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Wildlife fecal microbiota
exhibit community stability
across a longitudinal semi-
controlled non-invasive
sampling experiment
Samuel B. Pannoni1* and William E. Holben2

1Franke College of Forestry and Conservation, University of Montana, Missoula, MT, United States, 2Cellular,
Molecular and Microbial Biology Program, University of Montana, Missoula, MT, United States
Wildlifemicrobiomestudiesarebeingused toassessmicrobial linkswithanimalhealth

and habitat. The gold standard of sampling microbiomes directly from captured

animals is ideal for limiting potential abiotic influences on microbiome composition,

yet fails to leverage the many benefits of non-invasive sampling. Application of

microbiome-based monitoring for rare, endangered, or elusive species creates a

need to non-invasively collect scat samples shed into the environment. Since

controlling sample age is not always possible, the potential influence of time-

associated abiotic factors was assessed. To accomplish this, we analyzed partial 16S

rRNAgenesoffecalmetagenomicDNAsamplednon-invasively fromRockyMountain

elk (Cervus canadensis) near YellowstoneNational Park.We sampledpellet piles from

four different elk, then aged them in a natural forest plot for 1, 3, 7, and 14 days, with

triplicate samples at each time point (i.e., a blocked, repeat measures (longitudinal)

study design). We compared fecal microbiota of each elk through time with point

estimatesofdiversity,bootstrappedhierarchicalclusteringofsamples,andaversionof

ANOVA–simultaneous components analysis (ASCA) with PCA (LiMM-PCA) to assess

the variance contributions of time, individual and sample replication. Our results

showed community stability through days 0, 1, 3 and 7, with amodest but detectable

change in abundance in only 2 genera (Bacteroides and Sporobacter) at day 14. The

total variance explained by time in our LiMM-PCA model across the entire 2-week

period was not statistically significant (p>0.195) and the overall effect size was small

(<10% variance) compared to the variance explained by the individual animal

(p<0.0005; 21% var.). We conclude that non-invasive sampling of elk scat collected

within one week during winter/early spring provides a reliable approach to

characterize fecal microbiota composition in a 16S rDNA survey and that sampled

individuals can be directly compared across unknown time points with minimal bias.

Further, point estimates of microbiota diversity were not mechanistically affected by

sample age. Our assessment of samples using bootstrap hierarchical clustering

produced clustering by animal (branches) but not by sample age (nodes). These

results supportgreateruseofnon-invasivemicrobiomesampling toassessecological

patterns in animal systems.
KEYWORDS

microbiome-stability, non-invasive, wildlife, longitudinal time-series, 16s-rDNA
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1 Introduction

The advent of high-throughput DNA sequencing capabilities

has led to a growing number of studies relating the composition of

microbiomes to the condition of their hosts and the host’s

environment (Wu et al., 2011; Taschuk and Griebel, 2012; Hale

et al., 2016; Gaulke et al., 2018; Knutie et al., 2019; Lynch and Hsiao,

2019; Corl et al., 2020). The gold standard of capture-based (i.e.

direct) fecal sampling of a host animal is ideal for limiting the

influence of abiotic factors on microbiome composition (Carroll

et al., 2012). However, the growing need for studying rare,

endangered, or elusive species dictates the use of non-invasive

fecal sampling, often many days after defecation (Zhu et al.,

2021). Since the ability to control for sample age is not always

possible, the potential influence of time-associated abiotic factors

should be assessed before interpreting microbiome sequencing

results. This type of experimental groundwork is necessary to

temper conclusions or inform potential confounding variation

when strict sampling regimes are not possible, as is often the case

in wildlife microbiome studies.

Gut and fecal microbiomes have a strong coevolutionary bond

to their host (Gaulke et al., 2018; Amato et al., 2019). This

interaction is especially apparent in ungulates where microbially

mediated fermentation occurs in the rumen to produce short-chain

fatty-acids (SCFAs), the animal’s primary source of energy (Wang

et al., 2020). As such, rumen microbiota composition often reflects

specific health attributes of the host, which cascade through the

gastrointestinal tract resulting in equally informative, although

distinct, fecal microbiota (Ingala et al., 2018; Pannoni et al., 2022).

