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Interactive effects of depth and
differential irrigation on soil
microbiome composition
and functioning
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Robert Danczak1, Ryan McClure1, Kirsten S. Hofmockel1,5

and Janet K. Jansson1*
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Laboratory, Richland, WA, United States, 4Department of Crop and Soil Sciences, Washington State
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Two factors that are well-known to influence soil microbiomes are the depth of

the soil as well as the level of moisture. Previous works have demonstrated that

climate change will increase the incidence of drought in soils, but it is unknown

how fluctuations in moisture availability affect soil microbiome composition and

functioning down the depth profile. Here, we investigated soil and wheatgrass

rhizosphere microbiomes in a single common field setting under four different

levels of irrigation (100%, 75%, 50%, and 25%) and three depths (0-5 cm, 5-15 cm,

and 15-25 cm from the surface). We demonstrated that there is a significant

interactive effect between depth and irrigation, where changes in soil moisture

more strongly affect soil microbiomes at the surface layer than at deeper layers.

This was true for not only microbiome community composition and diversity

metrics, but also for functional profiles (transcriptomic andmetabolomic datasets).

Meanwhile, in rhizosphere communities the influence of irrigation was similar

across the different depths. However, for the ‘Alkar’ wheatgrass cultivar, the

rhizosphere microbial communities responded more strongly to changes in

irrigation level than did the communities for the ‘Jose’ cultivar rhizosphere. The

lessened response of deeper soil microbiomes to changes in irrigation may be due

to higher incidence of slow-growing, stress-resistant microbes. These results

demonstrate that the soil microbiome response to moisture content is depth-

dependent. As such, it will be optimal for soil microbiome studies to incorporate

deeper as well as surface soils, to get a more accurate picture of the soil

microbiome response to stress.

KEYWORDS

microbiome, irrigation, soil depth, rhizosphere, plant-microbe interactions, amplicon
sequencing, transcriptomics, soil metabolomics
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1 Introduction

The soil microbiome is linked to numerous ecological processes,

including nutrient cycling, gas exchange, carbon sequestration, and

bioremediation (Amundson et al., 2015; Jacoby et al., 2017).

Unfortunately, such ecosystem functions are increasingly under

threat from uncertain moisture availability due to climate change.

In particular, drought stress presents a significant challenge to the soil

microbiome, threatening microbial interactions (de Vries et al., 2018),

enzymatic activity and respiration (Curiel Yuste et al., 2007; Borowik

and Wyszkowska, 2016), substrate supply (Tecon and Or, 2017),

biomass levels (Rangel-Vasconcelos et al., 2015), and community

composition (Naylor and Coleman-Derr, 2018). In addition, the soil

microbiome is linked to plant health (Wardle, 2004; Lakshmanan

et al., 2014) through activities like phytohormone production and

nutrient solubilization (Song et al., 2020), so stresses such as drought

that impact the soil microbiome may compound the negative

implications for plant life.

While the effects of moisture availability on the microbiome have

been extensively studied (Naylor and Coleman-Derr, 2018), there

remains a significant knowledge gap as to how these effects vary

across different soil depths. The majority of soil microbiome studies to

date have focused on surface soils (Eilers et al., 2012), which tend to

sample only the top 5-10 cm (Bachar et al., 2010; Felsmann et al.,

2015; Bouskill et al., 2016). Such studies may neglect differentiation

between surface and deeper levels, with respect to factors such as

chemical concentrations (Salome et al., 2010; Bai et al., 2017), physical

structure (Rumpel et al., 2012), gas levels (Chirinda et al., 2014), and

moisture content (Yan et al., 2017). Variations in soil physiochemistry

with depth tend to be reflected by changes in the microbiome,

typically including decreases in deeper soils for soil microbial

diversity (Brewer et al., 2019), biomass (Spohn et al., 2016; Young

et al., 2019), and total activity (Ko et al., 2017; van Leeuwen et al.,

2017). Deeper soil microbiomes are taxonomically (Eilers et al., 2012;

Bai et al., 2017; Seuradge et al., 2017; Tripathi et al., 2019) and

functionally (Zhang et al., 2017; Young et al., 2019) distinct from

those at the surface – for instance, microbes respond to deep soil

conditions by activating stress and starvation response pathways,

decreasing enzymatic activity for non-essential processes, favoring

pathways for oligotrophic carbon metabolism, or else largely

localizing around the few carbon-rich hotspots such as plant roots

(Naylor et al., 2022). Despite lower overall activity, subsoil microbes

contribute substantially to processes like nutrient cycling (Schlatter

et al., 2018; Tang et al., 2018), soil formation (Buss et al., 2005), and

carbon turnover (Lomander et al., 1998; de Sosa et al., 2018).

However, it remains to be seen how changes in irrigation affect

microbes at different depths of the rhizosphere (the region of soil

immediately surrounding the root and that which is subject to the

plant’s influence (Hartmann et al., 2008; Bakker et al., 2013) – for

instance, whether or not microbiome changes in the surrounding bulk

soil are mirrored in the rhizosphere, or else circumvented by the

plant’s influence.

Changes in soil moisture due to differential precipitation or

irrigation can influence soil microbial composition and functioning,

including favoring oligotrophic taxa and microbes with thicker cell

walls, decreasing nutrient cycling processes, or increasing their
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osmolyte production (Naylor and Coleman-Derr, 2018). The few

studies that have considered the interaction between moisture and

depth have found little to no significant interactive effects on the soil

microbiome composition (Hartmann et al., 2017; Upton et al., 2020),

although it has been shown that specific microbial phyla vary in how

they respond to irrigation across different soil depths (Chodak et al.,

2015; Hartmann et al., 2017). As different microbial taxa carry out

distinct ecosystem functions, understanding the interaction between

soil moisture and depth will shed light on how fluctuating moisture

will affect soil functioning across different soil layers.

Here, we aimed to test how irrigation affects the composition and

potential functions of the soil microbiome at different soil depths.

First, we hypothesized that the effects of irrigation would be less

pronounced at lower soil depths. We believed this to be the case as

there would be less water available and microbes in deeper soils are

already adapted to stressful conditions (Jiao et al., 2018; Brewer et al.,

2019) and thus more resistant to water limitation. Alternatively,

deeper soils are better-insulated from fluctuations in water

availability than are surface soils. We anticipated that the microbial

communities present at lower soil depths, or under low-moisture

conditions, would have higher abundances of slow-growing and/or

oligotrophic groups. Second, we hypothesized that rhizosphere

microbiomes would not be as strongly impacted by irrigation and/

or soil depth as those residing in bulk soils. Plants recruit a specific,

tailored microbiome that is less diverse than the surrounding soil,

especially under stressful conditions such as drought (Hartman and

Tringe, 2019). Therefore, as the plant maintains tight control over the

rhizosphere community, its influence will likely overpower the

influence of soil moisture content. We further proposed that

genotypic differences in plants will also influence the rhizosphere

response, as rhizosphere microbiome responses to drought treatment

have been shown to be distinct between different plant species or even

cultivars of the same species (Naylor et al., 2017). Finally, we

hypothesized that both soil moisture and depth would be significant

determinants of the soil microbiome’s functional potential. It should

be noted that we chose to focus on bacteria, omitting the fungal

community, given that the fungal response to drought tends to be

small (Barnard et al., 2013; Fuchslueger et al., 2016). Likewise, the

fungal community composition does not tend to vary much with

depth (Jumpponen et al., 2010; Hao et al., 2020), possibly as hyphal

growth allows fungi to be physically present at multiple soil depths at

the same time.
To test these hypotheses, we investigated changes in soil and

rhizosphere microbiomes across different watering regimes and soil

depth in an irrigated field trial, including three timepoints that

together spanned the full field season. We obtained samples from a

field site that represents naturally arid, but artificially irrigated,

marginal land. This field site was previously planted with two

cultivars of the bioenergy feedstock ‘tall wheatgrass’ (Thinopyrum

ponticum) (Scheinost et al., 2008). Our experimental design and

multi-omics approach allowed us to investigate the effects of

irrigation, depth, and their interactions on both the soil

microbiome and its functional response (metatranscriptome and

metabolome). In addition, we were able to describe the differences

between rhizosphere and bulk soil responses, as well as the influence

of wheatgrass cultivars on the soil microbiome.
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2 Methods

2.1 Field trial setup

The field site used in this study was located at the Washington

State University Irrigated Agriculture Research and Extension Center

(WSU IAREC) located in Prosser, WA. All soils were collected from

the exact same field site. Soils from this site are in the Warden silt

loam series, have an alkaline pH ~8, and are arid with a low organic

matter content, as detailed previously (Zegeye et al., 2019). At this

field site, a stand of tall wheatgrass (Thinopyrum ponticum) was

established in May 2018. In this stand, there were 60 plots in a

randomized complete block design (Supplemental Figure 1), with

three replications and two subsample variety plots per irrigation

treatment. This field site was established to investigate the effects of

differential irrigation on tall wheatgrass growth- and yield-associated

phenotypes. Plants were cut down (here, referred to as ‘harvesting’) at

two points during the season (mid-July and late October 2020) to

collect plant biomass and measure phenotypes. Watering was done as

relative to established levels of tall wheatgrass crop consumptive water

use (i.e. the level of evapotranspiration, or ETc, inherent to tall

wheatgrass). Five irrigation lines supplied water to the following

treatments: T1 = 100% ETc, T2 = 75% ETc, T3 = 50% ETc, T4 =

25% ETc, and an unplanted treatment with 25% ETc on bare soil

(samples from this treatment were not used in our experiment). On 7/

20/2020, the strength of the drought treatments was increased to

heighten the phenotypic effects of differential irrigation: T1 remained

at 100% ETc, whereas T2 changed from 75% to 56.25% ETc, T2

changed from 50% to 37.5% ETc, and T4 changed from 25% to

18.75% ETc. Prior to the field season, all lines were irrigated at 100%

normal field application rates until 4/28/2020, after which point

differential irrigation treatments were put in place.

