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Foliar fungal communities
in agroecosystems depend
on crop identity and
neighboring vegetation

B. K. Whitaker 1,2, R. W. Heiniger 3 and C. V. Hawkes 2*

1USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin
Prevention & Applied Microbiology Unit, Peoria, IL, United States, 2Department of Plant and Microbial
Biology, North Carolina State University, Raleigh, NC, United States, 3Department of Crop and Soil
Sciences, North Carolina State University, Raleigh, NC, United States
Agricultural intensification causes plant diversity loss and environmental

homogenization, which may result in changes to plant-microbiome

interactions mediating plant growth and stress tolerance. We hypothesized

that foliar fungal microbiomes would depend on plant traits and environmental

filters, constrained by neighboring vegetation expected to serve as a fungal

source. Thus, we sampled foliar fungi from four crops (three annual and one

perennial), four sites per crop, and three varieties per annual crop, across a 500-

km expanse in North Carolina, USA and tested the role of host traits,

environmental traits, and vegetative landcover on foliar fungal community

structure. Crop species and site were major determinants of community

structure, primarily due to differences in plant size and growing season. Site

consistently explained 10× more variation in community structure than host

variety across the annual crops. Finally, reduced natural vegetative cover

surrounding farms was correlated with decreased fungal richness and more

homogeneous microbiome assembly. Based on these results, we posit that foliar

fungal assembly in crops results from host and environmental filters acting on

inputs from the nearby vegetation. Future efforts at agricultural microbiome

management must therefore consider landscape management and will require

an improved understanding of how agricultural intensification alters microbial

source pools.
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Introduction

In native ecosystems, assembly of the plant microbiome is generally driven by host

diversity and environmental heterogeneity, which serve as both microbial propagule

sources and selective filters (Balint et al., 2015; Giauque and Hawkes, 2016; Oono et al.,

2017; Whitaker et al., 2018; Maciá‐Vicente and Popa, 2021). Although the same assembly
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/frmbi.2023.1216462/full
https://www.frontiersin.org/articles/10.3389/frmbi.2023.1216462/full
https://www.frontiersin.org/articles/10.3389/frmbi.2023.1216462/full
https://www.frontiersin.org/articles/10.3389/frmbi.2023.1216462/full
https://orcid.org/0000-0003-2522-9672
https://orcid.org/0000-0002-4235-729X
https://orcid.org/0000-0002-1043-9469
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frmbi.2023.1216462&domain=pdf&date_stamp=2023-07-13
mailto:chawkes@ncsu.edu
https://doi.org/10.3389/frmbi.2023.1216462
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiomes#editorial-board
https://www.frontiersin.org/journals/microbiomes#editorial-board
https://doi.org/10.3389/frmbi.2023.1216462
https://www.frontiersin.org/journals/microbiomes


Whitaker et al. 10.3389/frmbi.2023.1216462
processes should control crop microbiomes, it is not clear whether

the dominant processes are niche- (biotic/host or abiotic/

environmental filters) or dispersal-based. Intensive agricultural

practices negatively impact overall microbial biodiversity

(Rodrigues et al., 2013; Karlsson et al., 2017; Li et al., 2019), while

increasing pathogen incidence and severity (Claflin et al., 2017;

Ingwell et al., 2017). These microbial shifts likely reflect limited crop

diversity and environmental homogenization that affect both local

assembly filters and microbial propagule supply (Soldan

et al., 2021).

In natural ecosystems, increased plant diversity means greater

variation in plant traits and more potential plant-based niches for

microbial taxa. In modern agriculture, plant diversity loss has been

two-fold: fewer crops and more genetically similar varieties have

reduced both inter- and intraspecific plant diversity. Selective

breeding for agronomically desirable traits, including pathogen

resistance, grain yields, and stand density, is associated with

microbiome divergence between crops and wild relatives (Hassani

et al., 2020). Similarly, intraspecific trait differences can act as

selective biological filters to microbiome assembly (Wallace et al.,

2018; Simonin et al., 2020; Wagner et al., 2020) with convergence

more likely when varieties are ecologically similar (Ricks and Koide,

2019). Nevertheless, host effects on microbiome assembly appear to

be weaker than environmental effects (Balint et al., 2015; Whitaker

et al., 2018), suggesting that plant traits (whether inter- or

intraspecific) must be considered in an environmental context.

