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Background: Severe Fever with Thrombocytopenia Syndrome (SFTS) is a disease

caused by infection with the Severe Fever with Thrombocytopenia Syndrome

virus (SFTSV), a novel Bunyavirus. Accurate prognostic assessment is crucial

for developing individualized prevention and treatment strategies. However,

machine learning prognostic models for SFTS are rare and need further

improvement and clinical validation.

Objective: This study aims to develop and validate an interpretable prognostic

model based on machine learning (ML) methods to enhance the understanding

of SFTS progression.

Methods: This multicenter retrospective study analyzed patient data from two

provinces in China. The derivation cohort included 292 patients treated at

The Second Hospital of Nanjing from January 2022 to December 2023, with

a 7:3 split for model training and internal validation. The external validation

cohort consisted of 104 patients from The First A�liated Hospital of Wannan

Medical College during the same period. Twenty-four commonly available

clinical features were selected, and the Boruta algorithm identified 12 candidate

predictors, ranked by Z-scores, which were progressively incorporated into 10

machine learning models to develop prognostic models. Model performance

was assessed using the area under the receiver-operating-characteristic curve

(AUC), accuracy, recall, and F1 score. The clinical utility of the best-performing

model was evaluated through decision curve analysis (DCA) based on net

benefit. Robustness was tested with 10-fold cross-validation, and feature

importance was explained using SHapley Additive exPlanation (SHAP) both

globally and locally.

Results: Among the 10 machine learning models, the XGBoost model

demonstrated the best overall discriminatory ability. Considering both AUC

index and feature simplicity, a final interpretable XGBoost model with 7 key

features was constructed. The model showed high predictive accuracy for

patient outcomes in both internal (AUC = 0.911, 95% CI: 0.842–0.967) and

external validations (AUC = 0.891, 95% CI: 0.786–0.977). A clinical tool based on

this model has been developed and implemented using the Streamlit framework.

Conclusion: The interpretable XGBoost-based prognosticmodel for SFTS shows

high predictive accuracy and has been translated into a clinical tool. The model’s
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7 key features serve as valuable indicators for early prognosis of SFTS, warranting

close attention from healthcare professionals in clinical practice.

KEYWORDS

severe fever with thrombocytopenia syndrome, machine learning, Boruta algorithm,

prognostic model, clinical validation

Introduction

Severe Fever with Thrombocytopenia Syndrome (SFTS) is

an acute infectious disease caused by the Severe Fever with

Thrombocytopenia Syndrome virus (SFTSV), a member of the

Bunyaviridae family, and is primarily transmitted through tick bites

(Yu et al., 2011). SFTS has a high incidence in East Asia, with a

fatality rate of up to 30%, particularly in China, Japan, and South

Korea (Kim et al., 2013; Liu et al., 2014). The clinical characteristics

of the disease include high fever, thrombocytopenia, leukopenia,

and multi-organ dysfunction, with severe cases often resulting in

death (Gai et al., 2012; Liu et al., 2014). Currently, there is no

specific treatment available, making early identification of critically

ill patients crucial for improving outcomes (Wang et al., 2021).

Clinically, there is a lack of accurate and reliable prognostic models

to predict disease progression and patient outcomes (Jia et al., 2017;

Liu et al., 2023). As a heterogeneous disease, the assessment of

disease severity and prognosis in SFTS patients relies on various

clinical and laboratory indicators.

Routine blood tests (RBT) play a critical role in the diagnosis,

prognosis, and follow-up of many diseases (Huyut, 2023; Huyut

and Kocaturk, 2022; Tahir Huyut et al., 2022). Due to their

accessibility and cost-effectiveness, RBT data have been widely

used in artificial intelligence studies for disease diagnosis and

prognosis (Huyut and Huyut, 2021, 2023; Santos-Silva et al., 2024;

Üstündag et al., 2023). Recent clinical research has demonstrated

the utility of RBT in the early detection and prognosis of COVID-

19 and other diseases (Huyut and Ilkbahar, 2021; Huyut and

Velichko, 2023; Mertoglu et al., 2022). For instance, Huyut et al.