In comparison to the number of host-microbiome studies

available, only a limited number of foundational experiments

have been conducted to quantify the influence of potentially

confounding environmental factors acting on the microbiome

communities prior to and post sampling (Roesch et al., 2009;

Tzeneva et al., 2009; Lauber et al., 2010; Cardona et al., 2012;

Carroll et al., 2012; Hale et al., 2016; Kim et al., 2017). These studies

varied in sample type, study species, length of experimental

treatment (hours, days, or weeks), environment, and analysis

methods and perhaps not surprisingly presented often-conflicting

conclusions. Despite their lack of congruence, these studies and

their findings present a useful starting point for the wildlife

microbiome practitioner when designing a non-invasive sampling

protocol using fecal microbiota to gain insights into host health and

ecology. Considering the potential breadth of influential

environmental factors acting on non-invasive fecal samples and

the apparent lack of consistency in effects between studies, we

suggest experimental evaluation of field effects catered to specific

study conditions.

Following defecation, fecal microbial communities are exposed

to drastic changes in environmental conditions known to alter the

growth and survival of anaerobic bacteria, including changes in UV

exposure (McCambridge and McMeekin, 1981; Arrieta et al., 2000),

temperature (Huus and Ley, 2021), and oxygen (Brusa et al., 1989).

It is highly likely that the metabolic activities of these communities

shift dramatically due to these changes being more or less favorable

to each taxon (Menke et al., 2015). What is less clear is how rapidly
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the composition within these fecal pellets changes, since changes in

abundance require growth and turnover (loss) of taxa in this new

environment. Further, the extent to which these various abiotic and

biotic influences may be buffered within fecal pellets that have a

protective exterior (e.g. formation of a hard, dry exterior “shell”

through desiccation), or during winter when low temperatures

inhibit microbial metabolism, growth and death, are still open

questions. Thus, we hypothesized that fecal pellets dropped

during winter or early spring in temperate climes would exhibit

stable fecal microbiota composition (as determined by 16S rRNA

survey techniques) for some period of time. Herein, we address that

hypothesis to better guide the use of non-invasive methods in

wildlife studies.

We designed an experiment to quantify the potential bias of

sample age (i.e. time since defecation) on fecal microbiota of a

North American ungulate, where sampling takes place in late

winter/early spring conditions, typically within a 2-4 day window.

The purpose was to assess potential community compositional

changes through time that might confound experimental

observations and interpretation when samples come from an

unknown timeline. We sampled fecal pellets from four Rocky

Mountain elk (Cervus canadensis) non-invasively, but at the time

of defecation, near Yellowstone National Park, Montana in March

2016. The longitudinal component of this fecal microbiota

experiment was conducted in a forested plot near Evaro, MT

beginning on the day of collection after transporting the fecal

pellet samples in sterile whirl-pak bags on ice. In our design,

sample age is controlled by repeatedly subsampling elk fecal

pellets originally sampled from the same individual across day 0,

1, 3, 7, and 14, in triplicate. Thus, our hierarchical block

experimental design captures compositional fecal microbiota

change through time within four elk biological replicates (blocks)

and estimates the variation within each block using three technical

replicates for each sample/time combination. Hierarchical block

design is employed by life science experiments to differentiate

between the mean effect of a drug or other factor (i.e., fixed effect)

without the confounding variation of measuring this in different

patients or subjects (i.e., random effects) (Gelman, 2005). This

design often employs the use of linear mixed models (LMM) to

partition the specific error structure associated with non-

independence of samples (multiple measures on the same

individual across time points) and to control for the high

variance within biological replicates (pseudo-replication) that

often leads to type-1 error when ignored (Mata et al., 2019).

In this experiment we ask: (i) Are fecal microbiota communities

in elk stable across intervals typically used for non-invasive

sampling? (ii) Does sample age influence the results of commonly

measured diversity estimates and sample clustering analyses of

these communities? (iii) What proportion of the variance in

microbial composition is attributed to time, individuals, and

pseudo-replicates? Quantifying and isolating sources of variation

in elk microbiota due to sample age and classification of the

microbial taxa driving changes in these ‘semi-controlled’

experiments will allow more thoughtful interpretation of various

diversity estimates and differentially abundant taxa in other studies

where this potential source of variance (time since defecation)
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cannot be controlled. We also highlight a longitudinal modeling

technique called LiMM-PCA (Linear Mixed Models-Principle

Components Analysis) first implimented by Manon and Govaerts,

2020, that is of particular value for microbiome studies which often

have hierarchical sampling designs, repeat measures and

multivariate responses (i.e., microbial compositions).
2 Methods

2.1 Collection of fecal samples and
experimental setup

Scat samples from 4 elk were collected near the northern

boundary of Yellowstone National Park in Montana in March

2016. Animal sampling was conducted non-invasively within 15

minutes of defecation. Elk sex and age could not be accurately

determined due to these samples being collected after observing the

elk defecating from a distance using binoculars. Based on our

observations, they were most likely adult females or young males.