Two cultivars of perennial tall wheatgrass were used in the field

trial: ‘Alkar’ and ‘Jose’. Alkar is widespread in the northwest of the

North American Continent. It has been bred for soil reclamation on

salty, alkaline soils, and is well-adapted to irrigated or partially
Frontiers in Microbiomes 03
irrigated sites (Scheinost et al., 2008), such as our field site in

Eastern Washington state. The Jose cultivar has been adapted to

grow in the southwest USA and also grows well in alkaline or saline

soils (Scheinost et al., 2008). Both cultivars of tall wheatgrass are also

potential bioenergy feedstocks that are well-adapted to growth on

marginal land and capable of withstanding drought stress.
2.2 Sampling setup

Soil samples were collected on three sampling dates: 4/29/2020

(immediately prior to the start of differential irrigation treatments), 7/

7/2020 (at the conclusion of the first treatment and soon before the

initial aboveground plant harvest), and 10/15/2020 (at the conclusion

of the second treatment, and soon before the final aboveground plant

harvest). Bulk soil samples were collected from 27 plots, representing

4 irrigation treatments (from most to least irrigated: T1, T2, T3, T4), 2

wheatgrass cultivars (Alkar and Jose), and 3 biological replicates,

along with 3 unplanted, non-irrigated (T5) sites immediately adjacent

to the plots to represent soil controls (Supplemental Figure 1). The

experimental design is summed up in Figure 1.

At each plot, 4 replicate soil cores were collected using a 36” long,

¾” diameter coring device. Before and between sampling, the coring

device was washed and sterilized with 70% ethanol. The cores were

collected approximately 6 inches from the nearest plant. Using a ruler,

three depth sections were taken from each of the 4 cores, representing

the depths (relative to the surface) 0-5 cm, 5-15 cm, and 15-25 cm.

The 4 replicates of each depth section per plot were then pooled

together, resulting in a weight of approximately 70 – 100 g soil for

each depth sample per plot. Together this resulted in a total of 81 soil

samples per sampling date and 243 total samples. Each soil sample

was stored in a sterile aluminum foil bag and kept on ice for up to 6 h

before returning to the laboratory, at which point they were flash-

frozen in liquid N2 and stored at -80°C.

For the July and October sampling dates, rhizosphere samples

were taken from the same plots as for the bulk soil samples
FIGURE 1

Schematic of the field experiment. Two cultivars of tall wheatgrass (‘Alkar’ and ‘Jose’) were planted in a common field, and grown under four irrigation
regimes ranging from full moisture (T1, 100%) to very little moisture (T4, 25%). Samples were collected from three depth intervals: 0-5 cm, 5-15 cm, and 15-
25 cm, which was roughly as deep as the wheatgrass roots could penetrate. Sample types taken included both rhizosphere and bulk soil, which were then
used for amplicon sequencing as well as (bulk soil only) transcriptomics and metabolomics analyses. Non-irrigated soils (T5) were taken as a control.
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(exempting the unplanted control samples). Rhizosphere soils

(defined as those still closely associated with the roots after loosely-

adhering soils are removed) were collected in a manner consistent

with previous studies (Coleman-Derr et al., 2016; Naylor et al., 2017;

Simmons et al., 2018). Root systems were dug up, shaken gently to

remove loose soil and other debris, then were sectioned by the same

depth increments as for the soil and placed into Falcon tubes

containing epiphyte removal buffer (0.75% KH2PO4, 0.95%

K2HPO4, 1% Tween-20 in sterile ddH2O, filter-sterilized at 0.2 mm)

(Desgarennes et al., 2014). Tubes were stored on ice after harvest and

during ~1 h transport to the laboratory. The samples were

immediately thoroughly vortexed to allow for soil remaining on the

roots (the ‘rhizosphere’ soil) to become loose and float to the bottom

of the tube. The now-’clean’ roots were removed from the tubes and

disposed of, while the tubes were centrifuged 5 min. at 6000 xg to

pellet the rhizosphere soil. The supernatant was decanted and the soil

was transferred into cryovials before flash-freezing in liquid N2.

Soil moisture content was calculated using the gravimetric

method, in which ~5-6 g of soil from each sample was weighed,

dried in an oven at 60°C for 3 days, then reweighed. Moisture content

was quantified by subtracting 1 from the ratio of the original

measurement to the final measurement.
2.3 16S rRNA gene amplicon library
preparation and sequencing

Genomic DNA was extracted from soil and rhizosphere samples

using the Zymo Quick-DNA fecal/soil microbe miniprep kit (catalog

no. D6010) according to the manufacturer’s instructions (Zymo

Research; Irvine, CA) with the modification of eluting in 100 uL

elution buffer. Sample concentrations were quantified using the Qubit

dsDNA HS assay kit (Thermo Fisher). For rhizosphere samples only,

DNA was subsequently purified using Zymo’s ZR-96 DNA Clean and

Concentrator kit (catalog no. D4024) to account for the low DNA

concentrations of these samples.

Sequencing was performed as described previously (Naylor et al.,

2020a). Sequences were amplified on the MiSeq platform (Illumina,

San Diego, CA) using 16S primers (515F and 806R) specific to the V4

region. Raw sequence data was processed with default parameters

using the pipeline Hundo (Brown et al., 2018), an in-house protocol

that wraps multiple programs (BBDuk, VSEARCH, FastTree2) for

amplicon quality control and annotation against the Silva database.

The resulting data object consisted of 7,437,824 reads across 372

samples; after using the rarefy_even_depth function in the package

‘phyloseq’ (version 1.40.0) (McMurdie and Holmes, 2013) to obtain

an even depth of 3,750 reads per sample, this was reduced to

1,353,750 reads across 361 samples. Downstream statistical analyses

on 16S datasets were performed using the program R and the

packages ‘phyloseq’ (version 1.40.0) (McMurdie and Holmes, 2013)

and ‘vegan’ (version 2.6.4) (Oksanen et al., 2019). Other functions

used included the aov function from the ‘stats’ package (version 4.2.1)

(R Core Team, 2019) for ANOVA, the individual function from

package ‘agricolae’ (version 1.3.5) (de Mendiburu, 2019) for indicator

species analysis, the adonis2 function from ‘vegan’ (version 2.6.4)

(Oksanen et al., 2019) for principal coordinate analysis, and the

results function from ‘DESeq2’ (version 1.36.0) (Love et al., 2014)
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for DESeq2 enrichment tests. Statistical tests were conducted using

default parameters, apart from polyserial analyses (which used the

polyserial function from package ‘polycor’ (version 0.8.1) (Fox and

Dusa, 2022) which used a maximum-likelihood estimate rather than

the default two-step approximation, so as to increase the accuracy of

the result. Normality of the data was tested using function

‘shapiro.test’, again from the stats package, confirming that our data

did not follow a normal distribution (however, our ANOVA tests

were one-way, which is robust to deviations from normality and thus

can be used regardless of the data’s distribution). We confirmed initial

ANOVA results using Kruskal-Wallis tests (a non-parametric

method, where one-way ANOVA tests can be done on non-normal

data). More information on the code, functions and packages used,

can be found at www.github.com/dtnaylor/SoilDepth.
2.4 RNA library generation and sequencing

A subset of samples from the October timepoint (0-5 cm and 15-

25 cm depths, with T1, T4, and control irrigation (T5) regimes) were

chosen for RNA sequencing. Total RNA was extracted using the

Zymo Quick-RNA fecal/soil microbe miniprep (catalog no. R2040),

incorporating the DNase I treatment using Zymo’s DNase I kit

(catalog no. E1010). To increase the yield of RNA, we modified the

manufacturer’s instructions by first doubling the amount of soil per

extraction (from 0.25 g to 0.5 g) and by performing extractions in

triplicate before pooling separate extractions together. Certain soil

samples (largely those from deeper soil layers) had low yield (< 100 ng

per extraction) so additional rounds of extraction were performed to

obtain sufficient RNA. RNA concentration was assessed using a Qubit

RNA HS assay kit (Thermo Fisher) and RNA quality was determined

using an Agilent 2100 BioAnalyzer (Agilent; Santa Clara, CA). The

resultant RNA samples were then sequenced by GENEWIZ using

Illumina technology (GENEWIZ; South Plainfield, NJ). Sequences

were then aligned to a soil metagenome previously obtained from the

same site (Nelson et al., 2020) using the Burrows-Wheeler aligner

(BWA) (Li and Durbin, 2010). SAM files were then converted to raw

counts using HTSeq (Anders et al., 2015).

Downstream analyses of the transcriptomic dataset were

performed in R using the packages ‘DESeq2’ (Love et al., 2014) and

custom scripts also available on GitHub. The ‘keggGet’ function from

the ‘KEGGREST’ (Tenenbaum and Bioconductor Package

Maintainer, 2021) package was used (under default parameters) to

add annotations to the KO’s, including BRITE pathway information.

To determine functional enrichment for a given pathway, Fisher’s

exact test was used to see whether the pathway was disproportionately

represented in the transcripts for a particular factor level relative to its

representation in the whole dataset. iPath 3.0 was used to visualize KO

enrichment patterns on a microbial metabolic map (Darzi

et al., 2018).
2.5 Soil metabolomics

A subset of samples was chosen for metabolomics analysis (all

depths, for all timepoints, but only the irrigation extremes (T1 and T4

irrigation regimes) along with unirrigated controls (T5) soils). A 10 g
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portion of each soil sample was aliquoted into 50 mL conical

centrifuge tubes (Genesee Scientific, catalog no. 28-108; San Diego,

CA). Added to these tubes were 10 mL of 0.9–2.0mm stainless steel

beads, 0.1mm zirconia beads and 0.1mm garnet beads (Next Advance,

Troy, NY). All beads had previously been washed with chloroform

and methanol and dried in a fume hood. Extraction was performed

using the Soil MPLex extraction protocol as previously described

(Nicora et al., 2018).

