.
FIGURE 4

Relative abundances of the 20 most abundant genera in the cow manure and tobacco straw compost during the composting process.
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FIGURE 5

Taxonomic composition of the cow manure and tobacco straw compost metagenome during the composting process.
TABLE 2 Alpha diversity of the bacterial communities in the cow manure and tobacco straw compost during the composting process.

Chao1 Goods coverage Observed species Pielou’s e Shannon Simpson

Day 0 3,777.753 ± 519.213 0.982 ± 0.012 3,590.167 ± 327.196 0.802 ± 0.027 9.464 ± 0.346 0.990 ± 0.004

Day 9 3,643.557 ± 734.742 0.983 ± 0.006 3,509.900 ± 688.792 0.754 ± 0.041 8.868 ± 0.698 0.976 ± 0.014

Day 15 3,539.700 ± 279.487 0.981 ± 0.01 3,333.533 ± 265.451 0.751 ± 0.038 8.789 ± 0.442 0.983 ± 0.005

Day 20 3,446.143 ± 338.961 0.978 ± 0.009 3,161.867 ± 276.931 0.700 ± 0.036 8.138 ± 0.415 0.957 ± 0.012

Day 26 3,410.690 ± 399.36 0.981 ± 0.011 3,186.200 ± 214.284 0.710 ± 0.057 8.262 ± 0.633 0.940 ± 0.034
F
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22,808 AAs, 49,041 CEs, and 157,011 CBMs) across all the

compost samples (Figure 8). These findings suggest that several

functional capacities, particularly in carbohydrate metabolism,

were enriched within the cow manure and tobacco straw

compost microbial community.
4 Conclusions

Most physicochemical parameters exhibited minor variations

during cow manure and tobacco straw composting. Our results
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indicated slight fluctuations in TN, TP, TK, total organic carbon,

NO3
−-N, NH4

+-N, C/N, and overall nutrient levels. pH

significantly increased with composting time, whereas

conductivity displayed a reversed trend. The diversity and

abundance of microbial communities underwent significant

changes throughout the composting process. High-throughput

16S rRNA gene amplicon sequencing revealed dominant genera

during composting, including Sphaerobacter, Actinomadura,

Thermomonospora, Flavobacterium, Bacillus, Hydrogenophaga,

Pseudomonas, Lysinibacillus, Aneurinibacillus, Azotobacter,

Luteimonas, Nitratireductor , Devosia, and Streptomyces.

Metagenomic data identified Proteobacteria as the predominant
FIGURE 7

KEGG functional categories in the cow manure and tobacco straw compost metagenome. KEGG, Kyoto Encyclopedia of Genes and Genomes.
A B

FIGURE 6

Bray–Curtis dissimilarity-based beta diversity in the cow manure and tobacco straw compost during the composting process. 16S rRNA amplicon
sequencing (A) and metagenome sequencing (B) data.
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bacterium across all compost samples. These findings

contribute to a deeper understanding of microbial community

succession in cow manure and tobacco straw composting under

natural conditions.
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