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Editorial on the Research Topic

Reviews in microbial pathogenesis

Microbiology is a fast-growing research field. The rapid expansion of this field is
driven by ongoing discoveries of emerging pathogens, microbial adaptation, resistance
mechanisms and technological advancements. While these trends will likely continue to
drive new discoveries and novel solutions for infectious diseases, the overwhelming volume
of research publications makes it difficult for scientists to keep pace with the latest findings.
Additionally, access to cutting-edge research can be limited by paywalls, creating barriers
for both early-career researchers and those in resource-limited settings.

The present Research Topic, focusing on reviews in microbial pathogenesis, includes
16 publications (15 peer-reviewed articles and 1 erratum), including 72 authors, to
address these challenges. By providing open-access, comprehensive reviews and accessible
summaries of recent findings, this Research Topic offers a valuable platform for the
researchers to navigate key advancements in the field of microbiology, emphasizing
important directions for future research and offer insights into emerging trends
and methodologies.

The review by Mohammad et al. addressed the role of lipoproteins (Lpps) in
the pathogenesis of Staphylococcus aureus. S. aureus produces Lpps that contribute to
metabolism, are essential for the survival of bacteria and are important for tissue invasion.
Additionally, they are capable of affecting disease pathogenesis by modulating the immune
response (Mohammad et al., 2020; Nguyen and Götz, 2016) via binding to Toll-Like
Receptors 2 (TLR2), leading to activation of innate immune responses (Hashimoto et al.,
2006). Binding of these molecules to TLR2 causes rapid migration of innate immune cells,
including monocytes/macrophages and neutrophils (Mohammad et al., 2019, 2021). Also,
Lpps can stimulate interferon γ producing T cells (Saito and Quadery, 2018), although
there is limited effect on B cell activation (Mohammad et al., 2019). The in vitro and
in vivo effects of Lpps are believed to be mediated by interaction with TLR2-dependent
neutrophil recruitment (Mohammad et al., 2019). It was demonstrated that neutrophils
and macrophage recruitment is facilitated by the release of chemokines such as MIP-2, KC,
MCP-1 andMPO (Mohammad et al., 2021). The role of TLR2 in the pathogenesis of Lpps-
induced pathology is also supported by the TLR2-knockout mouse model (Schmaler et al.,
2009).

In another review, Schwermann and Winstel summarize the functional diversity
of Staphylococcus surface proteins, which play a crucial role in host interaction and
pathogenesis. Staphylococcus expresses several surface proteins, including clumping
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factor B (ClfB), fibronetin-binding protein B (FnBPB), and iron-
regulated surface determinant protein A (IsdA), which bind to
human loricrin receptor on epithelial cells. This binding facilitates
initial adhesion and invasion of host cells (Clarke et al., 2009;
da Costa et al., 2022; Mulcahy et al., 2012), particularly on skin
and nasal surfaces. Bacterial surface proteins also contribute to
immune evasion and persistence (Kim et al., 2010). For example,
Clumping factor A(ClfA), collagen adhesin and protein A (SpA)
are key factors in the pathogenesis of septic arthritis (Josefsson
et al., 2001; Palmqvist et al., 2002; Xu et al., 2004). ClfA is
also involved in biofilm formation, which protects S. aureus

from phagocytosis (Dastgheyb et al., 2015). The essential role
of S. aureus surface proteins in infections make them attractive
targets for the development of novel therapeutics. Immunization
with IsdA or IsdB has been shown to reduce the virulence of
S. aureus (Kim et al., 2010). Additionally, anti-SpA monoclonal
antibodies demonstrated therapeutic potential in mouse abscess
models (Cheng et al., 2011). Overall, this strongly indicates that
targeting specific surface proteins could be a viable strategy for
controlling S. aureus infections.