developed successful AI models using RBT data for the diagnosis

Abbreviations: SFTS, Severe Fever with Thrombocytopenia Syndrome;

SFTSV, Severe Fever with Thrombocytopenia Syndrome virus; RBT, Routine

blood tests; ML, Machine learning; AUC, Area under the receiver-operating-

characteristic curve; DCA, Decision curve analysis; SHAP, SHapley Additive

explanation; SOFA, Sequential Organ Failure Assessment; APACHE II, Acute

Physiology and Chronic Health Evaluation II; PNI, Prognostic Nutritional

Index; MV, Mechanical ventilation; HF, High flow oxygen therapy; CRRT,

Continuous renal replacement therapy; T, Temperature; HR, Heart rate; MAP,

Mean arterial pressure; WBC, White blood cell count; N, Neutrophil count;

L, Lymphocyte count; PLT, Platelet count; U, Urea; TBil, Total bilirubin; ALT,

Alanine aminotransferase; AST, Aspartate aminotransferase; ALB, Albumin;

LDH, Lactate dehydrogenase; ALP, Alkaline phosphatase; Cr, Creatinine; PNI,

Prognostic Nutritional Index; LR, Logistic Regression; SVM, Support Vector

Machine; KNN, K-Nearest Neighbors; NB, Naive Bayes; DT, Decision Tree; RF,

Random Forest; GBDT, Gradient Boosting Decision Tree; XGBoost, Extreme

Gradient Boosting.

and prognosis of COVID-19 (Huyut and Ustundag, 2022; Huyut

and Velichko, 2022; Huyut et al., 2022; Velichko et al., 2022).

Similarly, Yan et al. (2021) applied the Gradient Boosting Decision

Tree method to RBT data for the early diagnosis of multiple

myeloma (Yan et al., 2021). Other studies have also highlighted

the potential of RBT-based AI models in various clinical contexts.

For example, Soerensen et al. (2022) developed an AI model for

cancer risk prognosis in primary care using RBT data (Soerensen

et al., 2022), while Wu C. C. et al. (2019) achieved 95.7% accuracy

in predicting lung cancer using the Random Forest algorithm

based on 19 routine blood test parameters (Wu J. et al., 2019).

Additionally,Wu J. et al. (2019) utilized the RandomForest method

to predict high-risk liver diseases (Wu C. C. et al., 2019), and

Kawakami et al. (2019) applied AI models such as Naive Bayes,

Artificial Neural Networks, and Elastic Net for the preoperative

diagnosis and prognosis of epithelial ovarian cancer (Kawakami

et al., 2019). More recently, Haider et al. (2022) used artificial

neural networks to analyze RBT data for early differentiation

among leukemias (Haider et al., 2022). These studies underscore

the significant potential of RBT data in enhancing disease prognosis

and management through AI techniques.

Machine learning (ML) techniques, which excel at handling

complex and high-dimensional data, have garnered widespread

attention for their ability to improve predictive accuracy when used

to build prognostic models (Fan et al., 2023; Tian et al., 2023).

However, despite the superior performance of ML models, their

“black box” (Azodi et al., 2020) nature makes it difficult to interpret

the basis of their prognoses, thus limiting their clinical applicability.

To address the challenge of model interpretability, the SHapley

Additive exPlanation (SHAP) method offers an effective solution.

SHAP, based on Shapley values from game theory, quantifies

the contribution of each input feature to the model’s prognosis,

providing interpretability for complex ML models (Mosca et al.,

2022; Zhou et al., 2024). SHAP helps visualize how each feature

influences the prognosis, enabling clinicians to better understand

the decision-making process of ML models, and thus increasing

the credibility and usability of these models in clinical practice

(Feretzakis et al., 2024). For a disease like SFTS, which is influenced

by multiple factors, SHAP can reveal the role of various clinical

features in prognosis, facilitating the development of individualized

treatment plans.