Fecal samples from each scat pile (i.e., individual) were collected

from the ground with sterile gloves and forceps and placed in sterile

whirl-pak sample bags. Sample whirl-paks were placed on wet ice in

a cooler in the field for transportation to the experimental site. The

experimental site was located on a sparsely forested plot near Evaro,

MT with conditions known to be suitable as elk habitat, at

approximately 4000 ft elevation.

Three pellets from each animal were frozen at -20° C after arriving

at the experimental site approximately 6 hours post-defecation. This

initial subsample represents time-point zero samples (and technical

replicates) with minimal exposure to ambient conditions typical of a

direct or capture-based sampling scheme. The remaining pellets from

each elk were placed in square plastic culture plates (25 cm x 25 cm)

with a grid backing using sterile gloves and forceps. Each culture plate

had a larger glass plate suspended above it at a height of 4 cm using a

cork stopper in each corner to allow air flow and prevent direct

contact with incidental precipitation (although no precipitation

occurred on-site during the study), and the group of culture plates

was surrounded by protective wire fencing. One plate was used for

each technical replicate, with each replicate plate containing samples

from all four individuals (for photos of the enclosure and a schematic

of the experimental layout see Supplementary Figure 1). The samples

were exposed to ambient conditions from March 27th through April

9th (14 days). Three samples from each elk were removed from the

replicate plates after 1 day, 3 days, 7 days, and 14 days and

immediately frozen at −20° C after removal from ambient

conditions. A total of 60 elk pellets were experimentally collected.

Temperature was logged in 10-minute increments during the

study using Thermocron temperature loggers (OnSolution Pty Ltd,

Australia) distributed above and below the culture plates and

shielded from direct sunlight. The temperature data were

aggregated into hourly oscillations, daily max and minimum, and

a smoothed average temperature. Additional temperature
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MT) 3.5 miles and 4000 ft above our site as reference.
2.2 Sample preparation, DNA extraction
and sequencing

Frozen elk fecal pellets (stored frozen at -20° C) were prepared

for DNA extractions by separating a standard weight (250 mg)

cross-section from each pellet using a sterile petri dish (10 cm) and

sterile safety razor blade for each sample. This fraction was placed

into a designated sample tube from the Qiagen PowerSoil DNA

extraction kit (Qiagen Inc., Germantown, MD) and processed using

the manufacturer’s recommended protocol. The resulting purified

metagenomic DNA was eluted with 100 µL PCR-grade water and

stored at -20° C prior to further analysis.

To assess the bacterial community present in the fecal DNA

extraction, we used a generally-conserved (i.e., “universal”) 16S/18S

barcoded primer set (536F and 907R) designed to amplify the V4

and V5 variable regions of the rRNA gene (Holben et al., 2004) and

PCR using 1(L of elk fecal sample metagenomic DNA standardized

to 25ng/(L as template. Once amplified, samples were gel purified

using the QIAGEN Gel Purification kit (QIAGEN, Germantown,

MD) following the manufacturer’s recommended protocol for

downstream direct sequencing. An Illumina MiSeq platform (San

Diego, CA, USA) was used to obtain 300 base-pair (bp) paired-end

sequencing using the Illumina MiSeq Reagent Kit.
2.3 Sequence and quality control

Read quality was summarized visually with FastQC and

MultiQC to assess overall quality before proceeding with filtering

(Andrews, 2010; Ewels et al., 2016). Primer sequences were removed

using Cutadapt software and any reads without a mate-pair or

recognizable primer sequence were discarded (Martin, 2011). We

carried out all subsequent analyses in R (R Core Development

Team, 2015) unless stated otherwise. The DADA2 package

(Callahan et al., 2016) was used to quality-filter and trim paired

reads according to the published workflow (Callahan, 2021).

