
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Microbe and Virus Interactions with Plants
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1581233
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Clubroot, caused by the obligate Chromist pathogen Plasmodiophora brassicae, is an important disease of brassica crops but little is known about its reproductive biology. We enzymatically removed cell walls from dormant spores to generate protoplasts, enabling the first single-cell sequencing of P. brassicae with DNA free from host and soil microbial contamination. Analysis of 4,000 protoplasts from a single root showed moderate genetic diversity, with 2-5 distinct genotypes. A more detailed analysis of the 500 cells indicated the presence of seven distinct genotypes, accounting for rare haplotypes. This level of genetic diversity in a single root supports other indications that there is a high genetic diversity in field populations of P. brassicae. These results support the hypothesis that balancing selection maintains multiple genotypes within the pathogen population. This level of diversity complicates the use of single-gene resistance sources for clubroot management and explains the short durability of clubroot resistance. The predominance of distinct genotypes in a single root is a strong indication that reproduction of P. brassicae is predominantly clonal. This is the first whole genome DNA sequencing of a single-cell of a plant pathogen.
Keywords: Protoplasts, Brassica crops, balancing selection, durable resistance, Plasmodiophora brassicae
Received: 21 Feb 2025; Accepted: 31 Mar 2025.
Copyright: © 2025 Sedaghatkish, Kunz, Gossen and McDonald. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Mary Ruth McDonald, Department of Plant Agriculture, University of Guelph, Guelph, N1G 2W1, Ontario, Canada
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.