Skip to main content

ORIGINAL RESEARCH article

Front. Microbiol.

Sec. Aquatic Microbiology

Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1565157

Microbial hydrogen oxidation potential in seasonally hypoxic Baltic Sea sediments

Provisionally accepted
  • GEOMAR Helmholtz Center for Ocean Research Kiel, Helmholtz Association of German Research Centres (HZ), Kiel, Germany

The final, formatted version of the article will be published soon.

    The majority of the organic matter (OM) degradation on the seafloor occurs in coastal regions.Since oxygen (O2) becomes quickly depleted in the top sediments, most of the OM decomposition is driven by microbial sulfate reduction (SR) and fermentation, the latter generating molecular hydrogen (H2). If the H2 is not consumed by hydrogenotrophic microorganisms and accumulates in the sedimentary porewaters, OM degradation is hindered.Despite the importance of H2 scavenging microorganisms for OM mineralization, the knowledge on H2 oxidizers and their constraints in coastal marine sediments is still quite limited. Here we investigated the role of H2 oxidizers in top (2 to 5 cm, suboxic-sulfidic) and bottom (18 to 22 cm, sulfidic) coastal sediments from a location exposed to seasonal hypoxia in the SW Baltic Sea. We used sediments from April, May and August, representative of different seasons. We spiked respective sediment slurries with H2 and incubated them for up to four weeks under O2-free conditions. H2 consumption potential, methane production and shifts in bacterial and archaeal 16S rRNA gene amplicons (generated from RNA) were assessed over time. The seasonal variations in sedimentary community compositions and pore water geochemistry already gave distinct starting conditions for the H2 enrichments. Sediments exposed to near anoxic bottom water conditions favored a microbial starter community exhibiting the highest H2 oxidation potential. Most of the observed H2 oxidation potential appeared associated with hydrogenotrophic sulfate reducers. The putative involvement of massively enriched ANME in H2 cycling in May 18 to 22 cm sediment horizons is conspicuous. While the differences in the observed H2 oxidation potentials in the studied sediment slurries are likely related to the (season-depending) overall redox state of the sediments and interstitial waters, the influence of microbial interconnections could not be fully resolved and evaluated, demonstrating the need for further consumption-and community-based studies.

    Keywords: hydrogen oxidation, Hydrogen consumption, marine sediments, methane metabolism, methanogenesis, AOM, ANME, SRB

    Received: 22 Jan 2025; Accepted: 20 Mar 2025.

    Copyright: © 2025 Adam-Beyer, Deusner, Schmidt and Perner. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Mirjam Perner, GEOMAR Helmholtz Center for Ocean Research Kiel, Helmholtz Association of German Research Centres (HZ), Kiel, Germany

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    95% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more