
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Microbial Symbioses
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1581483
This article is part of the Research Topic Unveiling the Potential of Microbiome in Semi-Wild and Wildlife Animals: Exploring Opportunities for Disease Mitigation and Animal Health across Ecological Zones View all 4 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Parasite infection and deworming treatment affect the host gut microbiota. Exploring the response mechanism of the gut microbiota in Rhinopithecus brelichi (R. brelichi) to albendazole deworming treatment is of great value for protecting this critically endangered species. Methods and results: This study used metataxonomics and metabolomics to explore the responses of the gut microbiota and metabolites of R. brelichi to albendazole deworming treatment. The results showed that deworming significantly reduced the eggs per gram of feces (EPG). The 16S rRNA gene sequencing results showed that the richness and diversity of the gut microbiota in R. brelichi after deworming were significantly increased. Meanwhile, deworming treatment also changed the composition of the gut microbiota. At the genus level, the Christensenellaceae R7 group, UCG 002, UCG 005, uncultured rumen bacterium, and Rikenellaceae RC9 gut group were significantly enriched in the pre-deworming samples. Unclassified Muribaculaceae, Prevotella 9, and Bacteroides were significantly enriched in the post-deworming samples. Metabolomics analysis revealed that the relative abundance of 382 out of 1865 metabolites showed significant differences between the pre- and post-deworming samples. Among them, 103 metabolites were annotated based on the HMDB and mainly classified into Prenol lipids, Carboxylic acids and derivatives, and Organooxygen compounds, etc. The KEGG enrichment analysis result indicated that these metabolites were mainly involved in energy, amino acid, lipid, and purine metabolism. Correlation analysis showed that Bacteroides and unclassified Muribaculaceae, whose relative abundances were upregulated after deworming treatment, were positively correlated with Kaempferol, 5,7-Dihydroxy-3-methoxy-4'-prenyloxyflavone, Purpurin, and Rhein, which have anti-parasitic activities. The Christensenellaceae R7 group, with a downregulated relative abundance after deworming treatment, was not only negatively correlated with the above four metabolites, but also positively correlated with Retinyl beta-glucuronide, which is a storage form of vitamin A, and positively correlated with CDP-Choline, which increases the host's susceptibility to Entamoeba histolytica and Plasmodium falciparum.Conclusion: This study emphasizes that deworming treatment has an impact on the gut microbiota and metabolic functions of R. brelichi. By exploiting the correlations between differential microbiota and metabolites, potential probiotics or prebiotics can be explored, thereby enhancing the efficiency of deworming and reducing its side effects.
Keywords: R. brelichi, Gut Microbiota, 16S rRNA gene, non-targeted metabolomics, correlations
Received: 22 Feb 2025; Accepted: 04 Apr 2025.
Copyright: © 2025 Qin, Han, Xi, Zhao, Li, Cui and Hao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Jincheng Han, Shangqiu Normal University, Shangqiu, China
Li Xi, Shangqiu Normal University, Shangqiu, China
Longfei Zhao, Shangqiu Normal University, Shangqiu, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.