Acosta-Espana and Voigt shed light into the differences
between entomophthoromycosis and mucormycosis. Fungi,
causing entomophthoromycosis and mucormycosis, were
initially placed into the class Zygomycetes (Voigt et al., 1999),
including Entomophthorales and Mucorales. In 2007, the
phylum Zygomycetes was replaced by Mucoromycota and

Zoopagomycota (Spatafora et al., 2016). However, the old
terms are still used in many publications, creating confusion
about fungal species identification. The authors summarize
information on Basidiobolales, Entomophthorales, and Mucorales

to address this confusing issue and make it clear and easy
for clinical researchers to use the updated fungal taxonomy.
The authors state that current taxonomy identifies the classes
Mucoromycota (order Mucorales), Zoopagomycota (order
Entomophthorales [Conidiobolus spp.]) and Basidiobolales

(Basidiobolus spp.). Instead of the term “zygomycosis”, more
defined terms should be used, such as: 1. Infection with Mucorales

should be referred to as mucormycosis; 2. Infection with
Basidiobolus spp. as basidiobolomycosis; 3. Conidiobolus spp.
as conidiobolomycosis. These fungal infections have differences
in pathogenesis as mucormycosis is diagnosed primarily in
patients with impaired cellular immunity [Center for Disease
and Prevenstion (CDC), n.d.], while basidiobolomycosis and
conidiobolomycosis occur in immunocompetent patients
(Geramizadeh et al., 2015; Kundu and Chakraborty, 2023;
Spatafora et al., 2016). Clinical presentations of these infections
differ as well. Patients infected with Mucorales species have rapid
spread with angioinvasion and necrosis [Center for Disease
and Prevenstion (CDC), n.d.]. In contrast, the slow progression
of clinical symptoms is characteristic of Basidiobolus spp. and
Conidiobolus spp. (Raghavan et al., 2020). The diagnosis is based on
epidemiologic, clinical, imaging, histopathologic, microbiologic,
and molecular data, followed by the confirmatory report of a
fungal culture.

A review by Mlynek and Bozue addressed the impact of
phase variation and biofilm formation in Francisella tularensis. F.
tularensis causes tularemia, a zoonotic disease often transmitted

through contact with rabbits (Ellis et al., 2002). There are two
primary subspecies: F. tularensis subsp. tularensis (Type A) and
F. tularensis subsp. holarctica (Type B), both can be transmitted
to humans (Larson et al., 2020). Different species within the
Francisella genus exhibit varying capabilities to form biofilms.
Subspecies of F. tularensis tend to form less defined structures
compared to Francisella novicida (Mahajan et al., 2011; Margolis
et al., 2010). These differences are partly due to genetic variations.
For example, F. novicida retains a functional cyclic-di-GMP
system (c-di-GMP), which is absent in F. tularensis (Kingry and
Petersen, 2014). The wbt locus in F. tularensis, which contributes
to O antigen synthesis, contains genes that are not present
in F. novicida (Kingry and Petersen, 2014). GMP stimulates
biofilm formation by upregulating genes encoding extracellular
polysaccharides (Hickman et al., 2005). Additionally, the O
antigen contributes to biofilm formation in F. tularensis isolates
(Champion et al., 2019). Biofilms enhance bacterial persistence
by protecting against host defenses and antibiotic treatment.
Notably, biofilm formation has been shown to reduce susceptibility
of F. tularensis to ciprofloxacin (Siebert et al., 2020), further
complicating treatment efforts.

The role of Francisella peptidoglycan biosynthesis enzymes in
morphology, pathogenesis and treatment of infection is discussed
in the review by Bachert and Bozue. The bacterial cell wall is
constantly remodeling in response to environmental changes and
cell division. Peptidoglycan (PG) remodeling is a coordinated
process involving several enzymes. PG biosynthesis begins with
the formation of a lipid II precursor (Egan et al., 2020). The
precursor is subsequently polymerized with penicillin-binding
proteins (PBPs). Many organisms encode multiple PG enzymes
with redundant function (Lee et al., 2017; van Heijenoort, 2011).
Interestingly, this is not a characteristic of F. tularensis (Kijek
et al., 2019). There are currently five carboxypeptidases and two
lytic transglycosylases known in Francisella (Sauvage et al., 2008).
They all have distinct roles in cell morphology (Spidlova et al.,
2018; Zellner et al., 2021) and contribute to the immunomodulating
activity of this bacterium (Nakamura et al., 2021). This suggests
that PG enzymes could be used as a therapeutic target specifically
against this organism.

Approaches for identifying bacterial effector kinases are
summarized in the review by Louis et al. Many pathogens
encode proteins with sequence homology to eukaryotic kinase
domains (Anderson et al., 2015; Moss et al., 2019; Navarro
et al., 2007). Some of these bacterial kinases can phosphorylate
host cell proteins to manipulate signaling pathways, thereby
promoting bacterial replication and survival within the host (Park
et al., 2019; Tegtmeyer et al., 2017). However, understanding
the role of these kinases in the pathogenesis of bacterial
disease is limited, primarily due to insufficient knowledge
of their target host proteins. Improved identification of host
targets for bacterial kinases could pave the way for the
development of novel antimicrobial therapeutics that disrupt these
critical interactions.