GC-MS raw data file processing was done using Metabolite

Detector software, including chromatographic alignment of all

datasets (Hiller et al., 2009), and metabolites were identified by

matching experimental spectra and retention indices to an

augmented version of FiehnLib (Kind et al. , 2009). All

identifications were manually validated to reduce deconvolution

errors and to eliminate false identifications. The NIST 14 GC–MS

library was also used to cross-validate the spectral matching scores

obtained using the Agilent library and to provide identifications of

unmatched metabolites. These spectral scores were used for

downstream metabolomics analysis using MetaboAnalyst 5.0 (Pang

et al., 2021) with sample normalization by median and log

transformation of the data.
3 Results

3.1 Field soil moisture content by irrigation
treatment, depth, and date

The different irrigation treatments impacted the soil moisture

content, with a decrease as expected from most to least irrigated

(Supplemental Figure 2). The decreases between treatments were

confirmed to be significant (p < 0.05) through one-way analysis of

variance (ANOVA) and Kruskal-Wallis tests, both for the overall

dataset, as well as within each individual timepoint except for April

non-control soils (i.e. samples taken prior to differential irrigation

being put into place) (Supplemental Table 1). While gravimetric water

content tended to decrease from surface soil to deeper layers

(Supplemental Figure 2), ‘Depth’ only became a significant factor

(p < 0.05) for water content in October (Supplemental Table 1). These

results indicated that the irrigation treatment became significant as

soon as the differential regimes were started (July and October), but

depth only became significant as the treatment duration and water

limitation in relevant treatments increased further.
3.2 Diversity of the soil and rhizosphere
microbiomes

3.2.1 Alpha-diversity
After performing 16S amplicon sequencing on the soil and

rhizosphere samples, there were 360 samples that passed the quality

control checks. The resultant dataset encompassed a total of 18,546

operational taxonomic units (OTUs). One-way ANOVA tests

(including Kruskal-Wallis tests) were used to determine how our

experimental factors affected the alpha-diversity metrics ‘Shannon’s

diversity’ and ‘richness’. In bulk soils, the different irrigation

treatments within the treatment plots (T1 -> T4) had similar values
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for Shannon’s diversity and richness (Supplemental Table 2;

Figure 2), while control unplanted soils (T5) were significantly

lower, according to Tukey’s post-hoc tests (Supplemental Table 3).

This indicated that differential irrigation regimes within treatment

plots were not as influential on microbial diversity as simple presence/

absence of irrigation. Interestingly, soils at intermediate moisture

levels (T2 treatments) tended to have higher diversity values than T1

soils (Figure 2; Supplemental Table 3), which may implicate the full

moisture treatment as being so high as to adversely affect

microbiome diversity.

In contrast to soil, diversity levels in the rhizosphere showed

significant differentiation by irrigation treatment at the final

timepoint, according to Tukey’s post-hoc tests (Supplemental

Table 3). Here, Shannon’s diversity and richness were both

significantly (p < 0.05) lower in T4 rhizosphere samples than for

the T1-T3 irrigation treatments (Figure 2; Supplemental Table 3). We

had hypothesized that the rhizosphere would have a more attenuated

response to irrigation than bulk soil, but the results here indicated the

opposite: we observed that rhizosphere diversity was in fact affected

more strongly by irrigation differences than bulk soil was.

Depth had a significant impact on alpha-diversity metrics in bulk

soil (p < 0.05), but not in the rhizosphere (p = 0.909 and 0.943 for

Shannon’s diversity and richness respectively) (Supplemental

Table 2). Consistent with what has been seen in the literature

(Fierer et al., 2003b; Eilers et al., 2012; Tripathi et al., 2019),

Shannon’s diversity and richness both declined from surface to

deeper soil layers in bulk soil (Figure 2; Supplemental Table 2), and

the size of this effect increased over the course of the field season as

irrigation differences increased. However, as depth did not

significantly influence rhizosphere alpha-diversity metrics, this

suggests that the plant maintains a consistent community diversity

down the root length. In addition, the factor ‘Cultivar’ did not affect

either diversity metric (Supplemental Table 2) in the rhizosphere – an

unexpected finding, as plant genotype tends to have a strong effect on

microbial communities, especially under drought (Orwin and

Wardle, 2005). The cultivars may have been too closely related to

show a measurable difference in diversity [plant genetic distance is

positively correlated to rhizosphere dissimilarity (Naylor et al., 2017)].

As for the interplay between irrigation and depth, we found the

interaction factor ‘Irrigation : Depth’, as well as the tripartite

interaction ‘Date : Irrigation:Depth’, to both significantly affect

alpha-diversity values in bulk soil (p < 0.05 for Shannon’s diversity

and richness) (Supplemental Table 2). Investigating this interaction

further, we found that in bulk soils, ‘Irrigation’ had a significant (p <

0.05) influence on Shannon’s diversity and richness in the surface 0-5

cm layer, and this effect was consistent across the entire field season.

However, in deeper soil layers, ‘Irrigation’ was initially non-

significant, but its effect sizes and significances increased over

successive time points (Supplemental Figure 3).

Another aspect of the depth by irrigation effect was seen in how

alpha-diversity metrics decreased from shallow to deeper soils.

Specifically, the strength of this decrease was most pronounced in

the moderately-irrigated T2 treatment, weaker in the lightly-irrigated

T4 treated, and virtually nonexistent in the non-irrigated control T5

soils (Supplemental Figures 3C, D). These results indicated that the

influence of depth on bulk soil microbial diversity was weakened as

less soil moisture was applied. As for the rhizosphere, the decrease
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was not echoed in these samples, and the factor ‘Irrigation : Depth’

was not significant (Supplemental Table 2). This finding instead

reiterated that rhizosphere communities responded to changes in

irrigation in a uniform manner down the full length of the root

(Supplemental Figures 3A, B).

3.2.2 Beta-diversity
Dissimilarity between sample community profiles was estimated

using the beta-diversity metric, Bray-Curtis distance. Bray-Curtis

values, coupled with PERMANOVA (permutational analysis of

variance) tests, were used to ascertain how strongly our

experimental factors impacted community composition. On a

Principal Coordinate Analysis (PCoA) ordination plot, samples

primarily clustered by ‘SampleType’ (i.e., bulk soil or rhizosphere)

along the primary axis (11% of variation), and by ‘Depth’ along the

secondary axis (4.5%) (Figures 3A, D). According to PERMANOVA

tests, the factor ‘Depth’ was highly significant (p < 0.001) for bulk

soil samples, but not for rhizosphere (Supplemental Table 4;

Figures 3E, F), similar to the results seen for alpha-diversity. While

‘Irrigation’ significantly (p < 0.001) influenced both sample types

(Supplemental Table 4), samples did not tend to cluster strongly by

irrigation treatment, whether for bulk soil (Figure 3B) or rhizosphere

(Figure 3C). In the rhizosphere, the factor ‘Cultivar’ was just over the

threshold of significance (p = 0.068) – however, the interaction factor

‘Irrigation : Cultivar’ was highly significant (p < 0.001) (Supplemental

Table 4), implying that the rhizosphere microbiome’s response to

irrigation shifts were partly tied to the host plant’s genotype.

The interaction of ‘Irrigation : Depth’ was again significant (p <

0.001) in bulk soils (Supplemental Table 4), indicating that irrigation

impacted community composition differently depending on soil

depth. However, beta-diversity metrics did not follow the same
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temporal patterns as seen for alpha-diversity indices. While at 0-5

cm and 5-15 cm the effect sizes of ‘Irrigation’ in soil became stronger

and more significant over time, likely reflecting the heightened

differences in water applied as the field season went on, the reverse

trend was seen for the deepest 15-25 cm layer (Supplemental

Figure 3). As for the rhizosphere, ‘Irrigation : Depth’ was again not

significant (Supplemental Table 4), similar to the results seen for

alpha-diversity.
3.3 Relative abundance patterns of
microbiomes across irrigation treatments

Relative abundance plots were constructed to visualize

microbial class-level abundance trends by irrigation regime

(Figures 4A, C), or by depth (Figures 4B, D). Some microbial

classes consistently increased or decreased across depth and/or

irrigation levels, regardless of date or sample type. Meanwhile,

other classes displayed more variable trends: i.e., the strength or

directionality of their abundance trends changed based on

sampling date or treatment. Polyserial correlation (Olsson et al.,

1982) was used to calculate the statistical significance for the

covariance of class abundances with sequential levels of irrigation

(i.e. T1 -> T5) or depth (0-5 cm -> 15-25 cm) – i.e., are classes

significantly increasing or decreasing in abundance as drought gets

more severe, or as soils get deeper? Polyserial correlations were

performed for all microbial classes, subsetting the overall dataset

for each date by sample type combination (e.g. ‘July rhizosphere’),

to determine how trends varied over time, as well as the distinctions

between bulk soil and rhizosphere. All trends reported here are

significant with p < 0.05.
A B

DC

FIGURE 2

Trends for alpha-diversity metrics. (A–D) Boxplots for the alpha-diversity metrics Shannon’s diversity (A, C) or richness (B, D), faceted by sample type
(bulk soil or rhizosphere) and date (April, July, or October sampling dates). Trends are seen over irrigation regimes (A, B) or soil depths (C, D). All boxplots
were calculated using default parameters, where lower and upper hinges represent first and third quartiles, and all outliers fall outside these ranges.
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For irrigation, the most pronounced trend was for the

Actinobacteria class. Abundance of Actinobacteria was significantly

positively correlated with the shift from T1 -> T4/T5 irrigation

regimes (i.e increasingly dry soils) in all samples, apart from the

July rhizosphere (Supplemental Table 5). Other classes that displayed

consistent positive correlations with decreasing moisture included

Cytophagia and Thermomicrobia (Supplemental Table 5). However,

more often class abundances were negatively correlated with drought,

most notably Betaproteobacteria, Deltaproteobacteria, and

Planctomycetacia. Interestingly, some classes showed contrasting

trends depending on sample type. The Nitrosphaeria class was

correlated with irrigation in all samples, but while it increased in

abundance as bulk soils got drier, in rhizosphere it decreased in

abundance in drier samples (Supplemental Table 5). Likewise,

Gammaproteobacteria showed the opposite trend, being negatively

correlated with drought in bulk soil but positively in the rhizosphere

(Supplemental Table 5).

The abundances of multiple microbial classes were significantly

correlated with soil depth. However, in contrast to irrigation, depth

trends by class were more distinct between bulk soil and rhizosphere.

In bulk soil, 9 classes had a significant positive correlation with depth

(i.e. increased in deeper soils) while another 9 had a negative

correlation. However, in rhizosphere samples, only 2 classes were

significantly positively correlated with greater depth, while another 2

were negatively correlated with depth (Supplemental Table 5), again

implicating the rhizosphere as maintaining a more consistent

community composition over depth than seen for bulk soil. The

most consistent trends in bulk soil included significant decreases with

depth for Alphaproteobacteria, Cytophagia, and Holophagae, and

significant increases in Gemmatimonadetes and Thermeolophilia
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(Supplemental Table 5; Figure 4D). Interestingly, certain depth

trends shifted over time. Actinobacteria and Deltaproteobacteria

showed significant declines with depth in July and October, but not

in April, while Planctomycetacia showed a significant decline with

depth in April only (Supplemental Table 5).

