
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Microbe and Virus Interactions with Plants
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1568162
This article is part of the Research Topic Climate is Changing: Harnessing Plant-Microbe Interactions For Sustainable Agriculture in Arid Areas View all 3 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The potential of phosphate-solubilizing microbes (PSMs) to enhance plant phosphorus uptake and reduce fertilizer dependency remains underutilized. This is partially attributable to frequent biofertilizer-farming system misalignments that reduce efficacy, and an incomplete understanding of underlying mechanisms. This study explored the seed microbiomes of nine Australian lucerne cultivars to identify and characterize high-efficiency PSMs. From a library of 223 isolates, 94 (42%) exhibited phosphate solubilization activity on Pikovskaya agar, with 15 showing high efficiency (PSI > 1.5). Genomic analysis revealed that the 'high-efficiency' phosphate-solubilizing microbes belonged to four genera (Curtobacterium, Pseudomonas, Paenibacillus, Pantoea), including novel strains and species. However, key canonical genes, such as pqq operon and gcd, did not reliably predict phenotype, highlighting the limitations of in silico predictions. Mutagenesis of the highefficiency isolate Pantoea rara Lu_Sq_004 generated mutants with enhanced and null solubilization phenotypes, revealing the potential role of 'auxiliary' genes in downstream function of solubilization pathways. Inoculation studies with lucerne seedlings demonstrated a significant increase in shoot length (p < 0.05) following treatment with the enhanced-solubilization mutant, indicating a promising plant growth-promotion effect. These findings highlight the potential of more personalized 'systemappropriate' biofertilizers and underscore the importance of integrating genomic, phenotypic, and in planta analyses to validate function. Further research is required to investigate links between genomic markers and functional outcomes to optimize the development of sustainable agricultural inputs.
Keywords: phosphate solubilization, biofertilizer, lucerne, seed microbiome, Mutation, bacterial genome
Received: 28 Jan 2025; Accepted: 07 Apr 2025.
Copyright: © 2025 Hone, Li, Kaur, Wood and Sawbridge. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Holly Hone, Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Australia
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.