

OPEN ACCESS

EDITED AND REVIEWED BY Jesús Navas-Castillo, IHSM La Mayora, CSIC, Spain

*CORRESPONDENCE
Hehe Wang

☑ hehew@clemson.edu

RECEIVED 20 February 2025 ACCEPTED 03 March 2025 PUBLISHED 17 March 2025

CITATION

Herbert A, Hancock CN, Cox B, Schnabel G, Moreno D, Carvalho R, Jones J, Paret M, Geng X and Wang H (2025) Corrigendum: Oxytetracycline and streptomycin resistance genes in *Xanthomonas arboricola* pv. *pruni*, the causal agent of bacterial spot in peach. *Front. Microbiol.* 16:1580418. doi: 10.3389/fmicb.2025.1580418

COPYRIGHT

© 2025 Herbert, Hancock, Cox, Schnabel, Moreno, Carvalho, Jones, Paret, Geng and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Corrigendum: Oxytetracycline and streptomycin resistance genes in *Xanthomonas arboricola* pv. *pruni*, the causal agent of bacterial spot in peach

Austin Herbert¹, C. Nathan Hancock², Brodie Cox³, Guido Schnabel³, Daniela Moreno¹, Renato Carvalho^{4,5}, Jeffrey Jones⁴, Matthew Paret^{4,5}, Xueqing Geng⁶ and Hehe Wang^{1*}

¹Edisto Research and Education Center, Clemson University, Blackville, SC, United States, ²Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States, ³Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States, ⁴Department of Plant Pathology, University of Florida, Gainesville, FL, United States, ⁵North Florida Research and Education Center, University of Florida, Quincy, FL, United States, ⁶School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China

KEYWORDS

antibiotic resistance, plant disease, bacterial pathogen, stone fruits, horizontal gene transfer, transposon, plasmid

A Corrigendum on

Oxytetracycline and streptomycin resistance genes in *Xanthomonas* arboricola pv. pruni, the causal agent of bacterial spot in peach

by Herbert, A., Hancock, C. N., Cox, B., Schnabel, G., Moreno, D., Carvalho, R., Jones, J., Paret, M., Geng, X., and Wang, H. (2022). *Front. Microbiol.* 13:821808. doi: 10.3389/fmicb.2022.821808

In the published article, there was an error in Table 1, page 4 as published.

In Table 1, the primer sequences for tetC-F and tetC-R are incorrect. They should instead be as so: tetC-F 5- CTTGAGAGCCTTCAACCCAG-3 and tetC-R should be 5- ATGGTCGTCATCTACCTGCC-3.

The corrected [Table 1] and its caption appear below.

In the published article, there was an error in the **Acknowledgement section**, **page 11**. The acknowledgement statement containing the NIH grant ID for the Secretariat High Performance computing cluster was incorrectly displayed as "P20GM139767". The correct NIH grant ID is "P20GM139769".

This sentence previously stated:

"We acknowledge Milan Panth for highly skillful technical assistance, Gary Vallad for providing us the GEV1001 strain and Clemson University for providing the Palmetto Cluster and the Secretariat High Performance computing cluster (supported by NIH grant P20GM139767) for our genome sequence analysis."

The corrected sentence appears below:

Herbert et al. 10.3389/fmicb.2025.1580418

"We acknowledge Milan Panth for highly skillful technical assistance, Gary Vallad for providing us the GEV1001 strain and Clemson University for providing the Palmetto Cluster and the Secretariat High Performance computing cluster (supported by NIH grant P20GM139769) for our genome sequence analysis."

The authors apologize for these errorrs and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Herbert et al. 10.3389/fmicb.2025.1580418

TABLE 1 Bacterial strains, plasmids, and primers used in This study.

Bacteria	Relevant characteristics	Source
Xanthomonas perforans GEV1001	Rif ^R , Cu ^R	This study
Stellar Competent Cells	HST08	Takara Bio
Xanthomonas arboricola pv. Pruni 2WF9	Rif ^R	This study
Δ2WF9-tetCR	pBBR1-MCS-2-tetCR	This study
ΔGEV1001-tetC	pBBR1-MCS-2-tetC	This study
Plasmids		
pGEM-T Easy	Amp ^R , lacZ cloning site	Promega
pBBR1-MCS-2	Kan ^R , lacZ cloning site	Addgene
pRK2013	Kan ^R	Addgene
Primers		
tetC-F	CTTGAGAGCCTTCAACCCAG	Fan et al., 2007
tetC-R	ATGGTCGTCATCTACCTGCC	Fan et al., 2007
tetR-F	TTCGACGCCAAGGGATGAC	This study
tetR-R	CGTTCAAGACCGCCGATGA	This study
gyrA-F	AGGGTAACTTCGGTTCGGTC	This study
gyrA-R	CGGTTCCTGTTCCTTCTCGT	This study
tetCP-F	TCGCGAATTCTCATGTTTGACAGCT	This study
tetCT-R	TTGGCTCCAATTCTTGGAGTGGTGA	This study
strAP-F	TCATCAGAAAACTGAAGGAACCTC	This study
strAT-R	GAGTCCCGTCTGGCAATGAAA	This study
strBP-F	TTTCCTGCTCATTGGCACGTTT	This study
strBT-R	GAGGGCGAAATCCTACGCTA	This study
tetR-xba1	ATCTCTAGAGGAGGGGTTGCCCTCGATGT	This study
tetR-kpn1	ATCGGTACCTTGGCTCCAATTCTTGGAGTGGTGA	This study
tetR-All-F	CGGTGCCTGACTGCGTTAG	This study
5276R	GAAAATCGTCTACGAAGGCGGTC	This study
3708F	TCGATTCAATGGAGGTTCCTTCA	This study
FP1	CGTCGACGGCCTGGGCGA	Strayer et al., 2016
RP1	CCGGTGCCTGCGA	Strayer et al., 2016
Хр-Р	/56-FAM/CGGGCAAGG/ZEN/AGCCATCGCCTGT/3IABkFQ/	Strayer et al., 2016
Xap-2F	TGGCTTCCTGACTGTTTGCA	Palacio-Bielsa et al., 2011
Xap-2R	TCGTGGGTTCGCTTGATGA	Palacio-Bielsa et al., 2011
Xap-2P	/56-FAM/TCAATATCT/ZEN/GTGCGTTGCTGTTCTCACGA/3IABkFQ/	Palacio-Bielsa et al., 2011
pXap-41-F	ATGAAAAAGCTCTCTATCGCCCT	This study
pXap-41-R	TTCCCCCTTCTTGTTGAAATCGA	This study
pMDR_4KB_F	CCTTCATTCCGACACGGACA	This study
pMDR_4KB_R	TCTCGTCGAGGCTGTGAATG	This study