To better investigate the irrigation by depth effect, soil and

rhizosphere datasets were separated into subsets for each depth,

then polyserial correlation analysis was performed to determine

how many classes were responded to irrigation for each of the three

soil layers. For bulk soils, the irrigation effect was strongest in the top

layer, where there were 11 classes that were significantly correlated

with changes in irrigation. Meanwhile, in the deeper two layers there

were only 5 and 4 classes, respectively (Supplemental Table 6).

Furthermore, the effect sizes and significances of class-irrigation

correlations were generally lower in deeper layers than the top layer

(Supplemental Table 6). We built upon these results by going down to

the OTU level, employing DESeq analyses to determine how many

OTUs were significantly (adjusted p-value < 0.05) differentially

enriched between irrigation extremes (T5 vs. T1 treatments) at each

of the three depths. Similar to the class-level results, far more

individual OTUs were differentially enriched by irrigation at the 0-5

cm depth compared to the 5-15 cm or 15-25 cm depths in bulk soils

(Figure 5). Taken together, these results reveal that irrigation poses

more of a discriminating effect on community composition at the

surface for bulk soil compared to deeper levels. As for the rhizosphere,

while our previous results indicated that ‘Depth’ was not a strong

discriminant on rhizosphere community composition overall

(Supplemental Table 4, Supplemental Figure 5), we did observe

some significant correlations between irrigation and abundances of

individual classes, and these patterns changed with depth. In contrast
A B

D E F

C

FIGURE 3

Ordination plots. Principal coordinate analysis (PCoA) for all samples (A, D), bulk soil samples (B, E), or rhizosphere samples (C, F). Plots (A-C) are colored
by the combination of sample type and irrigation (A-C) and the shape of each point corresponds to the depth (square for the top 0-5 cm layer, circle for
5-15 cm, and triangle for 15-25 cm). Plots (D-F) have their color and shape corresponding to depth only.
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to bulk soil, in rhizosphere there were actually far more significant

correlations for class abundances with irrigation at the deeper

5-15 cm or 15-25 cm layers compared to the 0-5 cm layer

(Supplemental Table 6).

Rhizosphere communities were significantly influenced by

wheatgrass cultivar and these effects were strongest at the July

timepoint (Supplemental Figure 6A). According to ANOVA tests,

at July the tall wheatgrass line ‘Alkar ’ had significantly

elevated abundances for a number of classes (Acidimicrobiia,

Betaproteobacteria, Blastocatellia, Chloroflexi subdivision 10,

Gemmatimonadetes, Acidobacteria subgroup 6, Thermeophilia)

compared to ‘Jose’. Jose was instead enriched for classes

Alphaproteobacteria and Planctomycetacia relative to Alkar

(Supplemental Table 7). However, at October no classes were

significantly different between cultivars. Interestingly, the interactive

effect of ‘Irrigation : Cultivar’ was stronger than that of ‘Cultivar’ alone
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(Supplemental Table 4), supporting our hypothesis that wheatgrass

cultivars have distinct microbiome responses to water availability. For

instance, under T1 treatments, Alkar was elevated for classes

Acidimicrobiia and Deltaproteobacteria relative to Jose, but under

T4, Alkar was instead elevated for a different set of classes including

Gemmatimonadetes and Phycisphaerae (Supplemental Figure 6B,

Supplemental Table 7). Similarly, DESeq analyses confirmed 92

differentially abundant taxa between irrigation extremes (T4/T1) in

the Alkar rhizosphere, but only 1 for Jose (Supplemental Figure 6D).

These results indicate that Alkar rhizospheres have a more

pronounced response to irrigation changes than do Jose

rhizospheres. Regardless of irrigation trends, however, the interactive

effect ‘Depth : Cultivar’ was non-significant (Supplemental Figure 6C,

Supplemental Table 4), which could be from cultivars having similar

enrichment patterns down the length of the root, or simply due to

‘Depth’ having a weak influence in the rhizosphere.
A

B

DC

FIGURE 4

Relative abundance plots and relative abundances of individual classes. Relative abundance plot for irrigation treatments (A) or by depth (B) at the class
level, segregated by date and sample type. Plots (C) and (D) show the individual relative abundances of each major class present in the dataset over
irrigation (C) or over depth (D). Colored lines indicate the combination of sample type (bulk soil or rhizosphere) and date (April, July, or October). Error
bars are standard error.
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3.4 Soil metabolomics patterns by depth
and irrigation

We incorporated soil metabolomics datasets into our analyses to

gain insights into how depth and irrigation impact the functional

capacity of the soil microbiome. We specifically focused on soils from

T1, T4, and T5 sites, which represented the irrigation extremes both

within plots (T1 <-> T4) and for all soils (T1 <-> T5). We first

determined which experimental factors were responsible for changes in

metabolite profiles by conducting PERMANOVA tests on Bray-Curtis

distance objects constructed for each of the April, July, and October

datasets. Similar to the 16S data, irrigation had a more significant

influence on soil metabolites at the July and October datasets (p = 0.004

and 0.005 respectively) compared to April (p = 0.039) (Supplemental

Table 8). Likewise, depth significantly impacted the soil metabolite

composition in July and October. However, while each factor was

individually influential, the ‘Irrigation : Depth’ interaction was never

significant (Supplemental Table 8), suggesting that the influence of

irrigation on metabolite composition did not change across these soil

depths. On PCoA plots, T1 and T4 samples grouped together, but both

clustered apart from T5 (Supplemental Figures 7A–C), indicating that

the difference between presence and absence of irrigation was the

primary driver of sample differentiation. We did not see a strong depth

effect on the metabolite profile, as samples within the same depth did

not cluster more closely together than samples from other depths

(Supplemental Figures 7A–C).

Next, we looked at the metabolite trends by irrigation and depth

in greater detail. The criteria chosen to determine which metabolites

were significantly different by T1 vs. T5 irrigation extremes were:
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(1) metabolites with a log-2-fold-change greater than 2 or less than -2

and (2) having an adjusted p-value (Benjamin-Hochberg correction)

less than 0.05. There were 20 metabolites out of 210 total

annotated metabolites that met these criteria for the April

timepoint, 12 for July, and 23 for October (Supplemental Table 9).

However, when examining for metabolites that were differentially

abundant across depth extremes (0-5 cm vs. 15-25 cm), no

metabolites met these criteria, regardless of timepoint. These results

underscore that irrigation treatment, and not depth, was the primary

influence on the soil metabolite composition. Annotated metabolites

that were significantly enriched in the highly irrigated T1

treatment relative to non-irrigated T5 included amino acids

(threonine, isoleucine, phenylalanine) and carbohydrates (tagatose,

unknown carbohydrates). The only annotated metabolite that

was enriched in the T5 bare soil treatment was the GABA

precursor, 4-hydroxybutanoic acid (Supplemental Table 9).
3.5 Soil metatranscriptomics patterns by
depth and irrigation

A subset of soil samples was taken to investigate the functional

gene expression profiles between depth and irrigation extremes.

Metatranscriptomes were obtained from 20 bulk soil samples, all

from the October timepoint; these samples included replicates

from the T1, T4, and control T5 irrigation treatments, and from

both 0-5cm and 15-25cm depths. Transcripts were annotated against

the EggNOG database to acquire KEGG functional information,

including gene names and pathways from BRITE hierarchies.
A

B C

FIGURE 5

Differentially enriched OTUs by irrigation regime in soils. DESeq analyses were performed on the soil dataset to determine the OTUs that were
significantly (adjusted p-value < 0.05) differentially expressed by irrigation regime (specifically the T5 vs. T1 division). Individual DESeq analyses were done
for the top 0-5 cm layer (A), the middle 5-15 cm layer (B), and the bottom 15-25 cm layer (C). The level of enrichment is given by log-2-fold change,
where a positive value indicates enrichment in T5 treatments and negative in T1 treatments. OTUs are colored by their class, and their x-axis position
corresponds to which genus they belong to. OTUs without a genus-level assignment were excluded from this figure.
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Using this dataset, we first aimed to determine whether our

experimental factors significantly influenced the metatranscriptome

dataset. To do so, we constructed Bray-Curtis dissimilarity objects for

DESeq-normalized transcript abundance. Through PERMANOVA,

we found that the factors ‘Irrigation’, ‘Depth’ (both p < 0.001), as well

as the interaction factor of ‘Irrigation : Depth’ (p = 0.021) were

significant and respectively explained 15.4%, 22.1%, and 11.9% of

variation (Supplemental Table 10). On a PCoA plot, samples

clustered together by both irrigation and depth, although more

strongly by depth (Figure 6A). We also observed functional

diversity to be higher in bulk soils from lower depths (15-25 cm)

compared to surface soils (0-5 cm), although the number of unique

KO’s was lower (Supplemental Figures 8A, C).

Results from DESeq analysis indicated there was a wide array of

KEGG Orthologs (KO’s) that had significantly different expression levels

between surface and deep soils (Supplemental Figure 9A; Figure 6B), as

well as between the irrigation extremes T1 vs. T5 (Supplemental

Figure 9B; Figure 6C). To investigate the types of functions that were

enriched, relative abundance plots were constructed to visually inspect

pathway abundance trends by depth or irrigation (Supplemental

Figure 10). Concurrently, a combination of ANOVA and Tukey’s post-

hoc tests were used to ascertain if read counts for a given pathway were

significantly influenced by experimental factors (Irrigation, Depth,

Cultivar) - and if so, what the directionality was of this effect

[Supplemental Table 11]. Of the 20 most abundant pathways, most of

these pathways had significantly (p < 0.05) lower read counts in

subsurface soils compared to surface soils, indicating bacteria had
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lower overall metabolic activity in deeper soils. Such pathways included

‘Biosynthesis of amino acids’, ‘Biosynthesis of secondary metabolites’,

‘Carbon fixation pathways in prokaryotes’, ‘Carbon metabolism’, ‘Citrate

cycle’, ‘Glycolysis/gluconeogenesis’, ‘Glyoxylate and dicarboxylate

metabolism’, ‘Metabolic pathways’, and ‘Oxidative phosphorylation’,

among others (Supplemental Figure 10A, Supplemental Table 11). By

contrast, not one of these 20 major pathways were significantly enriched

in the deeper soils. With respect to irrigation level, a select few pathways

were significantly (p < 0.05) elevated as soils got drier, including

‘Butanoate metabolism’, ‘Purine metabolism’, and ‘Quorum sensing’.