Environmental filters in the form of abiotic conditions structure

microbiomes across multiple spatial scales. For example, in natural

ecosystems, water availability drives microbial survival across

micro- (e.g. biofilms; Lennon et al., 2012) to macro-scales (e.g.

climatic regions; Bahram et al., 2018). In agricultural systems, both

micro- and macro-scale environmental homogenization associated

with modern farming (e.g. tillage, field enlargement; Ramankutty

et al., 2018) has likely altered the primary environmental filters

acting on microbiomes. Moreover, consequent niche disparities

between natural and agricultural systems raise the question of

possible microbial exchanges between the two systems (Susi and

Laine, 2021).

Microbial dispersal affects microbiome assembly via taxa supply

across local (from soil or plant to plant) to regional scales (across

sites; Fort et al., 2016). In croplands, microbial reservoirs may decline

following plant diversity loss, environmental homogenization, and

increased disturbance (Laforest-Lapointe et al., 2017; Whitaker et al.,

2021). Regional source-sink dynamics have been reported from

decades of macro-organismal research (Ricketts, 2004; Tscharntke

et al., 2005; Stanton et al., 2018), but our understanding of non-

pathogenic microbial exchanges between agronomic and natural

ecosystems remains limited. Empirical evidence from the crop

phyllosphere suggests local bacterial exchange among mixed

vegetable plantings (Meyer et al., 2022). And, although challenging

to measure directly, landscape-level correlations between agricultural

and native plant microbiomes indicate dispersal limitation (Jiao et al.,

2021) and stringent local filtering (Vaz Jauri et al., 2018). Thus, low-

diversity agricultural ecosystems may be microbial sinks that depend

on spillover from surrounding natural or semi-natural areas.
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To address drivers of crop microbiome richness and structure

from local to landscape scales, we focused on the foliar fungal

community associated with four crops each grown at four sites

across a 500-km region of North Carolina (NC), USA. We selected

foliar fungi because previous work demonstrated their dependence

on plant-to-plant networks rather than soils as sources (Lee and

Hawkes, 2021; Whitaker et al., 2021). We sampled three annuals

(corn, soy, and wheat; n=3 varieties per crop) and one perennial

(switchgrass). For each site, we collected data on: plant performance

traits that might act as biotic/host filters (Lee and Hawkes, 2021),

climate and soil characteristics that are likely environmental filters

(Giauque and Hawkes, 2016); and vegetative cover in the

surrounding landscape as a metric of potential fungal sourcing, as

seen in wild communities (Whitaker et al., 2021).

We tested three interrelated hypotheses. 1) We expected crop

microbiome structure and richness to vary across host species and

by the interaction between host variety and sites, assuming a

combination of plant traits and environment would act as

selective filters. 2) We expected site effects would better predict

microbiome structure than variety effects based on the dominance

of environmental filters in other studies (Wallace et al., 2018;

Whitaker et al., 2018; Wagner et al., 2020), even though host

varieties were selected to maximize variation in agronomic traits.

3) Lastly, we hypothesized that differences across sites and plots in

crop microbiome structure, richness, and dissimilarity would reflect

a combination of host filters (plant traits), environmental filters

(climate and soil traits), and fungal propagule supply. Specifically,

we predicted that the abundance of unmanaged, natural/semi-

natural vegetative cover in the surrounding landscape

(Figures 1A–C) would correlate with fungal community metrics

based on the assumption that unmanaged vegetation acts as a fungal

source to farms.
Materials and methods

Study sites and crop species

To represent a range of growing conditions, we sampled from

four crops (with four sites per crop = 16 fields) across three

biogeographic regions in NC: Mountains, Piedmont, and Coastal

Plains (Supplementary Figure S1). We sampled three annuals:

(Glycine max L. [hereafter soy], Triticum aestivum L. [soft red

winter wheat, hereafter wheat], and Zea mays L. [hereafter corn])

from North Carolina State University’s Official Variety Testing

(OVT) sites (https://officialvarietytesting.ces.ncsu.edu;

Supplementary Table S1). We also sampled perennial Panicum

virgatum L. (hereafter switchgrass) from monoculture stands

(Supplementary Table S1). For each annual, three varieties were

selected to maximize variation in yield, pathogen resistance, stress

tolerance, and GMO traits (Supplementary Table S2). Variety

testing was not possible for switchgrass (Supplementary Table

S2), but previous studies detected little to no influence of genetic

type on switchgrass leaf microbiomes (Whitaker et al., 2018;