Manipulation of host signaling pathways by Neisseria

gonorrhoeae is discussed by Walker et al. The mucosal epithelium
serves as the primary portal of entry for N. gonorrhoeae (Quillin
and Seifert, 2018). During colonization, bacterial pili facilitate
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cell-to-cell contact with the epithelium, while Opa proteins further
promote adherence. Gonococci pili bind to several host receptors,
including α1β1 and α2β1 integrins in the male urethral epithelium
(Edwards and Apicella, 2005). In contrast, gonococcal pili can
also bind to the complement receptors, CD46 and CR3, as well
as the I-domain containing integrin receptors (Edwards et al.,
2001). The interaction between microbial Opa protein and the
CEACAM family of receptors on neutrophils contributes to
the clinical manifestation of gonococcal infection (Sarantis and
Gray-Owen, 2012). The CEACAM-Opa interaction promotes the
colonization of cervical epithelial cells by suppressing exfoliation
(Yu et al., 2019). Furthermore, CEACAM-Opa inhibits Th1/Th2
lymphocyte responses while promoting a pro-inflammatory Th17
lymphocyte phenotype (Feinen et al., 2010; Liu et al., 2012).
Another key gonococcal protein, PorB, increases calcium influx,
which is required to reduce lysosome counts in infected cells
(Hopper et al., 2000). PorB also reprograms macrophages (Mosleh
et al., 1998) to create a more favorable environment for survival.
Additionally, PorB can bind to soluble C4b-binding protein
(C4BP) and factor H of complement (Ram et al., 1998, 2001),
aiding immune evasion. Understanding the mechanisms employed
by N. gonorrhoeae to evade immune clearance and promote
intracellular replication is essential for the development of vaccines
and therapeutics.

The importance of interaction between host and microbial
neuraminidases (NA) in the pathogenesis of viral and bacterial
co-infection of respiratory epithelium is discussed by Escuret
and Terrier. Pathogens infecting epithelial cells of the respiratory
tract such as influenza viruses use NA and hemagglutinin (HA)
to enter the cell. Bacteria can also express NA for adherence
and invasion of epithelial cells (Vimr and Lichtensteiger, 2002).
Intriguingly, during viral-bacterial co-infections, viral NA can
remove sialic acids that typically mask bacterial adhesion receptors,
thereby facilitating bacterial colonization (Peltola and McCullers,
2004). This synergistic effect enhances the severity of respiratory
infections (Wren et al., 2017). Given the pivotal role of NA
in viral and bacterial interactions, they present attractive targets
for developing preventive and therapeutic strategies aimed at
mitigating co-infection severity.

Jin et al. discussed the advancements in the understanding
of mechanisms of Bartonella pathogenesis. Endothelial cells are
the primary target for Bartonella species (Deng et al., 2012).
The bacterium uses α-enolase or phosphopyruvate hydratase to
activate plasmin and promote extracellular matrix degradation
(Díaz-Ramos et al., 2012). The Bartonella BadA protein can activate
hypoxia-inducible factor-1 and secrete pro-angiogenic cytokines
(Kempf et al., 2001, 2005). It can also provide resistance to
complement killing (Deng et al., 2012). BadA and Vomp proteins
also facilitate immune evasion by antigen variations (Linke et al.,
2006). To evade the immune repose, Bartonella produces LPS, an
antagonist of the TLR4 receptor (Malgorzata-Miller et al., 2016).
Still, many aspects of Bartonella’s pathogenesis remain unknown,
requiring the development of novel in vivo and in vitromethods.

Recent data on pathogens causing sepsis are summarized
in the review by Gatica et al. A diverse group of pathogens
that belong to the normal microflora (Escherichia coli, Klebsiella

pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa,

and Streptococcus pyogenes) can cause sepsis (Gouel-Cheron
et al., 2022). Sepsis risk increases with age, compromised
immunocompetence and comorbidities. Also, each microbe has a
unique set of virulence factors facilitating adhesion, penetration
and replication. Therefore, approaches for diagnosis and treatment
will differ for each type of sepsis. The traditional use of
antibiotics led to the development of drug-resistant strains,
making therapeutic options limited. Therefore, searching for new
approaches for diagnosing and treating sepsis remains a pressing
medical issue.