Pathways that were significantly depleted in drier soils included

‘Glycolysis/gluconeogenesis’, ‘Ribosome’, ‘RNA degradation’, ‘RNA

polymerase’, and ‘Two-component system’ (Supplemental Figures 10C,

D, Supplemental Table 11). As for the interactive effect of depth by

irrigation, pathways that were significantly (p < 0.05) depleted for

both deeper and drier soils included ‘C5-Branched dibasic acid

metabolism’, ‘Cellular senescence’, and ‘Plant-pathogen interaction’

(Supplemental Table 11).

To complement these results, Fisher’s exact test was applied to

determine which metabolic pathways were represented to a

significantly greater extent in a particular subset compared to the full

dataset. By depth, the most striking trends were enrichment in the 0-5

cm soils for 17 KEGG categories. These included ‘Metabolic pathways’,

‘Microbial metabolism in diverse environments’, and ‘Nitrogen

metabolism’, various pathways for metabolism of simple carbon

compounds (aromatic acids, butanoate, fructose and mannose, etc.),

as well as pathways for degradation of toxic chemicals (xylene, toluene,
A B

DC

FIGURE 6

RNA-seq dataset sample separation and enrichment trends. (A) Principal coordinate ordination (PCoA) plot generated using Bray-Curtis dissimilarity,
showing how samples segregate by their irrigation level (red = T1, orange = T4, yellow = T5) or depth (circle = surface soil, triangle = deep soil).
(B–D) Volcano plots showing the enriched transcripts either between the two depth extremes (B), the two irrigation extremes T5 vs. T1 (C), or the two
in-plot irrigation extremes T4 vs. T1 (D). Enriched transcripts were calculated using a DESeq analysis. Transcripts with a p-value less than 0.01 are colored
blue, except those that also have an absolute fold-change greater than 2, which are colored red.
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benzoate, nitrotoluene, chlorocyclohexane and chlorobenzene)

(Supplemental Table 12B). The 15-25 cm soils were enriched for 12

categories, including pathways such as ‘Glycosphingolipid

biosynthesis’, ‘Biofilm formation’, and ‘Flagellar assembly’. As for

irrigation trends, the non-irrigated control T5 samples were

surprisingly enriched for a variety of metabolism-related pathways

(‘Carbon metabolism’, ‘Microbial metabolism in diverse environments’,

‘Peptidoglycan biosynthesis ’ , ‘Nitrogen metabolism’ , etc.)

(Supplemental Table 12C). Meanwhile, the irrigated T1 samples were

enriched for a greater diversity of pathways, but fewer related to

bacterial functioning - those that were enriched included ‘Fatty acid

metabolism’, ‘Biofilm formation’, and ‘Flagellar assembly’

(Supplemental Table 12D).

Finally, we aimed to determine the extent to which the interaction

of ‘Depth : Irrigation’ affected metabolic pathway abundances, as we

had already ascertained that this interaction factor significantly

influenced functional profiles overall (Supplemental Table 10).

Here, we performed indicator analysis to ascertain which pathways

were significantly associated with a particular combination of depth

by irrigation (for example, “0-5cm_by_T1”). We found that there

were 10 pathways that were indicators of “0-5cm_by_T1”, including

functions such as “C5 Branched dibasic acid metabolism” and

“Cellular senescence”, and 17 for “15-25cm_by_T1”, such as “ABC

transporters”, “Pentose phosphate pathway”, “Sulfur metabolism”,

and “Degradation of aromatic compounds” (Supplemental Table 13).

For the intermediate T4 irrigation, there were only 6 indicators for the

15-25cm depth and none for the 0-5 cm depth, suggesting that there is

little unique functionally for this level of irrigation and instead the

greatest discrepancies in functioning are provoked by the irrigation

extremes of T1 vs. T5. The T5 treatments showed a strikingly

uneven distribution of enriched pathways between the two depths:

the “0-5cm_by_T5” had 64 pathways that were indicators, many

related to metabolism of carbon compounds, while the deeper “15-

25cm_by_T5” level had none (Supplemental Table 13).
4 Discussion

In this work, we examined how soil moisture influences the soil

microbiome and its functional potential at different soil depths. This

knowledge is key to understanding how changes in soil moisture -

which are predicted with climate change (Naylor et al., 2020b) - will

influence soil ecology. Although the effects of soil depth on the

resident microbiome have been previously investigated (Jiao et al.,

2018; Brewer et al., 2019; Tripathi et al., 2019), as have the effects of

irrigation (Bouskill et al., 2016; Preece and Peñuelas, 2016; Naylor

et al., 2017), the combination of these two factors have rarely been

studied in the context of soil microbiome composition (Potthoff et al.,

2006) or functioning (Fierer et al., 2003a). An advantage to our study

was that, because our field site was located in an arid environment, we

were able more precisely to control the amount of water added to the

soil by irrigation. In addition, because our field trial was planted with

two varieties of tall wheatgrass, a potential bioenergy feedstock, we

incorporated analyses of the influence of plant variety, combined with

differences in soil moisture, on the soil microbiome at different

depths. Finally, because seasonality is known to have a strong

influence on the soil microbiome (Cruz-Martıńez et al., 2009;
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Shigyo et al., 2019), we took into account this source of variability

by sampling at the peak growing season in July as well as after the

second harvest in October.
4.1 Diversity and abundance trends by depth
and irrigation

Our results supported our main hypothesis pertaining to the

depth by irrigation effect: that irrigation had more of an impact on the

microbiome at the surface compared to deeper soil layers – although,

these results were only consistently true for bulk soil and not

rhizosphere (Supplemental Figure 3). Indeed, irrigation significantly

affected the abundances of roughly twice as many bacterial classes,

and four times as many OTUs, in the surface soil compared to either

of the two deeper soil layers (Supplemental Table 6). The weaker

effects of irrigation in deeper soils may have been because subsoil

microbes are better insulated from environmental fluctuations in

water supply (Dungait et al., 2012; Yan et al., 2017). In addition, taxa

from lower soil depths inhabit a more nutrient-limiting

microenvironment (Jobbágy and Jackson, 2001), and may be better

adapted to deal with stress, meaning that their communities will likely

be more resistant to changes in the environment (Brewer et al., 2019).

However, over the course of the growing season we observed that the

effects of irrigation in deeper soil layers generally became stronger and

more significant. This may reflect how treatment severity was

heightened over time, to the point that later in the season,

irrigation treatment effects became strong enough to impact the

microbes inhabiting deeper soil layers. Similarly, over the field

season we observed changes in how depth impacted the

microbiome: for example, Actinobacteria and Deltaproteobacteria

decreased in abundance with depth across the season, but this effect

was much stronger in later timepoints compared to the initial April

timepoint. If treatment severity heightens over time, and deeper soils

are impacted more and more, this will in turn have repercussions for

which soil microbes are able to persist long-term at these levels.

Another explanation for our results could be that in deeper soils,

microbes are slower to respond to changes in irrigation due to their

life-strategies. As mentioned, deeper soils are more nutrient-limited

(Jobbágy and Jackson, 2001). Nutrient-limited soils are more

favorable for the slow-growing oligotrophs than faster-growing

copiotrophs [which in turn are favored at the soil surface where

labile carbon substrates are more abundant (Fierer et al., 2007)].

Consistent with previous studies (Seuradge et al., 2017; Sun et al.,

2018a; Tripathi et al., 2019), we found that many oligogrophic taxa,

including Gemmatimonadetes and Thermeolophilia were higher in

relative abundance in deeper soils. Meanwhile, copiotrophic taxa,

including Alphaproteobacteria, Cytophagia, and Holophagae,

decreased with depth (Supplemental Table 5; Figure 4D). As for

their life-strategies, Thermoleophilia are known to be associated with

phosphorus limitation (Cui et al., 2018), and Gemmatimonadetes

with low nitrogen (Cederlund et al., 2014). In particular, members of

the Gemmatimonadetes have been shown to grow slowly and to be

associated with nutrient and moisture limitation (DeBruyn et al.,

2013) - again, typical traits of oligotrophs. By contrast, some members

of the Alphaproteobacteria and Cytophagia have been associated with

copiotroph life strategies (Fierer et al., 2007), explaining their
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depletion with depth. Not much is known about Holophagae, but its

enrichment in deeper soils could be due to its members being largely

anaerobic (Fukunaga and Ichikawa, 2014), which is favored in the

more oxygen-poor deeper soils (Naylor et al., 2022). In the deeper

soils, many of the enriched taxa included genera known to degrade

complex polysaccharides through extracellular enzyme production;

these included Streptomyces (Celaya-Herrera et al., 2021),

Paenibacillus (Ashraf et al., 2017), and Cohnella (Fathallh Eida

et al., 2012). Other enriched taxa in deeper soils (Actinophytocola,

Actinomadura) (Supplemental Table 14) have previously been

associated with resource-scarce environments such as deserts

(Kurapova et al., 2012; Sun et al., 2018b). Taken together, we found

that deeper soils were enriched for taxa associated with oligotrophic

lifestyles, which could explain why deeper soil communities were

more resistant to differences in soil moisture. We do acknowledge that

fluctuations in moisture are likely to be less pronounced in deeper

layers compared to surface layers, so it may transpire that the effect of

irrigation was simply lessened in deeper soils rather than it being an

intrinsic property of the subsoil microbiome.

