
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Microbe and Virus Interactions with Plants
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1562341
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The cultivation of tartary buckwheat serves dual roles, offering health benefits and nutritional advantages. Nonetheless, its cultivation is challenged by issues such as soil degradation and climatic drought. Plant growth-promoting (PGP) microorganisms hold promise for addressing these challenges. In this study, we investigated the effects of Serendipita indica inoculation on the rootassociated microbial communities of tartary buckwheat. Additionally, we used S. indica to construct synthetic microbial consortia, and their role in promoting the growth and enhancing the drought resistance of tartary buckwheat was evaluated. This study found that the colonization of S. indica in tartary buckwheat promoted the enrichment of beneficial microorganisms such as Actinobacteriota, Sphingomonas, and Mortierella, while reducing the relative abundance of pathogenic genera including Cladosporium, Alternaria, and Acremonium. In addition, the inoculation of the microbial consortia significantly promoted the photosynthesis and biomass accumulation of tartary buckwheat, while also improving soil structure and fertility. Under drought conditions, introducing microbial groups markedly boosted root development, lowered the density of stomata and rate of transpiration in tartary buckwheat leaves, and decreased H2O2 and Malondialdehyde (MDA) levels, thus greatly enhancing tartary buckwheat's resistance to drought. In conclusion, our findings demonstrated that the microbial consortia constructed with S. indica can significantly promote the growth of tartary buckwheat and enhance its drought resistance. However, the specific molecular mechanisms underlying these effects require further investigation in future studies. These findings will provide important theoretical support for the development of novel microbial fertilizers.
Keywords: Fagopyrum tataricum, Microbial consortium, plant growth promotion, Serendipita indica, soil improvement
Received: 17 Jan 2025; Accepted: 07 Mar 2025.
Copyright: © 2025 Zhong, Wang, Tang, Zhou, Bu, Li and Tang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Qingfeng Li, Sichuan Agricultural University, Ya'an, China
Zizhong Tang, Sichuan Agricultural University, Ya'an, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.