
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Virology
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1563186
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Porcine reproductive and respiratory syndrome virus (PRRSV), an economically significant threat to the world pork production, is notoriously known for its heterogeneity, and therefore the current vaccines often fail to provide efficient crossprotection against diverse PRRSV strains. By making chimeric viruses using HP-PRRSV-2 lineage 8 (JXwn06) and lineage 1 NADC30-like strains (CHsx1401) as model organisms, the recently results have shown that the viral structural proteincoding region is critical for induction of homologous immunity. In this study, the chimeric viruses were further constructed by exchanging the region coding for the minor (GP2/3/4) or major (GP5/M) structural proteins of JXwn06 on the backbone of CHsx1401 to generate two mutants CHsx1401-GP234JX and CHsx1401-GP5MJX.The subsequent animal experiment showed that all three chimeras could confer good protective immunity against the lethal challenge by HP-PRRSV strain JXwn06, and the survived pigs had much lower lung lesions, faster viremia clearance, and lower viral tissue load. However, the exchange of SP region as a whole performed better than either GP2/3/4 or GP5/M region alone, as the pigs in the latter groups showed transient fever following challenge and higher viral load in certain tissues, highlighting a synergistic role. Interestingly, as compared to the group CHsx1401-GP234JX, the group CHsx1401-GP5MJX showed excellent viremia clearance, comparable to the SP group. In conclusion, our results in this report revealed the important role of ORFs2-4 and ORFs5-6 regions in induction of protective immunity and have important implications in understanding viral pathogenesis and further vaccine development.
Keywords: Porcine Reproductive and Respiratory Syndrome Virus, structural proteins, homologous protection, pathogenicity, vaccine development
Received: 19 Jan 2025; Accepted: 05 Mar 2025.
Copyright: © 2025 Li, Zhu, Cui, Wu, Qing, Zhou, Gao, Zhang, Zhou, Ge, Guo, Han and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Qiongqiong Zhou, China Agricultural University, Beijing, China
Jun Han, College of Veterinary Medicine, China Agricultural University, Beijing, 100083, Beijing Municipality, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.