Similar to depth, droughted soils have previously been shown to

enrich for oligotrophs (Naylor and Coleman-Derr, 2018). However,

irrigation trends here did not necessarily follow the same copiotroph-

oligotroph distinction as we found with depth. We did see that the

copiotrophic classes Beta- and Deltaproteobacteria decreased in drier

soils, which is consistent with what would be expected. Meanwhile,

Actinobacteria was strongly enriched under drought, which is

consistent with previous findings (Bouskill et al., 2013; Chodak et al.,

2015; Hartmann et al., 2017), where their survival under drought has

been linked to their thicker cell membrane preventing against

desiccation, as well as their ability to degrade recalcitrant carbon

sources as labile substrates become scarcer (Naylor and Coleman-

Derr, 2018). However, this group contains members that can utilize

labile carbon, recalcitrant carbon, or both, and has been labeled as

either copiotrophic or oligotrophic (Morrissey et al., 2016; Ho et al.,

2017), so we cannot solely link Actinobacterial enrichment to their

metabolic proclivities. Similarly, Cytophagia increased with drought

while Chloroflexi decreased. Cytophaga is associated with a

copiotrophic life-strategy (Fierer et al., 2007), while Chloroflexi is a

known cellulose degrader (Pepe-Ranney et al., 2016), a trait of

oligotrophs, so in this case our findings are inconsistent with our

hypothesis. Indicator analysis likewise found contrasting results: there

were oligotrophic genera enriched under drought [e.g. Citricoccus

(Hayano-Kanashiro et al., 2011), Actinophytocola (Sun et al., 2014),

Cellulomonas (Hatayama et al., 2013), and Pedobacter (Senechkin,

2013)], but also copiotrophic genera [Massilia (Ofek et al., 2012),

Kocuria (Tashyrev and Prekrasna, 2014), and Asanoa (Xu et al.,

2011; Niemhom et al., 2016)] (Supplemental Table 15). Together,

these results suggest other reasons beyond carbon metabolism for a

microbial class’s prevalence under different moisture regimes. One

possibility is that greater stress levels lead to greater presence of relic

DNA (i.e. from dead microbes) in the soil, leading to artificially inflated

abundance estimates. However, as relic DNA degradation rates are

predicted to be similar between species, we would expect that

community profiles to not be substantially different between relic-

containing and relic-depleted DNA (Lennon et al., 2018). In particular,

the differences between those two types of DNA were minimal for

communities under pulse drying-rewetting disturbance (Kittredge
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et al., 2022), which is fairly analogous to the experimental conditions

of this study. Another possibility could be changes in physical and

chemical factors in the soil, induced by drying, affect the microbiome.

For instance, more water could mean that salt and oxygen

concentrations go down, that water-soluble nutrients and carbon

substrates become more available through diffusion, or that microbe-

microbe interactions increase in frequency (Naylor and Coleman-Derr,

2018). Given this nuance, the changes in the soil induced by moisture

fluctuations can therefore not be simplified to simple correlations

between taxa abundances and soil water content. Furthermore, in our

PERMANOVA analyses, the significant experimental factors generally

explained a relatively small proportion of variation, leaving a high

residual. This indicates that there are other unmeasured factors that

influence the microbiome. Future analyses on soil depth and the

microbiome could incorporate measurements of soil chemical and

physical factors, to get a more complete picture of the various direct

and indirect ways the microbiome is affected.

Interestingly, the class Nitrosphaeria were enriched under

drought in soils but depleted in the rhizosphere, while the class

Gammaproteobacteria had the opposite trend. This suggests that in

certain cases the plant can circumvent the changes in community

dynamics that occur in the underlying soil. Nitrosphaeria represents a

major ammonia-oxidizing archaeal group that can form biofilms

(Kerou et al., 2016). Biofilm formation could present an advantage

in droughted bulk soils, but Nitrosphaeria may be outcompeted in the

carbon-rich rhizosphere by fast-growing bacteria (Taffner et al.,

2019). Gammaproteobacteria, by contrast, was negatively correlated

with drought in soil but positively in roots (Supplemental Table 5).

This may reflect the increased proportion of carbon allocated for

rhizodeposition under drought (Preece and Peñuelas, 2016) favoring

the fast-growing microbes within this class, such as members of

genus Pseudomonas.
4.2 Abundance trends in rhizosphere by
irrigation and depth

The plants used in our field trial, tall wheatgrass, are deep-rooting

perennial grasses (Nie et al., 2008). We found that the composition of

the tall wheatgrass rhizosphere microbiome was surprisingly

consistent along the different sampling depths, suggesting that the

root is a strong selector of specific microbes irrespective of depth. The

‘rhizosphere effect’ is a well-known phenomenon (Bakker et al., 2013)

in which the plant enriches for a targeted subset of the surrounding

soil microbiome to inhabit root-associated compartments. The fact

that community composition in the rhizosphere was generally the

same down the length of the root (Supplemental Figure 5) implicates

the plant’s enrichment effect as being strong enough to overpower

most local variation in the starting soil inoculum. It is possible that,

while our depth intervals were sufficient to evince a change in the bulk

soil communities, they were still too shallow to see a comparable

change in that of the rhizosphere, and we may have needed to sample

deeper to see a real effect – however, the vast majority of root tissue

did not extend past our lower limit of 25 cm depth at the time of

sampling, precluding this as a viable alternative.

The irrigation-specific trends in the rhizosphere were similar to

those seen in bulk soil (drought-linked enrichment for Actinobacteria
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and Cytophagia, and drought-linked depletion in Deltaproteobacteria

and Nitrososphaeria) (Supplemental Table 4). With respect to

Actinobacteria, in addition to the aforementioned physical

properties that lead to be enriched in dry soils, their enrichment in

rhizosphere under drought could be linked to their plant growth

promoting abilities, including conferring drought stress tolerance to

plants. For example, isolates of the Actinobacterial genus

Streptomyces were shown to stimulate sorghum root growth under

drought stress (Xu et al., 2018), and others can stimulate plant root

growth through the enzyme ACC deaminase (Naylor and Coleman-

Derr, 2018). Possessing these functions could explain why

Actinobacterial enrichment was observed in the rhizosphere as well

as in bulk soil. Alternatively, Actinobacteria could be increasing in

relative abundance by their membrane physiology allowing them to

resist the toxic effects of the reactive oxygen species produced by the

plant under drought stress (Xu et al., 2018).

Interestingly, the rhizosphere microbiome displayed a stronger

response to irrigation (Supplemental Tables 2, 4) than the response

seen in bulk soil. This is possibly a consequence of plants actively

responding to decreases in moisture availability by recruiting a

beneficial microbiome tailored for those conditions, as both

wheatgrass cultivars used in this study have been bred to tolerate

low-moisture conditions to improve their suitability as a biofuel

feedstock on marginal lands. Alternatively, it is possible that less

tolerant wheatgrass cultivars’ rhizosphere microbiomes fail to

respond as strongly to irrigation changes, meaning they are less

equipped to recruit beneficial microbes and thereby withstand

drought stress. A better understanding of the substances that plant

uses to recruit a beneficial microbiome could be achieved through

metabolomics approaches. For example, mass spectrometry could be

performed on wheatgrass rhizosphere soils from both control and

drought conditions, the major differentially abundant metabolites

identified, then these metabolites could be applied to unplanted soil to

see changes in microbial abundance trends. In this way, patterns of

plant exudate release could be experimentally linked to microbial

recruitment. However, it was beyond the scope of this paper to

perform such an analysis, given our limited amount of rhizosphere

soil was only sufficient to perform amplicon analysis.

Despite rhizosphere communities being statistically similar across

different depths, we did observe non-significant trends towards slightly

stronger irrigation effects for deeper rhizosphere communities: there

were more differentially abundant microbial classes between irrigation

extremes for rhizosphere communities at 5-15 cm and 15-25 cm when

compared to the surface layer. These differences are likely not

attributable to differences in moisture availability between the

different soil layers, as relative water contents at T1 and T4 levels

were largely comparable regardless of depth (data not shown). In our

case, the finding of more differentially abundant rhizosphere taxa at

greater depths may be attributable to the fact that root age decreases

with depth, and nascent root tips are more actively involved in root

exudation (Canarini et al., 2019) – thus, modulation of root-associated

microbial communities (Preece and Peñuelas, 2016) should be more

pronounced at deeper levels where root tips are located. Similarly,

differences in rhizosphere community composition and/or diversity

between root depths have been seen in Salvia lyrata (Dickey et al.,

2020), in bunchgrass fields (Kuske et al., 2002), and in mixed

populations of Ferula species (Wang et al., 2018). Such spatial
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gradients are proposed to be attributable to an uneven release of

carbon and other nutrients down the length of the root (Hinsinger

et al., 2009). While overall we did not observe a strong depth by

irrigation effect in the rhizosphere, it would be of interest to investigate

additional plant species (perhaps with deeper roots) or perhaps to

heighten the differences between irrigation treatments, to see how

effects of this interaction in the rhizosphere might be increased.
4.3 Abundance trends between
wheatgrass genotypes

Another question we had the opportunity to address was whether

there were genotype-dependent differences in the rhizosphere

microbiome. As the Alkar cultivar is adapted to the local

environment (i.e. eastern Washington), we posited that it would be

better positioned, when faced with drought stress, to recruit a new

microbiome in a sympatric environment. Here, we found the

interaction between ‘Irrigation’ and ‘Cultivar’ to be highly significant

in rhizosphere samples, which was reflected in the cultivar-specific

irrigation effects on the rhizosphere microbiome. For instance, under

the driest field irrigation treatment, several microbial classes and OTUs

had significantly higher abundances in the Alkar rhizosphere than in

the Jose rhizosphere. Several of the Alkar-enriched microbial classes,

including Gemmatimonadetes and Phycisphaerae, have previously

been associated with arid soils (DeBruyn et al., 2011), and with

drought stress (Ullah et al., 2019). There are a couple of possible

explanations for this finding. Jose (which was bred in New Mexico)

may be more resilient to drought stress and less reliant on recruitment

of native microbes for mitigation of drought stress than Alkar.

Alternatively, Jose may be less effective at recruitment of indigenous

members of the soil microbiome in a comparatively foreign

environment (Lau and Lennon, 2012; Zolla et al., 2013). Yet another

possibility is that Jose may have already recruited a beneficial

microbiome earlier in development and thus does not need to further

alter its microbiome upon imposition of drought stress. We also

observed that the cultivar effects were strongest at July compared to

October, with far more significantly differentially enriched taxa in July.

This finding may be attributable to the temperature. The addition of

heat to drought stress can result in compounding variables with more

pronounced microbiome responses than drought alone (Wipf et al.,

2021). This may explain why we observed more cultivar differences in

July, compared to October when the temperature was cooler.
4.4 Soil transcriptomics and metabolomics
trends by depth and irrigation

We hypothesized that both deeper and drier soils would enrich

for more oligotrophic communities, and these changes would be

reflected in patterns in transcriptomic and metabolomic datasets.

Furthermore, we hypothesized that the interaction between depth and

irrigation would be significant for both of these omics datasets. Here,

we confirmed through PERMANOVA that ‘Depth’, ‘Irrigation’, and

their interaction all significantly influenced variation across the

transcriptomic dataset (Supplemental Table 10). Our findings are

consistent with previous studies finding a significant influence of
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depth (Yu et al., 2017) or soil moisture content (Brockett et al., 2012)

on functional composition – although to our knowledge, the

combination of these two factors has not yet been studied with

respect to expression profiles. The results here indicate that there is

a substantial interaction between the two factors that should be

considered in future transcriptomic studies. That being said, we did

not observe any significant interaction between depth and irrigation

with respect to soil metabolomic dataset, which may due to lower

resolution for this dataset compared to transcriptomics. Alternatively,

while both depth and irrigation were significant, the combination of

these treatment effects may have been too weak to elicit a measurable

interactive effect in the metabolite profile.