Remaining sequences were denoised and dereplicated. We next

identified amplicon sequence variants (ASVs) from the resulting

high-quality sequences, merged forward and reverse reads and

removed chimeric sequences. ASVs were taxonomically assigned

with the DADA2 instance of the Naïve-Bayes classifier and the

Ribosomal Database Project II release (Cole et al., 2009). A matrix

was produced containing counts corresponding to the abundance of

each ASV present in each elk sample and an additional paired

matrix with the taxonomic classification of each ASV.

The Phyloseq R package (McMurdie and Holmes, 2013) was

used to further filter and summarize ASV tables. A small number of

non-bacterial ASVs that belonged to Kingdom Archaea or in the
frontiersin.org
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Chloroplast Class were removed from this bacterial analysis. No

mitochondrial contamination was detected. ASVs assigned to

unknown phyla were removed since these are not informative for

our analyses. All ASVs that failed phylogenetic assignment at the

genus level were standardized to “g_unknown” in the taxonomy

matrix and retained for diversity analyses.
2.4 Alpha diversity and
hierarchical clustering

To assess the effect of time on bacterial genera and community

diversity estimates, we calculated horizon plots of relative

abundance (explained below), richness, alpha-diversity (Shannon

and Simpson), and performed hierarchical clustering of samples.

Statistical tests for richness and alpha-diversity between groups

were calculated without rarefying sample data. Instead, richness at

the genus and ASV level was calculated per sample with breakaway,

which models incomplete sampling directly using flexible nonlinear

regression on ratios of contiguous frequency counts and also

provides standard error (SE) and p-values (Willis et al., 2020). As

the breakaway model intercept gets close to zero (from more rare

species in the frequency counts table), the estimate of the number of

unobserved species increases. The betta function from breakaway

was used to test for differences in sample richness (observed and

unobserved diversity) across elk and time points. Alpha-diversity

(Shannon and Simpson) was calculated per sample using theDivNet

package, which incorporates diversity estimates with correction for

incomplete sampling (Willis and Martin, 2021). The betta function

was also used to calculate the significance (p-values) of the alpha-

diversity estimates.

Horizon plots, from the R package BiomeHorizon, are useful for

visualizing relative abundance change in longitudinal microbiome

samples (Fink et al., 2021). To prepare this plot, the counts table was

converted to relative abundance (sum scaling) and taxa were filtered

to include only those present in ≥14/15 samples (i.e., 5 sampling

times * 3 replicates per elk) above a threshold prevalence of 0.1% to

simplify plotting. We chose to plot all genera (passing the filters) in

one elk to show the effect of time across fecal microbiota and

additionally we provided separate plots of Bacteroides and

Sporobacter in all elk since these were the only taxa to visually

change abundance (at 1% or 2% quartile abundance above or below

the median abundance of the time series).

For the remaining analyses, microbial count data were

transformed using the centered log-ratio (CLR) to preserve the

compositional nature of the data (Gloor et al., 2017). This was done

at the strain level (i.e., ASVs) and genus levels to assess the

sensitivity of taxonomic level on results. All samples were

hierarchically clustered to test the null hypothesis that an

individual’s microbiota sampled at different time points (and

replicates) are from the same probability distribution (i.e.,

conditions affecting the microbiota over time cannot be

distinguished from time zero samples). Samples were clustered

using the hclust function from the R stats package, using Ward’s

D2 distance. The resulting trees were bootstrapped using 10,000

iterations to provide branching confidence with the pvclust package
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(Suzuki and Shimodaira, 2006). These trees were visualized and

compared using the dendextend package (Galili, 2015).
2.5 Linear mixed modeling

To further examine which effects (e.g. exposure time, elk

individual, and sample replication) influence the fecal microbiota,

we performed a version of multivariate linear mixed modeling

called LiMM-PCA (for a detailed explanation of the modeling

approach see Manon and Govaerts, 2020). In brief, LiMM-PCA

combines a dimension-reduction step (PCA) on the original

microbial response matrix (counts) after transforming with CLR,

which is then used as the response during parallel linear mixed

modeling. This results in estimates of model parameters (fixed,

random and residual effects), which are then interpreted by

retrieving back-transformed loadings using PCA on augmented

effect matrices. This also allows graphical evaluation of the

importance and significance of model terms. The significance of a

given effect will be measured by determining the full and null

distributions of the restricted log-likelihood ratio (R)LLR test

statistic by parametric bootstrap.