Despite many previous studies identifying risk factors for death

from Thrombocytopenia Syndrome among adults, there is still

a need to clarify the characteristics affecting Thrombocytopenia

Syndrome. Our study, modeling “comorbidities and laboratory

tests” together, provides low-cost, rapid and reliable results on

Thrombocytopenia Syndrome. This study aims to develop a

machine learning-based prognostic model for SFTS and improve
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its interpretability using SHAP, ultimately resulting in a practical

clinical tool based on the model.

Methods

Study population

This study is a retrospective multicenter cohort study

conducted in China, aiming to derive and validate a prognostic

model for patients with SFTS. The derivation cohort consisted

of 292 patients treated at The Second Hospital of Nanjing

between January 2022 and December 2023, while the external

validation cohort included 104 patients from The First Affiliated

Hospital of Wannan Medical College during the same period.

Inclusion criteria were: SFTS patients were diagnosed based on

the presence of acute fever (with a temperature of 38◦C or

higher) and platelet count <100 × 109/L), with lab-confirmed

SFTS virus (SFTSV) infection by qRT-PCR (Huang et al.,

2019; Yu and Morita, 2019), hospitalized adults aged 18 years

or older, and those with complete demographic information,

laboratory test results, and final outcome data. Exclusion criteria:

pregnant patients and cancer patients were excluded from

the study.

Data collection and processing

We collected demographic characteristics, vital signs,

and laboratory data at admission from the electronic

medical record system. Missing values for categorical

variables were imputed using the mode, while missing

continuous variables were imputed using the median method

(Berkelmans et al., 2022). To minimize the impact of

different measurement scales on the model, all continuous

variables were standardized. The Sequential Organ Failure

Assessment (SOFA), Acute Physiology and Chronic Health

Evaluation II (APACHE II) scores, and Prognostic Nutritional

Index (PNI) were calculated based on the first examination

at admission.

To avoid the impact of missing data on model construction,

features with more than 20% missing values were excluded.

Twenty-four clinical features were selected as candidate features,

including: sex, mechanical ventilation (MV), high flow oxygen

therapy (HF), continuous renal replacement therapy (CRRT),

underlying disease, consciousness, age, temperature (T), heart

rate (HR), mean arterial pressure (MAP), white blood cell count

(WBC), neutrophil count (N), lymphocyte count (L), platelet count

(PLT), urea (U), total bilirubin (TBil), alanine aminotransferase

(ALT), aspartate aminotransferase (AST), albumin (ALB), lactate

dehydrogenase (LDH), alkaline phosphatase (ALP), creatinine

(Cr), D-dimer, and Prognostic Nutritional Index (PNI).

Model development and comparison

During the feature selection stage, the Boruta algorithm

was used to identify the most predictive features from the 24

clinical features, ranking their importance based on Z-scores.

The derivation cohort data was split into a 7:3 ratio for training

and internal validation sets to avoid overfitting. We progressively

incorporated the selected clinical features into 10 different machine

learning models to construct prognostic models, including Logistic

Regression (LR), Support Vector Machine (SVM), K-Nearest

Neighbors (KNN), Naive Bayes (NB), Decision Tree (DT), Random

Forest (RF), Gradient Boosting Decision Tree (GBDT), AdaBoost,

Voting Classifier, and Extreme Gradient Boosting (XGBoost).

To optimize model performance, we used GridSearchCV

for hyperparameter tuning. Each model underwent 5-fold and

10-fold cross-validation to identify the best combination of

hyperparameters. Model stability was further validated using

bootstrapping, through which we computed confidence intervals

for the performance metrics, thereby enhancing the reliability of

the model.

Additionally, to evaluate the prognostic performance of

APACHE II and SOFA scores, we constructed three groups of

models: (1) a multivariable model based on the 7 selected features,

(2) a univariable model based solely on the Acute Physiology and

Chronic Health Evaluation score (APACHEII score), and (3) a

univariable model based solely on the Sequential Organ Failure

Assessment Score (SOFA score). All models were trained and

validated using the XGBoost algorithm, and their performance was

compared using AUC, accuracy, precision, recall, and F1 score. To

further assess model performance based on disease severity, we

conducted a stratified analysis using the SOFA score. The patients

were divided into two groups: Low-risk group: Patients with a

SOFA score ≤ 6; High-risk group: Patients with a SOFA score ≥ 7.