Hestrin et al., 2021).
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Experimental design and sampling

For annual crops, we sampled varieties from the OVT sites

where plots were organized in a complete randomized block design

(3 varieties × 4 blocks per site; Figure 1D). Each plot measured 1.2m

× 7.6m and planting density varied by crop: 2 rows (corn), 4 rows

(soy), or 7 rows (wheat) with 76.2cm, 38.1cm, or 17.8cm row

spacing, respectively. Plot sizes were the same for switchgrass –

except at WBFL (plot sizes 2.4m × 4.9m) – with no cultivar

replication, 3-4 blocks per site, and 4 or 3 plots per block

(respectively). For complete details of switchgrass sampling, see

Supplementary Methods.

We sampled all crops in 2019 during either flowering or grain/

pod filling: Apr 30-May 10 (wheat: Feekes 10.5-10.5.1), Jul 24-Aug 2

(corn: Abendroth R3-R4; soy: Fehr and Caviness R1-R3), or Aug 7-

19 (switchgrass: flowering). Specific leaves were targeted based on

crop identity and growth form: ear leaf (corn), flag leaf (switchgrass,

wheat), or leaflets from the 3rd and 4th highest fully expanded leaves

(soy). One leaf, or leaflet set, was collected from four randomly

selected plants per plot, combined, stored on dry ice, and

transferred to a -80°C freezer on the same day.
Plot and site data collection

Measured variables represented potential microbial biotic and

abiotic filters. For each plot, we recorded latitude and longitude, and

measured plant height, leaf area index (LAI), and soil moisture from

the same plants sampled for leaf tissue. Plant height and LAI were

proxies for plant performance because they predicted vegetative
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yield in switchgrass (Aspinwall et al., 2017) and because height was

strongly correlated with grain/pod yields (Adj. R2 = 0.92). For

additional details, see the Supplementary Methods.

For each site, we obtained historical climate (1981-2010) and

2019 weather data, including: mean annual high and low

temperatures (MHT, MLT) and precipitation (MAP), and high

and low temperatures and accumulated precipitation for 90 days

preceding sampling (HT_90day, LT_90day, and Precip_90day;

Prism Climate Group, 2021). As broad indicators of soil

properties, we measured soil pH and humic organic matter (%

HM) from the annual crops at sampling; for switchgrass, these data

were obtained from soils collected in 2018 (Supplementary

Methods). Location, climate, and soil type/texture are provided

for each site (Supplementary Table S3).

To account for potential microbial source-sink exchange, we

computed the percentage of unmanaged natural/semi-natural

vegetation and active cropland within 1- and 10-km radii of each

site and plot using the USDA-NASS Cropland data layer (dates: 01/

01/2019-12/31/2019, resolution: 30m; USDA-NASS, 2019)

processed in Google Earth Engine (Gorelick et al., 2017;

Supplementary Methods, Figures S2, S3). These spatial scales

represent nearby farm edges and more distant vegetation,

respectively, given typical NC farm sizes of ~0.5km2 (USDA-

NASS and NCDA-CS, 2019).
Illumina sample preparation

Leaves from each plot were randomly sub-sampled by cutting

tissue on frozen cutting boards into 0.25cm2 fragments. DNA was
FIGURE 1

Examples of (A–C) three experimental sites in the North Carolina State University’s Official Variety Testing program and (D) a randomized block
design where each block is represented by a different color and the plot locations for the three sampled varieties (V1, V2, V3) are indicated in yellow.
In addition to site differences such as climate and soil type, each site is surrounded by landscapes with different amounts and types of land cover.
Photos by Ryan Heiniger.
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extracted using the Synergy 2.0 Plant DNA Kit (OPS Diagnostics

LLC, Lebanon, NJ). We pooled one DNA blank per kit as a negative

control prior to PCR amplification. For Illumina library

preparation, we performed two-stage PCR with modified ITS1F

and ITS2 primers (Smith and Peay, 2014) and a custom-designed

peptide nucleic acid (switchgrass samples only). For details, see

Supplementary Methods, Figures S9, S10, and Table S12. Raw

sequencing data are available in NCBI SRA BioProject

PRJNA845782 (SRR19545648 – SRR19545890).
Bioinformatics

All sequence data were processed using DADA2 (v.1.14.1;