Since the study was structured to determine the effect of time on

elk fecal microbiota, we chose to include Day as the first fixed effect

since it is of primary interest. We measured time in a blocking

design with each Elk (i.e., ‘patient’) designated as a random block

and each time point sampled in triplicate (Rep). Although both Elk

and Rep could justifiably be nested random effects, we chose to

model Elk as a fixed effect since we suspected each elk might

respond differently to day-of-sampling (Day : Elk; both different

intercepts and slopes), and 4 biological replicates is below the

recommended sample size for estimating population-level

random effects. The effect of Rep (i.e., experiment-level

replication) was modeled as a random effect since the study

design contained all elk and all time points repeated three times.

Treating Rep as an experiment-level random effect provided 20 data

points per experiment. The final model was ~Day+Elk+Day:Elk+(1|

Rep). P-values were obtained by 2,000 parametric bootstrap

iterations of the (R)LLR test statistic for each model term.
3 Results

3.1 Environmental variables

Temperature was logged in 10-minute increments over the 14-

day study using Thermochron temperature loggers (Baulkham

Hills, AU). The temperature data were aggregated into hourly

oscillations, daily maximum and minimum, and a smoothed

average temperature (Supplementary Figure 2). Additional

temperature recordings from a NOAA weather station Point 6,

3.5 miles and 4000 ft above our site recorded expectedly lower

temperatures but an identical trend to the localized temperature

loggers (Supplementary Data not shown). Precipitation did not

occur in measurable amounts during the study.
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3.2 Sequencing and quality control

Sequencing and quality control of partial 16S rRNA amplicons

from each fecal sample provided a total of 5,210,542 paired-end

sequences (forward and reverse reads) across all elk sampled, with

sample depths varying from 23,800 to 267,983 sequences per

individual (mean depth 86,842). Primers were trimmed from

paired-end sequences with filtering parameters that required a

read to have a primer present, a minimum length of 100 base-

pairs (bp), and a mate-pair, which resulted in 5,172,731 sequences

remaining. Filtering and trimming on quality (max of 2 errors, no

unidentified bases [i.e. ‘Ns’] and sequences truncated at the instance

of quality = 2) and length (minimum of 80 bp after quality

trimming) reduced the number of sequences retained to

3,793,295. The remaining sequences were dereplicated and

amplicon sequence variants (ASVs) were inferred independently

with forward and reverse reads using the DADA2 error model.

Forward and reverse reads were merged into single reads (2,384,561

remaining), Chimeric sequences were removed, resulting in

2,158,150 high-quality paired sequences remaining. Final read

depths per elk ranged from 7,812 to 126,887 (mean = 35,969 with

just two samples below 10,000 reads) after these quality filters.

Sequence filtering results are summarized across samples and per

sample in Supplementary Table 1.
3.3 Microbiota diversity
and characterization

Sequencing of partial 16S rRNA gene amplicons from each fecal

sample provided a survey of bacterial presence and abundance. ASV

counts per animal ranged from 7,799 to 126,043 after quality

filtering, with a mean count of 35,772. After filtering, a total of

5,177 unique ASVs were indicated across all samples. The

distribution of unique ASVs (observed richness) within individual

samples ranged from 301 to 1965, with a mean of 850 unique ASVs

per individual (see Supplementary Table 1). After assigning

phylogeny to ASVs, there were 112 unique identified genera and

7 identified species (we note that 16S gene phylogeny has limited

resolution to the species level). The top 10 most abundant ASVs

across all samples were classified to the genera Sporobacter,

Prevotella, Bacteroides, or were “g(enus):Unknown”, all within the

phyla Bacteroidota or Bacillota.

Richness estimates modeled in breakaway are defined as the

total diversity including the unobserved (unsampled) count (Willis

et al., 2020). Richness estimates were calculated at the genus level

per elk and time point and are summarized in Figure 1A. Richness

variation within individual elk across time replicates was not

significant (p > 0.2). This lack of significance is even more

pronounced (p = 0.781) when all elk were modeled together

(Figure 1D). The breakaway Shannon and Simpson diversity

estimates (Figures 1B, C) were calculated similarly for each elk

and time point and then combined in a global model for time

(Figure 1D). Simpson diversity is more sensitive to rare taxa and

was significant in 3 elk, although one significant trend had a sign
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change (negative slope, higher diversity) compared to the other

significant trends (positive slopes, lower diversity) (Figure 1B). The

slight positive trend for Simpson diversity (a decrease in diversity,

sensitive to rare taxa) across sampling days was significant in the

global model (p = 0.0001). Shannon diversity gives more weight to

evenness and common species, which was apparent with a lack of

significance in all but “elk-1”, as well as a slightly negative trend

(p = 0.054) in the global model, which was heavily influenced by

elk-1 (Figure 1C).