External validation

To assess the external performance of the model, we conducted

external validation using data from 104 SFTS patients treated at

The First Affiliated Hospital of Wannan Medical College between

January 2022 and December 2023. The inclusion and exclusion

criteria for the external validation cohort were consistent with

those of the derivation cohort. As the primary goal of the external

validation was to evaluate the effectiveness of the prognostic model,

only the outcome variables and the clinical features included in the

final model were collected for these patients.

Feature selection and model interpretation

In the feature selection phase, we applied the Boruta algorithm

to identify the most predictive features from the initial set of

24 clinical features. The algorithm ranked the importance of

each feature based on Z-scores. To address the “black box” issue

associated with machine learning models, we employed the SHAP

method for model interpretation. SHAP provided both global

and local explanations, detailing the contribution of each selected

feature to the prognostic prognoses. This approach enabled a

clearer understanding of how the model arrived at its prognoses,

offering transparency for clinical application.
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Web tool deployment based on the
Streamlit framework

To facilitate the clinical application of the final prognostic

model, we deployed it in a web application built on the Streamlit

framework. Users can input the required feature values into

the model and receive real-time prognostic probabilities for

individual patients, alongwith relevant visualizations. This tool aids

clinicians in conducting personalized risk assessments and making

informed decisions.

Statistical analysis

All data analyses and model construction were conducted in

the Python 3.9.13 environment. Feature selection was performed

using the Boruta algorithm, while the Delong test was completed

in R 4.3.3. Continuous variables with skewed distributions were

presented as medians with interquartile ranges (IQRs) and

compared using the Mann-Whitney U test or the Kruskal-

Wallis H test. Categorical variables were expressed as frequencies

and percentages and compared using the chi-square test or

Fisher’s exact test. The area under the curve (AUC) was used

to evaluate the model’s predictive performance, and the optimal

threshold was determined by maximizing the Youden index

(sensitivity+ specificity−1). A two-tailed P < 0.05 was considered

statistically significant.

Results

Patient characteristics

This retrospective study included 292 patients fromThe Second

Hospital of Nanjing as the derivation cohort for constructing and

validating the prognostic model. Among these 292 patients, 220

survived and 72 died. The mean age of the patients was 65.51 years

(standard deviation 10.62, range 25–88 years), with 162 female

patients, accounting for 55% of the cohort. The demographic

and clinical characteristics of the deceased and surviving groups

in the derivation cohort are presented in Table 1. A comparison

of demographic and clinical features between the training set,

internal validation set, and external validation set can be found in

Supplementary Table S1. Details of the study design are displayed

in Figure 1.

Model development and performance
comparison

First, the Boruta algorithm was used to select 12 of the most

predictive features from the initial 24, with their importance

ranked based on Z-scores, as shown in Figure 2. Using clinical data

collected at patient admission, 10 machine learning models (ML

models) were constructed to predict patient prognosis. The primary

evaluation metric for this study was AUC, with accuracy, precision,

recall, and F1 score used as secondary metrics. The performance

of these 10 models is detailed in Supplementary Table S2. Among

all models, the top five performers were: KNN (AUC = 0.922, 12

features), SVM (AUC = 0.912, 11 features), RF (AUC = 0.911, 10

features), XGBoost (AUC= 0.911, 7 features), and Voting Classifier

(AUC = 0.901, 7 features). The ROC curves for the top five ML

models are shown in Figure 3. As the number of included features

increased, the AUC showed a general upward trend. For these five

models, the performance (AUC) of the Random Forest model with

varying numbers of features is shown in Figure 4A, and the other

four evaluation metrics are provided in Supplementary Figure S1.

