
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Terrestrial Microbiology
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1581432
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The impact of climate change on the global hydrological cycle is becoming increasingly significant, with changes in precipitation patterns emerging as a key factor influencing the carbon and nitrogen cycling processes in alpine wetland ecosystems. However, the response of the nosZ-type denitrifying microbial community and its metabolic characteristics in the source wetland to precipitation changes remains unclear. In this study, high-throughput sequencing of the nosZ gene and LC-MS-based metabolomics were used to investigate the response of the nosZ-type denitrifying microbial community and its metabolic characteristics to precipitation changes (four years) in the source wetland of Qinghai Lake. The results showed that Microvirga was the key bacterial group in the source wetland of Qinghai Lake, and Azospirillum was sensitive to changes in precipitation (P < 0.05). The 50% rainfall enhancement treatment significantly increased soil moisture, and the total carbon content showed an increasing trend with the increase in precipitation (P < 0.05). pH was the most important explanatory factor for community structure, while total nitrogen content was the key explanatory factor for community diversity. Deterministic processes dominated the assemblage of the nosZ-type denitrifying microbial community in the source wetland of Qinghai Lake. Soil metabolomics analysis showed that the differential metabolites in the Source Wetland mostly exhibited significant positive correlations. Precipitation changes significantly affected the relative abundance of N-Acetylaspartic acid. In summary, lower precipitation is more favorable for maintaining carbon storage in the source wetlands of Qinghai Lake. Precipitation variation disrupted the existing nitrogen balance within the ecosystem and altered the structure of the nosZ-type denitrifying microbial community and soil metabolic characteristics. These findings imply that climate change-driven shifts in precipitation patterns may impact carbon and nitrogen dynamics in alpine wetlands, alter ecosystem stability, and have profound effects on microbial communities and biogeochemical cycles.
Keywords: Qinghai-Tibetan Plateau, Climate Change, extreme precipitation, carbon and nitrogen cycling, LC/MS
Received: 22 Feb 2025; Accepted: 07 Apr 2025.
Copyright: © 2025 Zhang, Jiang, Zhou, Wang, Qi, Zhou, Ma and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Kelong Chen, Qinghai Normal University, Xining, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.