While we did not observe any significantly differentially abundant

soil metabolites between depth extremes, in the transcriptomic

dataset there were noticeable patterns by depth. Firstly, there were

fewer unique KOs in subsoils compared to surface soils

(Supplemental Figure 8C), and fewer enriched pathways

(Supplemental Figure 9B), consistent with previous findings

(Goberna et al., 2005; Chen et al., 2015). Soil metabolic diversity is

expected to decline in deeper soils for a number of reasons – for

instance, as carbon sources are more limited (Goberna et al., 2005).

Here, the metabolic pathways that were elevated in surface-level soil

metatranscriptomes included those for metabolism of simple carbon

compounds, like aromatic acids, or fructose and mannose, as well as

those for degradation of xenobiotics (xylene, toluene, nitrotoluene,

etc.). In the latter case, such chemicals are commonly found in

herbicides, and the capacity for their degradation is consistent with

soil microbes’ role in xenobiotic degradation (Jia et al., 2007; Schwarz

et al., 2018). Our field site (including the bare soils) was treated with

herbicides (2,4-D) prior to planting, thus observations of enriched

pathways for degradation of intermediates of herbicide chemicals was

not surprising. As for metabolism of carbon compounds, relative

depletion of these pathways in deeper soils is understandable, due to

the scarcity of labile carbon substrates in these layers relative to the

surface (Rumpel and Kögel-Knabner, 2011). These findings are

generally consistent with our expectation that surface soils would be

more resource-replete and support a copiotrophic life-strategy. That

being said, we did not observe a concomitant increase in expression of

pathways for utilization of complex polysaccharides (i.e., an

oligotrophic life-strategy) in deeper soil layers as might be expected

based on previous research (Zhang et al., 2017). Given that our field

site was originally established in the spring of 2018, the deeper soil

layers at the time of sampling in the summer and autumn of 2020 may

not have had time to accumulate substantial SOM to enrich for the

corresponding microbial breakdown processes. We did observe an

enrichment for expressed pathways involved in cell structures or

membrane synthesis with greater depth, including glycosphingolipid

biosynthesis, biofilm formation, and flagellar assembly. These

functions may be related to the harsher conditions at depth – for

instance, biofilms are conducive to microbes communicating with one

another and synergistic interactions (Yang et al., 2021), whereas

flagella could be used for microbes to actively seek out substrates in

nutrient-poor subsoils (Rumpel and Kögel-Knabner, 2011).

With respect to how irrigation differences affected functional profiles,

a greater number of expressed pathways were enriched in wetter soils

than drier soils, which is consistent with reports that moisture is

correlated with microbial activity (Hueso et al., 2012). As with deeper
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soils, a pathway enriched in wetter soils was flagellar assembly, which

makes sense as flagella aid microbes in moving through water. In the

drier soils, there was, however, an elevation of transcripts involved in

carbon and nitrogen metabolism. There are a number of activities that

these trends in increased metabolism could be related to, such as

increased synthesis of osmolytes to maintain cellular turgor in drier

soils (Welsh, 2000), or alternatively that wetter soils were more anoxic

and thus less conducive to microbial metabolism. With respect to the

metabolomics dataset, we observed certain amino acids and

carbohydrates to be significantly lower in drier soils, which could be

reflective of the higher levels of metabolism depleting them from the

surrounding environment. The one annotated metabolite enriched in

drier soils was the GABA precursor, 4-hydroxybutanoic acid. GABA

itself is implicated in microbial spore germination for species such as

Bacillus megaterium (Dhakal et al., 2012), so its enrichment in drier soils

may make sense if bacteria are forming spores under drought stress.

Apart from that, pathways for glycolysis/gluconeogenesis and fatty acid

metabolism were both depleted in drier soils, as was biofilm formation,

which is surprising given that biofilms are an essential means by which

microbes maintain hydration in desiccated environments (Yang et al.,

2021). It is possible that water levels were simply too low to allow for

biofilm synthesis, as the extracellular polysaccharides that make up

biofilms are ~97% water (Flemming et al., 2016).

Previous research has indicated there are overlapping effects for

how soil depth and drought affect microbial functioning – for

example, in both deeper and drier soils, overall microbial activity

goes down, degradation of complex organic matter becomes more

important, and microbes that persist are enriched for stress-related

functions such as dormancy or sporulation. There is not a universal

correlation, however – for instance, anaerobic processes are generally

more prevalent in deeper soils than they are in drier ones (Naylor and

Coleman-Derr, 2018; Naylor et al., 2022). Relatively few studies have

examined the influence of different moisture availability on the soil

microbiome at different depths, and those that have generally found

little to no interactive effect of depth by irrigation on community

composition or diversity (Engelhardt et al., 2018; Hao et al., 2020).

Furthermore, to our knowledge this study represents the first time this

interactive effect has been investigated with respect to microbial

functional profiles. Our results here yielded interesting patterns

with respect to this interaction: specifically, we found a somewhat

more equitable distribution of enriched pathways between the two

depths at the T1 irrigation regime as compared to non-irrigated T5.

The shallow soils under the T5 regime included enriched pathways for

carbon cycling, including metabolism of butanoate, propanoate,

nitrogen, methane, among other compounds. The deeper soils

under the T1 treatment were enriched for a number of similar

pathways. Compared to the 0-5 cm T1 soils, these two soil sample

sets were either deeper (15-25 cm T1) or drier (0-5 cm T5), and likely

represent somewhat harsher soil conditions. Therefore, one

possibility for the observed enrichment trends is that microbes need

to elevate expression of these metabolic pathways to maintain carbon

flow. We observed almost no enriched pathways for the deepest,

driest soil (15-25 cm T5), which could be because the conditions

would be harsh to the point where most active microbial expression is

repressed. Another possibility for these trends could be that the T1

soils at 0-5 cm instead had lower expression for most pathways – if

these soils were comparatively waterlogged, this would promote
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anaerobic conditions and repress many pathways for carbon

metabolism. In this scenario, the other two soils are closer to what

basal levels of microbial expression would look like – especially as

these soils receive fairly little irrigation historically, so endogenous

microbes would be adapted to a desiccated environment. Future soil

experiments could incorporate complementary analyses (for example,

quantitative PCR or measuring enzymatic activity levels) so as to

investigate these functional trends in greater resolution.
5 Conclusion

Our study contributes to the emerging field by demonstrating that

there is a significant interactive effect of depth by irrigation in soils, in

which the influence of differential irrigation is strongest at surface levels,

requires more time and/or a more severe treatment to substantially

impact deeper soils, and is only very weakly present in the rhizosphere.

We showed that the influence of depth outweighs that of irrigation in

bulk soil, whereas in the rhizosphere, the influence of irrigation is

stronger than that of depth. Transcriptomics results pointed to a

narrowing of metabolic complexity with increasing soil depth.

Additionally, we also observed a significant interactive effect between

depth and irrigation for these functional profiles, where differences

between wet and dry soils were far more pronounced at the surface

layer than the deepest layer. Further research targeted at elucidating the

types of microbes found at different layers and the metabolic pathways

they actively express, particularly with regards to biogeochemical

pathways such as carbon and nitrogen cycling, will be of great

significance upon not only soil microbiome studies, but also broader

avenues such as computational modeling for global biogeochemical

cycling and greenhouse gas fluxes (Jenkinson and Coleman, 2008).
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SUPPLEMENTARY FIGURE 1

Field layout. The field was set up as three replicate blocks: in total, there were 60

plots in a randomized block design with three replications and two subsample
variety plots per irrigation. To obtain one combination of irrigation regime x

cultivar per replicate block, the sites 31 - 60 were sampled from (excluding
‘Empty’ columns and substituting plot 18 for 33 to obtain a ‘T4’ + ‘Alkar’ sample

in replicate block 1). Control soil samples were taken on the south side of the
field site immediately outside of the plot (close to sites 45, 30, and 15 for control

soil samples 1, 2, and 3 respectively).

SUPPLEMENTARY FIGURE 2

Kernel destiny estimation for gravimetric moisture content of soil. Relative
water content was calculated by dividing the fresh weight of soil by the dry

weight. Plot (A) describes the differences in water content by irrigation
treatment at each timepoint, while plot (B) describes the differences by soil

depth at each of the three timepoints.

SUPPLEMENTARY FIGURE 3

ANOVA variance trends for alpha-diversity. The percentage of variance
explained by the factor ‘Irrigation’ for Shannon’s diversity (top row) or

richness (middle row), according to ANOVA tests. Bottom row is significance
of ‘Irrigation’ for Bray-Curtis distance according to PERMANOVA tests. The y-

axis shows the percentage of variance explained, and the shade darkness

corresponds to the significance (‘*’ represents a p-value of 0.05 - 0.01, ‘**’ is
p = 0.01 - 0.001, ‘***’ is p < 0.001).

SUPPLEMENTARY FIGURE 4

Trends for alpha-diversity metrics by irrigation, segregated by depth and sample
type. Shannon’s diversity (A) and richness (B) trends by irrigation regime for the

three depth layers in bulk soil (top row) and rhizosphere (bottom row).

Shannon’s diversity (C) and richness (D) trends by irrigation for the three
depths, in bulk soil (top row) and rhizosphere (bottom row).

SUPPLEMENTARY FIGURE 5

Relative abundance plots and relative abundances of individual classes. Relative
abundance plot at the class level faceted by ‘sample type by date’ and depth,

with irrigation treatments as the x-axis. Only the top 15 most abundant classes
are shown here.
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SUPPLEMENTARY FIGURE 6

Relative abundance and enrichment trends for rhizosphere samples. Relative
abundance trends between cultivars for rhizosphere sample, segregated by

date only (A), by date and irrigation (B), or by date and depth (C). Below (D) is a
DESeq plot showing the differentially abundant OTUs between irrigation

extremes (T4 vs. T1 treatments) in either Alkar rhizosphere (left) or Jose

rhizosphere (right). Both dates are included in this analysis. Points are colored
depending on which class they belong to (see legend in top right).

SUPPLEMENTARY FIGURE 7

PCA and Volcano plots for metabolomics samples, April-October.
MetaboAnalyst was used to analyze trends in the metabolomic dataset.