To further optimize the model, the Delong non-parametric test

was used to compare models with different numbers of features.

For example, the AUC difference between the KNN model (AUC

= 0.922, 12 features) and KNN (AUC = 0.905, 7 features) was

not significant (p = 0.433). Similarly, the difference between the

RF model (1AUC = 0.007, p = 0.653, 7 and 10 features) and the

SVM model (1AUC = 0.051, p = 0.127, 7 and 11 features) was

also not statistically significant. Finally, we fixed the number of

features at seven, which were: Consciousness, AST, U, CRRT, LDH,

L, andMV. Considering the simplicity of the features, we ultimately

selected the XGBoost model (AUC = 0.911, seven features) as the

final predictive model.

External validation of the final model

The model performed equally well in the external validation

set. The final XGBoost model achieved an AUC of 0.891 (95%

CI: 0.786–0.977), an accuracy of 0.894 (95% CI: 0.837–0.952), a

precision of 0.907 (95% CI: 0.866–0.955), a recall of 0.894 (95%

CI: 0.837–0.952), and an F1 score of 0.884 (95% CI: 0.807–0.949),

indicating that the model performed well in both internal and

external validations. The DCA curve is shown in Figure 4B.

Comparison of SOFA and APACHE II scores

The prognostic performance of the SOFA and APACHE II

scores was further evaluated and compared with the final selected

Seven-feature model. The model incorporating the SOFA score

achieved an AUC of 0.872, accuracy of 0.870, precision of 0.815,

recall of 0.611, and F1 score of 0.698. In contrast, the model

incorporating the APACHE II score showed an AUC of 0.845,

accuracy of 0.819, precision of 0.807, recall of 0.347, and F1 score of

0.485. In the low-risk group (SOFA score ≤ 6), the model achieved

an AUC of 0.8376 (95% CI: 0.7571–0.9048). In the high-risk group

(SOFA score ≥ 7), the AUC was 0.6000 (95% CI: 0.3617–0.8257).

These results indicate that the model performed significantly better

in the low-risk group compared to the high-risk group.

Model interpretation

To make the model’s prognoses more understandable for

clinicians, this study used the SHAP algorithm to explain the

importance of each predictor in the XGBoost model’s prognoses.

At the global interpretation level, the variable importance plot,

ranked in descending order of contribution, demonstrated the
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TABLE 1 Comparison of demographic and clinical characteristics between the survived and died groups.

Characteristic Survived N = 220 Died N = 72 p-valuea

Sex, n (%) 0.28

Female 126 (57%) 36 (50%)

Male 94 (43%) 36 (50%)

Age, median [Q1, Q3] 67.00 [56.00, 71.00] 70.00 [65.50, 75.00] <0.001

APACHEII, median [Q1, Q3] 11.00 [8.00, 16.00] 18.00 [14.00, 23.00] <0.001

SOFA, median [Q1, Q3] 3.00 [2.00, 4.00] 7.00 [5.00, 10.00] <0.001

MV, n (%) <0.001

Not applied 209 (95%) 35 (49%)

Applied 11 (5.0%) 37 (51%)

HF, n (%) 0.079

Not applied 214 (97%) 66 (92%)

Applied 6 (2.7%) 6 (8.3%)

CRRT, n (%) <0.001

Not applied 207 (94%) 36 (50%)

Applied 13 (5.9%) 36 (50%)

Underlying disease, n (%) 0.22

No comorbidity 119 (54%) 33 (46%)

Comorbidity 101 (46%) 39 (54%)

Consciousness, n (%) <0.001

No change 186 (85%) 15 (21%)

Changed 34 (15%) 57 (79%)