To visualize changes in relative abundance of bacterial genera

across time, we produced horizon plots as an alternative to stacked

bar plots since they better visualize small changes in a series

(Figure 2). These results show little change (+/- generally on the

order of 1%) across common genera with the exception of

Sporobacter and Bacteroides which show a subtle increase and

decrease across time, respectively. These genus-specific changes in

abundance are based on the median abundance calculated across

the time series using 2% quartiles, and we suggest that a change of

2-4% over 7 days in two genera is not inordinate in the context of

the entire community. The abundance differences seen at day 14

(+/- 10%), while more substantial, are still proportionally

small overall.
3.4 Hierarchical clustering

To test the null hypothesis that individual time points and

replicates come from the same probability distribution (i.e.,

conditions affecting the elk fecal microbiota over time cannot be

distinguished), we hierarchically clustered centered log-ratio

(CLR)-transformed samples with 10,000 bootstrap iterations. The

result of unsupervised clustering showed significant (p < 0.05) and

complete separation of individual elk, with all respective elk sub-

samples falling within the same branch (Figure 3). Interestingly,

there was virtually no support for clustering of leaves or nodes (i.e.

day-of-sampling and individual sample replicates) on each elk

branch at an alpha of either 0.05 or 0.1 (Figure 3). Elk-1 showed

the best clustering by sample day (and the only significant leaf

results), corroborating the more extreme changes seen in its

richness and alpha-diversity estimates, but the plotted

representation is only one of 10,000 iterations and should not be

interpreted as representative of leaf clustering since overall, it was

not significant.
3.5 LiMM-PCA models

To further identify which effects (i.e., time, elk, individual

sample replication) influence the fecal microbiota in elk sampled

non-invasively across time, we performed LiMM-PCA (Manon and

Govaerts, 2020). This analysis produced PCA plots of fecal

microbiota samples transformed with CLR and their

corresponding axis loadings. The first PCA on the CLR microbial

abundance matrix (prior to modeling) captured <45% of variance in

the first 4 PCs (Figure 4). This relatively low percentage of variance

explained speaks to the typical high noise found in microbiome
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datasets. Similar to hierarchical clustering results, the PCA

clustering of samples using either {PC1, PC2} or {PC3, PC4} was

strongly descriptive of elk replicates (colors) and showed relatively

low importance of sampling day (shapes) (Figure 4).

The LiMM-PCA model variance components (i.e., PCs) show

the respective contribution of variance for each model term

(Figure 5). We saw that, like the initial PCA, the total variance

explained by PCs 1-4 contribute the most to the model, with most

other PCs contributing to the residual error. Of the model terms,

Elk had the largest influence with 21.88% of global variance, Day :

Elk interaction with 14.9% and Day with 9.35%. The fixed terms

(Day, Elk) and random term (Rep) were tested for significance using

2000 bootstrap iterations of (R)LLR statistic and only Elk was found

to be significant (Figure 6).
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A visual inspection of the modeling results and loadings using

PCA on each effect matrix is provided in supplemental materials

and shows the pattern described by each model term and the subset

of ASVs impacting this pattern (Supplementary Figure 3). The

ASV’s with high loading scores could be interrogated per model

term to provide additional information and future hypotheses, but

this was outside the scope of our study. The PCA scores on the raw

CLR-transformed data (Figure 3) show strong separation by elk

and, unsurprisingly, this is repeated in the augmented matrix

(Supplementary Figure 3). Perhaps what is surprising is the

clustering of day-of-sampling which does show separation based

on time of sampling, although not significant. The effect of

replication on the samples accounts for only a small amount

of variation.
A

B

D

C

FIGURE 1

Modeled breakaway alpha diversity and richness estimates colored by day of sampling: Shapes represent each individual elk and colors represent day
of sampling where appropriate. (A) Plots of breakaway richness estimates (points) and SD of triplicate samples (whiskers) by day of sampling with
trend line and trend significance (reported inset on x-axis throughout) per elk. (B) Plots of breakaway Simpson diversity estimates (points) and SD of
triplicate samples (whiskers) by day of sampling with trend line and trend significance per elk. (C) Plots of breakaway Shannon diversity estimates
(points) and SD of triplicate samples (whiskers) by day of sampling with trend line and trend significance per elk. (D) Plots combining all elk samples
by day of sampling for demonstration of overall trend and significance for Richness, Shannon and Simpson models.
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FIGURE 3