Callahan et al., 2016) to determine amplicon sequence variants

(ASVs) with default parameters except filtering (maxEE=2,4). Plant

sequences were removed using a custom database, followed by

LULU curation (v.0.1.0; Frøslev et al., 2017). Taxonomy was

determined using the RDP naïve Bayesian classifier (Wang et al.,

2007) and Warcup fungal ITS database (v2; Deshpande et al., 2016),

with substitutions from the UNITE fungal ITS database (Kõljalg

et al., 2013) for confidence scores <70%. For details, see

Supplementary Methods.
Statistical analyses

All bioinformatics and statistical analysis scripts are archived on

Zenodo (Whitaker, 2023). All analyses were run in R (v.4.2.0; R

Core Team, 2022), with substantial use of phyloseq (McMurdie and

Holmes, 2014), vegan (v.2.6-2; Oksanen et al., 2022), and DESeq2

(v.1.32.0; Love et al., 2014). All data figures were created using

ggplot2 (v.3.3.5; Wickham, 2016). The dependent variable in all

community structure analyses was a Euclidean distance matrix

(McMurdie and Holmes, 2014) from variance-stabilized ASVs

(DESeq2), to account for compositionality and overdispersion

(Gloor et al., 2017).

To address our first hypothesis that fungal community structure

and richness varied across crop species, variety, and site, we used a

series of linear models via residual randomization permutation

procedures (RRPP, v.1.1.1; 1,000 permutations; Collyer and Adams,

2018). RRPP allows for Type III sum of squares and complex mixed

model designs via explicit selection of the denominator for pseudo-

F-ratio calculations. First, we tested crop species (fixed), site nested

in crop (fixed), and block nested in the crop-by-site interaction

(random). Second, we tested each annual crop separately with site,

variety, and their interaction as fixed effects, and included both the

block within site and block within site-by-variety interaction, as

non-testable, random error terms. Third, for switchgrass, no variety

effect was included; thus, block nested within site could be tested

and was also used as a random error term.

To address our second hypothesis that site would better predict

microbiome structure than host variety, we identified their relative

contributions to community structure for each crop separately,

along with nested block effects, using variance partitioning in db-

RDA (vegan::varpart, capscale). Significance testing was performed
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on each variable using conditional and partial conditional

permutation tests (n=999).

To test our third hypothesis (and delve further into unexplained

variation identified in the db-RDA), we investigated the selective

filters driving microbiome structure, richness, and dissimilarity. We

analyzed site-level community structure with partial canonical

correspondence analysis (CCA; vegan::cca) and site-level richness

and dissimilarity with best subsets ordinary least squares linear

regression. In each analysis, we initially included the following site-

level predictors: climate (MHT, MLT, MAP), elevation, recent

weather (HT_90day, LT_90day, Precip_90day), landcover

(percent unmanaged vegetation and percent cropland at 1- and

10-km scales), soil properties (pH, % HM, soil moisture), and crop

productivity traits (average LAI and height). The WHT-PASVT site

was missing soil data, thus we performed two versions of the site-

level analyses: 1) WHT-PASVT excluded but soil characteristics

included and 2) WHT-PASVT included but soil characteristics

excluded. Results were qualitatively similar (reported in

Supplementary Tables S8, S9) and no soil properties were

significant. Therefore, we chose to present the analysis with all

n=16 sites but no soil characteristics.

For the CCA, latitude and longitude were the conditioning

matrix, while the response matrix was the Euclidean distance matrix

of the variance-stabilized ASVs pooled by site. Independent

variables were successively dropped by largest variance inflation

factor (VIF) until all VIFs<2, leaving MAP, Precip_90day,

LT_90day, elevation, percent unmanaged vegetation within 1-km,

soil moisture, and mean LAI. Permutation tests were used to assess

the significance of variables and axes (n=999; vegan::

envfit, anova.cca).