T (◦C), median [Q1, Q3] 37.90 [36.80, 38.70] 38.50 [37.40, 38.85] 0.005

HR (bpm), median [Q1, Q3] 82.00 [69.50, 90.00] 89.00 [80.00, 104.50] <0.001

MAP (mmHg), median [Q1, Q3] 82.00 [75.00, 91.00] 84.00 [72.50, 91.50] 0.50

WBC (109/L), median [Q1, Q3] 3.30 [2.07, 5.86] 3.12 [1.87, 4.45] 0.24

N (109/L), median [Q1, Q3] 2.23 [1.07, 4.41] 2.19 [1.15, 3.39] 0.53

L (109/L), median [Q1, Q3] 0.64 [0.43, 1.08] 0.47 [0.31, 1.04] 0.004

PLT (109/L), median [Q1, Q3] 53.00 [36.00, 69.50] 36.50 [27.50, 52.00] <0.001

U (mmol/L), median [Q1, Q3] 4.95 [3.49, 7.33] 7.62 [5.51, 10.56] <0.001

TBil (µmol/L), median [Q1, Q3] 7.90 [5.80, 10.70] 9.10 [6.75, 11.75] 0.014

ALT (U/L), median [Q1, Q3] 48.20 [32.35, 80.75] 85.70 [51.05, 146.65] <0.001

AST (U/L), median [Q1, Q3] 105.20 [60.95, 186.50] 321.20 [194.20, 624.45] <0.001

ALB (g/L), median [Q1, Q3] 35.30 [32.00, 38.10] 32.80 [30.00, 37.40] 0.007

LDH (U/L), median [Q1, Q3] 493.00 [357.00, 866.50] 1,099.00 [712.00, 1,919.00] <0.001

ALP (U/L), median [Q1, Q3] 64.00 [48.85, 80.50] 69.00 [55.00, 100.00] 0.020

CR (µmol/L), median [Q1, Q3] 72.10 [59.05, 86.70] 88.50 [71.50, 119.50] <0.001

D_Dimer (µg/L FEU), median [Q1, Q3] 1.77 [0.83, 4.14] 4.00 [1.78, 13.59] <0.001

PNI, median [Q1, Q3] 39.33 [36.20, 42.53] 36.95 [33.10, 39.88] <0.001

aPearson’s Chi-squared test; Wilcoxon rank sum test; Fisher’s exact test.

MV, Mechanical Ventilation; HF, High Flow Oxygen Therapy; CRRT, Continuous Renal Replacement Therapy; T, Temperature; HR, Heart Rate; MAP, Mean Arterial Pressure; WBC, White

Blood Cell Count; N, Neutrophil Count; L, Lymphocyte Count; PLT, Platelet Count; U, Urea; TBil, Total Bilirubin; ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; ALB,

Albumin; LDH, Lactate Dehydrogenase; ALP, Alkaline Phosphatase; CR, Creatinine; D-Dimer, D-Dimer; PNI, Prognostic Nutritional Index.
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FIGURE 1

Flow chart of the study design.

importance of each variable in the model, as shown in Figures 5A,

B. In the model, death was defined as the positive class, and

survival as the negative class. The study found that changes

in the patient’s consciousness at admission were the most

predictive of mortality risk, followed by AST, U, CRRT, LDH,

L, and MV.

To further explore the positive and negative correlations of

each feature with the prognosis outcomes, SHAP dependency

plots were used to show how each feature influences the model’s

output, with comparisons of the actual values and SHAP values

for the seven features, as shown in Figure 6A. In the context

of mortality risk prognosis, features with SHAP values greater

than zero were associated with an increased probability of the

positive class, i.e., a higher risk of death. For instance, if a patient

exhibited altered consciousness, the corresponding SHAP value

would exceed zero, indicating that this feature contributed to

a higher predicted likelihood of mortality. Similarly, urea levels

above 4.966 mmol/L were associated with a shift in the model’s

prognosis toward the “death” category, reflecting an elevated risk

of death.
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FIGURE 2

Feature selection using the Boruta algorithm based on Z-scores.

Local explanations provided insights into individual patient

prognoses by visualizing the contribution of each feature. As

illustrated in Figure 6B, one patient was predicted to have a 12%

probability of mortality, placing them in the “death” category.