Beta diversity: Aitchison’s distance (Euclidean) PCA plots of elk fecal microbiota samples transformed with centered log-ratio (CLR) and
corresponding axis loadings. Only principal components (PCs) with variation explained above 5% are included. Top: PCA scores plot of PC1 and PC2
axes. Bottom: PCA Scores plot of PC3 and PC4 axes. Shapes depict day of sampling colored by elk. Lower left: Scree plot of variance per PC.
FIGURE 2

Unsupervised clustering of elk fecal microbiota samples using Ward’s D2 method. Line colors represent samples of each elk, and line weight
represents significance level of branching using 10,000 bootstrap iterations. Node colors depict the day samples were collected. Note the lack of
consistent clustering by day of sampling but the complete clustering and significance of sample source (individual elk).
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4 Discussion

The reliable use of non-invasive fecal sampling for wildlife

monitoring hinges on the stability of the fecal microbiota

community across time under ambient conditions. In this

longitudinal experiment, we showed that the relative abundance

of taxa is not significantly biased by varying field conditions and age

of sample for at least 7 days. In light of these findings, the distinctive

value of non-invasive fecal microbiota samples in augmenting

current wildlife monitoring techniques is further verified.
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In this experiment we specifically asked: Are fecal microbiota

communities in elk stable across intervals typically used for non-

invasive sampling? Although we conclude that elk fecal microbiota

are stable within 1 week, over the 7-14 day interval there are some

caveats. The phylogenetic level of amplicon variation (e.g., genus or

ASV) being used is important in interpreting the response of the

microbiome to sample age. Higher phylogenetic levels like genus

examined herein, seem relatively unperturbed by time, especially

within one week of defecation. Yet, we observed strain level

diversity (derived from ASVs) to be somewhat noisy, even among
FIGURE 5

Restricted Log-likelihood ratios (RLLR) of LiMM-PCA mixed models. Main plot shows the restricted log likelihood of day-of-sampling (Day), Elk, and
Replicate. Inset table: Bootstrapped p-values of model terms using 2000 iterations. Elk was the only significant model variable and most of the
model variance was contained in the first 4 PCs.
FIGURE 4

Variance components of LiMM-PCA mixed model. Main plot shows the log variance explained by each model term for each PC, including the
interaction term and residuals. Inset right: sum of global variance explained by model terms and residuals. All PCs are included thus variance
percentages sum to 100.
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technical replicates (Supplementary Figure 4). We suggest that

ASVs may suffer from additional sources of variation that plague

microbiome studies in general, such as sources of technical

variation including DNA extraction bottlenecks (e.g., from the

tendency to saturate extraction columns with abundant DNA

preventing low abundance representation) and sequence depth.

Further, ASV’s may be sensitive to potential sources of biological

variation such as DNA degradation and micro-site effects. Although

strain level diversity was not tested here (and is usually not required

or recommended for wildlife microbiome characterization), these

sources of variation should be considered if strain level diversity is

important for a prospective study.

Another question asked was: Does sample age influence the

results of commonly measured diversity estimates and sample

clustering analyses? We showed that diversity estimates are

relatively stable but may decline slightly over time. However, the

data suggest that the magnitude of decline is not biologically

significant since sign changes in the slopes of the relationship
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were seen to differ between biological replicates, suggesting a lack

of a mechanistic or concerted response. A more likely explanation is

stochastic differences in the original community composition of the

fecal pellets themselves (i.e., not all pellets from the same animal

sampled from the droppings pile are strictly identical to begin with).

We also found that diversity estimates are sensitive to outlier

individuals and samples (e.g., elk-1). This outlier effect is

problematic for any study, but especially for non-invasive studies

with modest biological replication. We suggest outlier samples can

be overcome in the traditional way by simply examining larger

sample sizes and removing outliers based on statistical criteria if

necessary. Our clustering analysis clearly showed that variation is

largely contained at the individual level and is not significant among

subsamples, but outlier effects are also pervasive in these analyses,

although not significant.