In the review by Ayesha et al. the role of Legionella pneumophila

outer membrane vesicles (OMVs) in interaction with the host
is discussed. L. pneumophila secretes OMVs containing proteins,
toxins, nucleic acids and antibiotic-resistance enzymes (Flesher
et al., 1979). OMV cargo delivered to eukaryotic cells can inhibit
innate protection against bacteria. For example, it was shown that
proteins delivered by OMVs can inhibit the fusion of legionella-
containing phagosomes and lysosomes (Fernandez-Moreira et al.,
2006). Also, OMVs can inhibit the production of pro-inflammatory
cytokines by macrophages (Jung et al., 2016). The ability of
OMVs to deliver the cargo could be used to develop vaccines and
deliver drugs.

The role of infection in Kawasaki vasculitis is discussed in the
review byWang et al. Environmental factors were suggested to play
a role in the disease pathogenesis (Chang et al., 2020). However,
the seasonal nature of outbreaks suggests an infectious etiology
of Kawasaki vasculitis (Valtuille et al., 2023). Multiple DNA and
RNA viruses and bacterial pathogens were suggested as causing
Kawasaki vasculitis (Guo et al., 2022; Huang et al., 2020; Kafetzis
et al., 2001; Xiao et al., 2020). Having many microbes linked to
Kawasaki vasculitis could indicate that the disease is multifactorial,
where multiple factors contribute to the disease pathogenesis.

The role of lipolytic enzymes in the pathogenesis of
Mycobacterium tuberculosis is discussed in the review by Lin et al.
There are four types of lipolytic enzymes in M. tuberculosis (Mtb)
based on specificity to a substrate (Dedieu et al., 2013; Delorme
et al., 2012) The first class contains lipases hydrolyzing water-
insoluble long-chain carboxylesters like long-chain triglycerides
(TAG). Esterases are in the second group, which hydrolyze
small water-soluble carboxylesters. The third group includes
phospholipases. The last four groups contain cutinases, which
digest carboxylesters. Lipases digest lipids in the extracellular
matrix, promoting Mtb tissue penetration (Nazarova et al., 2017).
Also, Mtb lipases digest lipids to release energy and survive inside
the cells (Kumari et al., 2020). Mtb lipases could be used as a
disease biomarker (Low et al., 2009) or could be a target for novel
therapeutics (West et al., 2011).

The interaction between microflora and cervical cancer
progression is discussed by Amaris et al. Cervical cancer is
ranked as the most common cancer in women (Arbyn et al.,
2020). Fusobacterium spp., Peptostreptococcus spp., Campylobacter

spp., and Haemophilus spp., as potential biomarkers for cervical
cancer progression (He et al., 2022; Wu et al., 2021; Zhou et al.,
2022). Additionally, Alloscardovia spp., Eubacterium spp., and

Mycoplasma spp. were identified in HPV-positive cervical cancer
(Gao et al., 2013), while Methylobacterium spp. were more often
detected in HPV-negative carcinomas.
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Animal models ofKlebsiella pneumonia infection of themucosa
are summarized by Assoni et al. Multiple factors should be
considered when selecting an animal model: site of infection,
type of immune response and susceptibility of an animal.
Mice and rats were the most used to study K. pneumonia

respiratory tract infection (Ferreira et al., 2019; van der Weide
et al., 2020). A rabbit model was used to study empyema
caused by K. pneumonia (Shohet et al., 1987). More recently,
cynomolgus macaques were used to study the pathogenesis and
immune response to K. pneumonia (Liu et al., 2022). This
model provides an inside look at the immune response to this
microbe. The Zebrafish model was used to study neutrophil
and macrophage reaction to K. pneumonia (Zhang et al., 2019).
K. pneumonia can colonize different niches, which makes it
challenging to select an appropriate animal model. Careful
considerations should be taken before selecting a model to study
K. pneumonia infection.

In conclusion, this Research Topic provides a collection of
reviews covering pathogenic mechanisms of some important
microbial pathogens of the section Infectious Agents and Disease.
This Research Topic will be of interest for researchers, healthcare
providers and infection control officials.
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