In contrast, Figure 6C demonstrates another patient with an 88%

probability of survival. The figures reveal that urea (U) hadminimal

influence on the prognosis for this patient. Instead, features

such as consciousness, AST, LDH, CRRT, and MV contributed

to pushing the prognosis toward the “survival” category, while

the feature L shifted the prognosis toward the “death” category.

These interpretations highlight how changes in specific features can

meaningfully alter an individual’s predicted probability of survival

or death.

Clinical application of the app

To support clinical use, this study developed a web application

based on the Streamlit framework, offering clinicians a tool

for real-time, individualized prognostic prognoses (Figure 7).

By entering seven key feature values, the app automatically

calculates the patient’s mortality risk and compares it against a

predefined decision threshold. If the predicted probability exceeds

the threshold, the patient is classified as being at high risk of

death. Additionally, a waterfall plot is provided, with blue bars

indicating features that push the outcome toward “survival,” and

red bars representing those that push it toward “death.” The

web application can be accessed at the following link: https://

jft6k52hfhpem8fqrfympd.streamlit.app/.

Discussion

Main findings

This study successfully developed an XGBoost-based machine

learning model, which demonstrated excellent predictive

performance in both internal and external validation cohorts

(Internal Validation: AUC = 0.911; External Validation: AUC =

0.891). These findings have significant clinical and theoretical

implications. First, the model simplifies complex information by

selecting a small number of high-value features, maintaining high

accuracy while reducing the difficulty and cost of data acquisition,

making it more feasible for clinical application. This is particularly

important because existing prognostic models often rely on a

large volume of laboratory and imaging data that are not easily

accessible, limiting their use in actual clinical practice (Chen

et al., 2023; Wang et al., 2024; Zheng et al., 2023; Zhou et al.,

2024).

In this study, SOFA and APACHE II scores, which are

traditional tools for assessing disease severity (Cheon et al.,

2023; Kumar et al., 2020), were widely used in clinical settings

and have been proven valuable for prognostic evaluation. In

the external validation, the model based on the SOFA score

performed well, with an AUC of 0.872, accuracy of 0.870, and
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FIGURE 3

ROC curves of top machine learning models for training, internal

validation, and external validation sets.

precision of 0.815. This indicates that the SOFA score effectively

captures disease severity and accurately predicts patient prognosis.

However, although the APACHE II score is widely recognized

in clinical practice, its performance in this study was relatively

inferior, with an AUC of only 0.845, a recall of 0.347, and an

F1 score of 0.485. This suggests that the APACHE II score is

inadequate for identifying high-risk patients (i.e., positive class

samples). In contrast, the final model, which incorporated multiple

features, significantly outperformed the single-score models in

external validation, achieving an AUC of 0.891 and an F1 score

of 0.884, demonstrating superior predictive power and ability to

identify positive samples. Therefore, while SOFA and APACHE

II scores have clinical value, our multi-feature model provides a

more accurate and reliable tool for prognostic assessment of SFTS

patients in a multicenter setting.

To further understand the contribution of individual features,

SHAP analysis was performed. This analysis revealed the

importance of each feature in the model’s prognostic predictions,

enhancing our understanding of the factors influencing patient

outcomes. Among all the features included in the model, changes

in consciousness and aspartate aminotransferase (AST) were

identified as the most predictive features. AST, traditionally

recognized as an indicator of liver dysfunction and systemic

inflammatory response, typically reflects multi-organ damage

when elevated, particularly in the context of viral infections.

However, in our study, elevated AST levels were associated with

improved survival, a finding that contrasts with conventional

clinical expectations. This paradoxical result may be attributed

to the unique characteristics of our study population or the

specific disease context. For instance, mild to moderate AST

elevation in our cohort might indicate an adaptive metabolic

response or a marker of effective treatment rather than severe

organ damage. Additionally, the interaction between AST and
other clinical features (e.g., early interventions such as antiviral

therapy) could have contributed to this observed association.While

previous studies have shown that AST levels are closely related to
multi-organ failure in SFTS patients, our findings suggest a more

nuanced relationship between AST elevation and patient outcomes,

highlighting the need for further investigation into the underlying
mechanisms (Du et al., 2024; He et al., 2021; Wang et al., 2023).