Average within-site fungal community richness and

dissimilarity were examined with regression as a function of the

same explanatory variables listed above. Within-site dissimilarity

was calculated as the average of all between-plot Euclidean distances

(12 plots per site, 66 total comparisons per site). For VIFs<2, the

model included: MAP, Precip_90day, LT_90day, percent

unmanaged vegetation at the 1-km scale, soil moisture, and mean

LAI. The best models were determined using Akaike Information

Criteria (AIC), Schwarz Bayesian Criteria (SBC), and Adjusted R2

(olsrr::ols_step_best_subset, v. 0.5.3; Hebbali, 2020).

Lastly, any significant site-level effects that were also measured

at the plot scale were reanalyzed for plot-level richness and

dissimilarity using mixed effects regressions (nlme::lme, v.3.1.161;

Pinheiro and Bates, 2023). This allowed us to examine the effect of

crop on these relationships. Plot dissimilarity was calculated as the

average Euclidean distance between the target plot and every other

plot at the same site (11 comparisons). Crop species was tested

either as a random intercept or as both random intercept and slope.

AIC was used to determine the best model structure.
Results

There were 595 total ASVs. Most ASVs were identified as

Ascomycota (64.0%) or Basidiomycota (32.4%). The top ten most

abundant ASVs accounted for 48.2% of sequencing reads; six
frontiersin.org
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belonged to the Mycosphaerellaceae (Supplementary Figure S4).

Only 5 ASVs (<1%) were common across all sites (Davidiella sp.,

Alternaria sp., and three Phoma spp.), while 169 ASVs (28.4%) were

unique to one site. The four crop species shared 57 ASVs (9.6%%;

1.8-fold more Asco- than Basidiomycota), whereas 323 ASVs

(54.3%) were unique to one crop species (Supplementary Figure

S5). Switchgrass had the largest portion of unique ASVs (24.0%),

followed by corn (16.1%), wheat (10.3%), and soy (3.9%). There

were more unique Asco- than Basidiomycota in corn, wheat, and

switchgrass, but there were more unique Basidiomycota in soy.

Hypothesis 1 – Fungal community structure (Figure 2A) and

richness (Supplementary Figure S6) differed among crops (both

P<0.001) and site nested in crop (both P<0.001). Community

structure also varied spatially among blocks nested in site

(P<0.001), whereas richness did not (P=0.825; Supplementary

Table S4). When corn, soy, and wheat were analyzed separately,

there was an interaction between site and variety on fungal

community structure (all P<0.001; Supplementary Table S5;

Figures 2B–D). For switchgrass, fungal community structure

varied across sites (P<0.001) and blocks nested within site

(P<0.001; Supplementary Table S5; Figure 2E). Site, variety, and

block effects on fungal richness followed a similar pattern to

community structure for all crop species (Supplementary Table S6).

Hypothesis 2 – Based on variance partitioning, site explained

more variation (11-13%) in community structure than host variety

(0-2%) in the annual crops (Supplementary Table S7; P<0.001).

Block effects, a metric of within site-spatial variation, were minimal

(<3%) and only significant for corn (P=0.047) and switchgrass

(P<0.001). However, the variation explained by the shared portion

between site and block was high in all four crops (20-34%). Most

fungal community structure variation was unexplained (46-70%) by

these experimental factors (Supplementary Table S7).
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Hypothesis 3 – To parse the role of biotic and abiotic

environmental factors in fungal community structure across sites,

we used partial CCA controlling for spatial location (Supplementary

Table S8; Figure 3). Only CCA Axis 1 was significant (P=0.041).

Fungi in perennial switchgrass and the three annual crops separated

along CCA Axis 1 based on plant LAI (P=0.001), which was 1.8×

higher in switchgrass relative to the annual crops. Fungi in spring-

maturing wheat also separated from the summer-maturing crops

based on 90-day low temperature (P=0.001).

Best subsets regression analysis revealed that unmanaged

vegetation at the 1-km scale and low temperatures in the 90 days

preceding sampling best predicted both average site-level fungal

richness (Adj. R2 = 0.29; Supplementary Table S9; Figures 4A, B)

and community dissimilarity (Adj. R2 = 0.33; Supplementary Table

S9; Figures 4C, D). Other variables from the top five models

included measures of water availability (MAP, Precip_90day, soil

moisture) or LAI, but these did not improve model fit.

