
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Microbiotechnology
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1561042
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Butenyl-spinosyn is a high-quality biological insecticide produced by Saccharopolyspora pogona that effectively targets a broad range of insect pests.However, the large-scale production of this insecticide is hindered by its low yield.Herein, based on prior comparative genomic analysis, five mutations were individually overexpressed in aG6. Subsequently, the combinatorial overexpression of sp1322 (encoding NAD-glutamate dehydrogenase) and sp6746 (encoding dTDP-glucose 4,6-dehydratase) in aG6 resulted in strain O1322-6746. The production of butenyl-spinosyn in O1322-6746 was 77.1% higher than that in aG6. Comparative targeted metabolomic analysis uncovered that O1322-6746 exhibited increased metabolic flux toward butenyl-spinosyn precursors. Furthermore, single-factor experiments, Plackett-Burman analysis and response surface methodology were performed to optimize the fermentation medium for O1322-6746. Ultimately, butenyl-spinosyn production was enhanced to 298.5 mg/L in a 5-L bioreactor, marking the highest yield ever reported. This work demonstrated that combining metabolic engineering with medium optimization is an effective strategy to improve butenyl-spinosyn production.
Keywords: Saccharopolyspora pogona, butenyl-spinosyn, genomics-based metabolic engineering, Medium optimization, Targeted metabolomic analysis
Received: 15 Jan 2025; Accepted: 01 Apr 2025.
Copyright: © 2025 Zhao, Peng, Hang, Aldahmash, Q. Alghadi, Tang, Pei, Xun, Guo and Mohsin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Ali Mohsin, School of Biotechnology, East China University of Science and Technology, Shanghai, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.