The last question addressed in this study sheds light on the

variance attributed to each variable in our structured sample design,

namely: What proportion of the variance in fecal microbiota
FIGURE 6

Horizon plots of longitudinal elk fecal microbiota samples. Left: Horizon plot of longitudinal elk2 microbiota samples. Taxa were filtered to include
only those present in 14/15 samples (5 samples * 3 reps) above a threshold prevalence of 0.1%. The y-axis is the relative abundance of a taxon
(genera) at a given time point. Colors indicate the 1% quartile abundance above (blue) or below (red) the median abundance of the time series. Right:
Bacteroides and Sporobacter genera in each elk (triplicate sample abundances were averaged). Colors indicate the 2% quartile abundance above
(blue) or below (red) the median abundance of the time series.
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composition is attributed to day-of-sampling, individuals, and

replicates? The ability to graphically illustrate the effects of each

variable and their significance using LiMM-PCA proved to be a

valuable tool for further evaluating the nuances of sample age on the

fecal microbiota and the taxa driving these relationships. The

relatively small and non-significant variance attributed to the

effect of Day supports the conclusion that non-invasive sampling

is robust to sample age. The significant variance attributed to each

elk and the additional variance captured by the interaction of Elk :

Day strongly supports that fecal microbiota composition

consistently and primarily reflect the animal’s unique signature of

variation, despite sample age. That said, this may be a strength to

this general, non-invasive approach where differing ecological

parameters between individual animals such as age, body-fat

composition, population/herd, or sex are of importance (Pannoni

et al., 2022). Although a large proportion of variance is described by

the interaction term, it was not significant, suggesting that the

changes due to sample age are largely unique to each biological

replicate and are not indicative of a mechanistic response to fecal

pellet age, such as what might be seen from rapid overgrowth or

turnover in one or few genera in all samples. Pseudo-replication

(i.e., Rep) of each individual was found to be non-significant and

suggests that between-pellet variation from a single individual (i.e.,

technical variation) is minimal in this study. In our earliest

preliminary studies, we assessed whether subsamples of individual

pellets (i.e. single pellet fractions) exhibited community structure

variance. There, we found that intra-pellet variation had

undetectable differences as determined by DGGE analysis of

partial rRNA gene amplicons from purified metagenomic DNA

(unpublished observations).

Although specific to elk and likely other ungulates, we expect this

experiment will be illuminating to investigators of various wildlife

microbiome systems in temperate northern latitudes where winter/

spring conditions are similar to our experimental setting. The results

should not be extrapolated to other climates, environments or non-

ungulate study species without experimental verification. Of more

general relevance is the process and methods of identifying potential

microbiome biases due to the specifics of non-invasive sample

acquisition, which should be common practice. We also highlight

LiMM-PCA as a modeling technique that is of particular value for

microbiome studies, which often have hierarchical sampling designs,

repeat measures and a multivariate response (Manon and Govaerts,

2020). LiMM-PCA controls for random effects (e.g., the patient

effect) and structured study designs (repeat measures) using linear

mixed models and allows for dimension reduction of the microbial

response matrix by PCA. In this regard, LiMM-PCA is superior to

other ANOVA approaches which do not have this flexibility

especially with unbalanced data, and we encourage its broader use

specifically for longitudinal microbiome studies with structured

study designs. We used an alternative method, breakaway, to

estimate richness and diversity that does not require rarefaction of

samples to a common sampling depth which may be of general

interest to the field. Breakaway (and DivNet) use statistical (non-
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linear) models fit to each sample’s unique distribution of species

counts to determine how much larger estimates of richness should

be (Willis et al., 2020; Willis and Martin, 2021).

This study is not intended as an authoritative example of best

practices when modeling longitudinal microbiomes considering the

potential for unique challenges of individual study designs.

However, we believe that our experiment can help encourage the

broader use of linear mixed models for multivariate outcomes in

microbiome research by highlighting its power to visualize variance

relationships and obtain significance for variables of interest.

Quantifying and isolating sources of variation in elk fecal

microbiota due to sample age and the taxa driving these changes

will allow more thoughtful interpretation of various diversity

estimates and differentially abundant taxa in other related studies

where time to sampling cannot be strictly controlled.
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