The plot-level analysis recapitulated site-level patterns between 1-km

unmanaged vegetation with fungal community richness and dissimilarity

(both P < 0.001; Supplementary Table S10; Figure S7). The best fit for

plot-level fungal richness included crop as random intercepts, such that

all crops have the same slope with 1-km unmanaged vegetation but

different means. For plot-level fungal dissimilarity, AIC could not

distinguish the random intercepts model from the random intercepts

and slopes model (Supplementary Table S10), such that the effect of 1-

km unmanaged vegetation on dissimilarity might be crop-specific.
Discussion

Crop species were colonized by different fungal microbiota,

reflecting both seasonal environments and size-based host traits
B C

D E

A

FIGURE 2

Ordinations depict differences among (A) crop species and sites; the site by variety interaction for (B) corn, (C) soy, and (D) wheat; and (E) sites for
switchgrass. Each point represents a single plot. Ellipses represent 1 SE around the centroid for each treatment group. Specific color shades
represent different sites as labelled in panels (B–E). For (B–D) specific line types and point shapes represent the three different varieties per annual
crop. For full site names, see Supplementary Table S3.
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FIGURE 3

Partial CCA results are shown where each point represents the crop foliar fungal community at a single site. Vectors depict significant continuous
traits driving community structure: ‘plantHt’=mean plant height, ‘LAI.mean’=mean LAI, ‘Perc_Veg_10km’=% Unmanaged Vegetation at 10-km scale,
and ‘LT_90day’=low temperature in 90 days preceding sampling. Colors represent crops and color shades indicate sites.
B

C D

A

FIGURE 4

Across sites, average fungal richness (A, B) and dissimilarity (C, D) are positively related to (A, C) unmanaged vegetation at the 1-km scale and
(B, D) with low temperatures in the 90 days preceding sampling. Each point represents the average (± 95% CI) observed richness or community
dissimilarity between plots within a site and are color coded according to crop species and site as in Figures 2, 3. Gray bands show ± 1 SE for the
linear regressions.
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that can act as filters on microbial community assembly. As expected,

host variety explained substantially less variation than site in foliar

fungal community composition. Most differences observed across

sites were primarily attributed to seasonal turnover and unmanaged

vegetation found within 1 km of the farms. Within sites, crop fungi

were heterogeneous, with the degree of heterogeneity also reflecting

seasonal turnover and nearby unmanaged vegetation. Thus, a

working model is that neighboring vegetation serves as a potential

fungal propagule source to crop leaves, where successful colonization

is dictated by plant trait and environmental filters that together

control both microbial diversity and composition. These results

emphasize the importance of landscape context and the need to

better understand plant traits and seasonal turnover as potential

filters for specific microbial niches.

Host filtering is a common constraint on microbiome assembly.

We found strong local biotic filters, as evidenced by variation in

fungal community structure across crop species and, to a lesser

extent, host varieties. One crop trait, LAI, was an important

correlate of fungal community structure. Vegetative growth traits

can influence niche space for colonizing fungi, for example by

increasing available habitat (Meyer et al., 2022) or changing micro-

climate (Vidal et al., 2017). Across annual crops, varieties showed

minimal differences in foliar fungi, which could reflect our variety

selection. Larger host variety effects on fungal communities might

occur if there were greater contrasts in relevant traits, such as fungal

pathogen resistance (Wagner et al., 2020) or phenology (Sutherland

et al., 2022).

Environmental filters that affected foliar fungal community

structure, richness, and dissimilarity were limited to recent low

temperatures, reflecting the seasonal difference between spring and

summer sampling for wheat versus all other crops. This likely reflects

both seasonal variation in natural vegetation source pools, with fewer

and different types of green plants in the surrounding landscape in the

spring, as well as differences in fungal environmental tolerance. In

natural ecosystems, climate (Giauque and Hawkes, 2016) and soil

characteristics (Lee and Hawkes, 2021), are often dominant

environmental drivers of the plant fungal microbiome. In agricultural

ecosystems, these influences may be mediated by source population

availability or may be inconsequential compared to the disturbance

associated with intensive agricultural management (Karlsson et al.,

2017; Ricono et al., 2022). Here, with only one spring crop tested, our

ability to interpret this result is limited – as it might be caused by

wheat-specific traits not measured here. To fully separate fungal

propagule supply from other biotic and abiotic filters will require

studying microbial diversity across a greater number of spring and

summer maturing crops.