Ordination plots were constructed for the metabolomic datasets from each

of three dates (which were processed separately and thus could not be directly
compared). Samples were colored by irrigation, and shapes were used to

denote depth (A-C). Volcano plots were made from the same datasets (D-F),
to visualize the enriched metabolites at each timepoint. Metabolites enriched in

wet soils are colored red, those enriched in dry soils are colored blue.

SUPPLEMENTARY FIGURE 8

Diversity of the RNA-seq dataset. Boxplots of Shannon ’s diversity of

the transcriptomics dataset are shown segregated by depth (A) and
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irrigation (B) . Richness plots for the same factors are seen in (C)
and (D) .

SUPPLEMENTARY FIGURE 9

iPATH visualization of enriched pathways based on depth (A) and irrigation (B).
DESeq was used to generate lists of KEGG orthologs that were significantly
differentially enriched between the two depth (A) or irrigation extremes (B),
further subsetting based on which KO’s had a shrunken log-fold change of >1.0
and an adjusted P value of <0.05. Then, visualization of KO’s on a microbial

metabolism map was accomplished using iPath 3.0. For (A), red pathways
reflect the KO’s enriched in deeper soils, blue pathways for those in enriched

in shallower soils. For (B), red pathways indicate those enriched in dry T5 soil,

blue for those enriched in wet T1 soil.

SUPPLEMENTARY FIGURE 10

Relative abundance trends for BRITE Pathways. Relative abundances for

counts of transcripts, where the transcripts were colored based on
which of the 20 most abundant BRITE pathways they belonged to.

Abundances are segregated by individual sample and grouped by

either depth (A) or irrigation (C), or else samples are consolidated to
show the differences between the depth extremes (B) or the three

irrigation level extremes (D).
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Cruz-Martıńez, K., Suttle, K. B., Brodie, E. L., Power, M. E., Andersen, G. L., and
Banfield, J. F. (2009). Despite strong seasonal responses, soil microbial consortia are more
resilient to long-term changes in rainfall than overlying grassland. ISME J. 3, 738–744. doi:
10.1038/ismej.2009.16

Cui, Y., Fang, L., Guo, X., Wang, X., Wang, Y., Li, P., et al. (2018). Responses of soil
microbial communities to nutrient limitation in the desert-grassland ecological transition
zone. Sci. Total Environ. 642, 45–55. doi: 10.1016/j.scitotenv.2018.06.033

Curiel Yuste, J., Baldocchi, D. D., Gershenson, A., Goldstein, A., Misson, L., and Wong,
S. (2007). Microbial soil respiration and its dependency on carbon inputs, soil
temperature and moisture. Glob. Change Biol. 13, 2018–2035. doi: 10.1111/j.1365-
2486.2007.01415.x

Darzi, Y., Letunic, I., Bork, P., and Yamada, T. (2018). iPath3.0: interactive pathways
explorer v3. Nucleic Acids Res. 46, W510–W513. doi: 10.1093/nar/gky299

DeBruyn, J. M., Fawaz, M. N., Peacock, A. D., Dunlap, J. R., Nixon, L. T., Cooper, K. E.,
et al. (2013). Gemmatirosa kalamazoonesis gen. nov., sp. nov., a member of the rarely-
cultivated bacterial phylum gemmatimonadetes. J. Gen. Appl. Microbiol. 59, 305–312.
doi: 10.2323/jgam.59.305

DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M., and Radosevich, M. (2011).
Global biogeography and quantitative seasonal dynamics of gemmatimonadetes in soil.
Appl. Environ. Microbiol. 77, 6295–6300. doi: 10.1128/AEM.05005-11

de Mendiburu, F. (2019) Agricolae: Statistical procedures for agricultural research.
Available at: https://CRAN.R-project.org/package=agricolae.

Desgarennes, D., Garrido, E., Torres-Gomez, M. J., Peña-Cabriales, J. J., and Partida-
Martinez, L. P. (2014). Diazotrophic potential among bacterial communities associated
with wild and cultivated Agave species. FEMS Microbiol. Ecol. 90, 844–857. doi: 10.1111/
1574-6941.12438

de Sosa, L. L., Glanville, H. C., Marshall, M. R., Schnepf, A., Cooper, D. M., Hill, P. W.,
et al. (2018). Stoichiometric constraints on the microbial processing of carbon with soil
frontiersin.org

https://doi.org/10.1126/science.1261071
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.15171/ijb.1477
https://doi.org/10.1007/s00248-010-9727-1
https://doi.org/10.3389/fmicb.2017.00945
https://doi.org/10.3389/fpls.2013.00165
https://doi.org/10.1038/ismej.2013.104
https://doi.org/10.17221/158/2016-PSE
https://doi.org/10.1038/ismej.2012.113
https://doi.org/10.1038/ismej.2012.113
https://doi.org/10.3389/fmicb.2016.00525
https://doi.org/10.1128/mBio.01318-19
https://doi.org/10.1016/j.soilbio.2011.09.003
https://doi.org/10.1016/j.soilbio.2011.09.003
https://doi.org/10.7287/peerj.preprints.27272v1
https://doi.org/10.7287/peerj.preprints.27272v1
https://doi.org/10.1111/j.1472-4669.2006.00058.x
https://doi.org/10.1111/j.1472-4669.2006.00058.x
https://doi.org/10.3389/fpls.2019.00157
https://doi.org/10.1016/j.apsoil.2014.06.003
https://doi.org/10.1016/j.apsoil.2014.06.003
https://doi.org/10.1007/s12155-020-10174-z
https://doi.org/10.1016/j.apsoil.2015.01.018
https://doi.org/10.1016/j.catena.2014.03.014
https://doi.org/10.1007/s13213-014-1002-0
https://doi.org/10.1111/nph.13697
https://doi.org/10.1038/ismej.2009.16
https://doi.org/10.1016/j.scitotenv.2018.06.033
https://doi.org/10.1111/j.1365-2486.2007.01415.x
https://doi.org/10.1111/j.1365-2486.2007.01415.x
https://doi.org/10.1093/nar/gky299
https://doi.org/10.2323/jgam.59.305
https://doi.org/10.1128/AEM.05005-11
https://CRAN.R-project.org/package=agricolae
https://doi.org/10.1111/1574-6941.12438
https://doi.org/10.1111/1574-6941.12438
https://doi.org/10.3389/frmbi.2023.1078024
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Naylor et al. 10.3389/frmbi.2023.1078024
depth along a riparian hillslope. Biol. Fertil. Soils 54, 949–963. doi: 10.1007/s00374-018-
1317-2

de Vries, F. T., Griffiths, R. I., Bailey, M., Craig, H., Girlanda, M., Gweon, H. S., et al.
(2018). Soil bacterial networks are less stable under drought than fungal networks. Nat.
Commun. 9, 1-12. doi: 10.1038/s41467-018-05516-7

Dhakal, R., Bajpai, V. K., and Baek, K.-H. (2012). Production of GABA (g-
aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol. 43, 1230–1241.
doi: 10.1590/S1517-83822012000400001

Dickey, J. R., Fordyce, J. A., and Lebeis, S. L. (2020). Bacterial communities of the salvia
lyrata rhizosphere explained by spatial structure and sampling grain. Microb. Ecol. 80,
846–858. doi: 10.1007/s00248-020-01594-7

Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., and Whitmore, A. P. (2012). Soil
organic matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol.
18, 1781–1796. doi: 10.1111/j.1365-2486.2012.02665.x

Eilers, K. G., Debenport, S., Anderson, S., and Fierer, N. (2012). Digging deeper to find
unique microbial communities: The strong effect of depth on the structure of bacterial and
archaeal communities in soil. Soil Biol. Biochem. 50, 58–65. doi: 10.1016/
j.soilbio.2012.03.011

Engelhardt, I. C., Welty, A., Blazewicz, S. J., Bru, D., Rouard, N., Breuil, M.-C., et al.
(2018). Depth matters: effects of precipitation regime on soil microbial activity upon
rewetting of a plant-soil system. ISME J. 12, 1061–1071. doi: 10.1038/s41396-018-0079-z

Fathallh Eida, M., Nagaoka, T., Wasaki, J., and Kouno, K. (2012). Isolation and
characterization of cellulose-decomposing bacteria inhabiting sawdust and coffee residue
composts. Microbes Environ. 27, 226–233. doi: 10.1264/jsme2.ME11299

Felsmann, K., Baudis, M., Gimbel, K., Kayler, Z. E., Ellerbrock, R., Bruehlheide, H.,
et al. (2015). Soil bacterial community structure responses to precipitation reduction and
forest management in forest ecosystems across Germany. PloS One 10, e0122539.
doi: 10.1371/journal.pone.0122539

Fierer, N., Allen, A. S., Schimel, J. P., and Holden, P. A. (2003a). Controls on microbial
CO2 production: a comparison of surface and subsurface soil horizons. Glob. Change Biol.
9, 1322–1332. doi: 10.1046/j.1365-2486.2003.00663.x

Fierer, N., Bradford, M. A., and Jackson, R. B. (2007). Toward an ecological
classification of soil bacteria. Ecology 88, 1354–1364. doi: 10.1890/05-1839

Fierer, N., Schimel, J. P., and Holden, P. A. (2003b). Variations in microbial
community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167–
176. doi: 10.1016/S0038-0717(02)00251-1

Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., and Kjelleberg,
S. (2016). Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575.
doi: 10.1038/nrmicro.2016.94

Fox, J., and Dusa, A. (2022) Polycor: Polychoric and polyserial correlations. Available at:
https://CRAN.R-project.org/package=polycor.

Fuchslueger, L., Bahn, M., Hasibeder, R., Kienzl, S., Fritz, K., Schmitt, M., et al. (2016).
Drought history affects grassland plant and microbial carbon turnover during and after a
subsequent drought event. J. Ecol. 104, 1453–1465. doi: 10.1111/1365-2745.12593

Fukunaga, Y., and Ichikawa, N. (2014). “The class holophagaceae,” in The prokaryotes.
Eds. E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt and F. Thompson (Berlin,
Heidelberg: Springer Berlin Heidelberg), 683–687. doi: 10.1007/978-3-642-38954-2_161

Goberna, M., Insam, H., Klammer, S., Pascual, J. A., and Sánchez, J. (2005). Microbial
community structure at different depths in disturbed and undisturbed semiarid
Mediterranean forest soils. Microb. Ecol. 50, 315–326. doi: 10.1007/s00248-005-0177-0
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