Unmanaged vegetation in the 1-km surrounding each site,

which ranged from 1-53% cover (Supplementary Figure S3),

serves as a potential source of foliar fungi to crop leaves and

likewise diversifies potential outcomes in crop microbiome

community assembly. Specifically, decreased cover of nearby

unmanaged natural/semi-natural vegetation was correlated with

fewer fungal taxa and more similar microbiomes across plots

within the same field site explaining 21% and 27% of variation in

the data, respectively. This was likely due to a loss of fungal species

diversity in surrounding source pools. The effect of nearby
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vegetation on fungal richness was consistent across crops, but the

effect on fungal dissimilarity may be crop-specific and will require

additional studies to fully elucidate. Along these lines, Ricono et al.

(2022) found that hedgerow density had a neutral to negative effect

on wheat root endophyte richness, suggesting that these may not be

simple source-sink relationships.

Control of microbial pathogens represents an important focus of

agricultural management and could be a concern in agriculture-

native ecosystem exchanges. For example, genetic diversity of

surrounding plant vegetation caused more frequent or severe

disease in certain crops (Claflin et al., 2017; Ingwell et al., 2017).

Here, all foliar tissue used for microbiome analysis was asymptomatic

and only a few sites showed foliar disease symptoms (e.g. LENVT-

Wheat, YADVT-Corn). We attempted to assess the pathotrophic

fungal community using FUNGuild (Nguyen et al., 2016).

Unfortunately, only 35% of ASVs could be confidently assigned to

a single functional group (patho-, sapro, or symbio-troph); of these,

48% were pathotrophs (Supplementary Methods). The paucity of

assignments makes interpretation difficult, but pathotrophic ASVs

tracked the same variables as overall foliar fungal richness and

dissimilarity (Supplementary Figure S8). This suggests that

asymptomatic pathotrophs are proportionally abundant in the

local/regional species pool and/or that there is little discrimination

in fungal dispersal or selective filtering onto crops.

Despite large differences in foliar fungi among the four crops,

~10% of ASVs were shared, which likely reflects a set of generalist

fungi with widespread dispersal. Five ASVs appeared at all sites:

three Phoma spp., a Davidiella sp., and an Alternaria sp. All three

genera are frequently identified as leaf endophytes (Arnold, 2007;

Busby et al., 2016) and the latter two can be abundant in the corn

phyllosphere (Singh and Goodwin, 2022). Alternatively, some fungi

shared across different crops may not be generalists, but instead

may respond to plant traits that represent similar niche spaces. For

example, corn and switchgrass are both large C4 grasses and shared

the most taxa (151 ASVs), despite a minimum distance of 92km

between sites. To truly track fungal strains across crops and

landscapes will require finer genetic resolution (Wagner, 2021).

Further investigations of specific mechanisms driving foliar

fungal sourcing in agricultural systems are warranted. For example,

we did not identify fungi from native vegetation or directly consider

natural vegetation characteristics beyond cover that might control

fungal propagule supply, such as native host diversity, vertical

structuring, edge effects, and fragmentation (Martin et al., 2019;

Willing et al., 2021). Similarly, our survey of environmental, soil,

and plant traits was not exhaustive, and other factors might be more

relevant (Lee and Hawkes, 2021). Additionally, crop and site

sampling were partially confounded with season and crop

phenology. Previous work suggests that soils are not a substantive

source of fungi for leaves (Lee and Hawkes, 2021; Whitaker et al.,

2021), so we did not test this possibility. However, other studies have

found that soils are an important reservoir of leaf bacteria (Grady

et al., 2019) and thus the degree to which soils act as a source of

microbiota may vary across different domains or functional groups.

In conclusion, crop species harbor distinct fungal communities

selected from their environments. The loss of both crop diversity

and natural or semi-natural habitats associated with agricultural
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intensification has ripple effects on multiple trophic groups above-

and belowground (Robinson and Sutherland, 2002; Geiger et al.,

2010). Here, we add to this list the potential supply of foliar fungi,

where recent work has shown that microbial signatures can be a

more important crop yield predictor than traditional measures such

as physical or chemical soil properties (Asad et al., 2022).

Additional follow-up studies will need to examine the relative

relationships between foliar fungal symbionts’ function, landscape

cover, and crop performance. Regardless, future efforts to manage

foliar fungal symbionts for improved crop health in agricultural

ecosystems should consider exchanges with natural ecosystems.
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