Altered consciousness may be an early signal of central nervous

system involvement, indicating that the disease has progressed to

a critical stage, aligning with reports in other studies that highlight
neurological symptoms as indicators of poor prognosis (He et al.,

2021; Xu et al., 2021).

Notably, the Boruta-selected features (e.g., consciousness, AST,
CRRT) align with key predictors identified by clinical experts, such

as neurological status and organ dysfunction markers. However,

the algorithm also highlighted less intuitive features (e.g., urea),

which may reflect novel interactions in SFTS pathophysiology.

This synergy between data-driven selection and clinical expertise

strengthens the model’s biological plausibility.

Similarly, the importance of lactate dehydrogenase (LDH)

and high-flow oxygen therapy (HF) was validated in the model.

LDH is a marker of cell damage and tissue necrosis, and its
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FIGURE 4

AUC vs. number of features for di�erent models in the internal validation set (A) and decision curve analysis (DCA) for the final XGBoost model in the

external validation set (B).

elevation reflects the extent of viral damage to multiple organs (He

et al., 2021; Jia et al., 2017). The application of high-flow oxygen

therapy, as a common respiratory support measure, indicates the

severity of respiratory system impairment, and this variable showed

a significant impact on prognostic prognosis in the model (Jia

et al., 2017). Furthermore, the use of continuous renal replacement

therapy (CRRT), often seen in patients with renal failure, not only

reflected the severity of the disease but also indirectly indicated the

level of medical intervention the patient received. This suggests that

future model development may benefit from incorporating more

features related to therapeutic interventions, which could further

enhance the model’s predictive ability (Li et al., 2024a).
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FIGURE 5

SHAP analysis showing the impact of each feature on model output (A) and the mean SHAP values for feature importance (B).

Limitations

Despite the multi-level analysis demonstrating the potential of

the XGBoost model for SFTS prognosis, several limitations need to

be addressed.

First, data source limitations: The data in this study were

collected from two centers in eastern China. The epidemiological

characteristics and viral strains of SFTS may vary by region,

and the model’s performance in other areas (such as Japan and

South Korea) or different healthcare settings remains unclear.

Previous studies have shown that machine learning models

may perform differently across regions and ethnic backgrounds,

suggesting that future research should include more geographically

and ethnically diverse data for validation (Cui et al., 2024; Li

et al., 2024b). Additionally, while the model incorporates post-

discharge follow-up data to predict long-term outcomes, its current

validation focuses on in-hospital mortality and short-term survival.

Future studies should explicitly evaluate performance in long-term

recovery scenarios.

Second, the “black box” issue of machine learning models:

Although SHAP provided some level of explanation for the

feature contributions in the XGBoost model, this interpretation

still relies on feature importance rankings and does not fully

reveal the complex interactions between features. For example,

the explanations for CRRT and LDH are primarily focused on

their individual effects, without exploring how these features

interact with other factors in a multi-feature context (Hong

et al., 2022; Manikandan et al., 2024). Therefore, future research

could incorporate causal inference models or complex network

analysis to further elucidate the interactions and mechanisms

between features.

Third, the inherent bias of retrospective studies: As a

retrospective cohort study, the electronic medical record data

used may contain incomplete or inconsistent records, potentially

introducing bias. Recent evidence-based studies suggest that

constructing multi-factor confounding models can reduce bias

in retrospective analyses, but this approach was not fully

adopted in our study (Li et al., 2024b; Manikandan et al.,
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FIGURE 6

SHAP dependency plots and local explanation for individual prognoses. (A) SHAP dependency plots for the seven selected features, illustrating the

relationship between feature values and their impact on model output. (B) SHAP local explanation for a patient with a predicted 12% probability of

death, showing the contribution of each feature to the prognosis. (C) SHAP local explanation for a patient with a predicted 88% probability of survival,

showing the contribution of each feature to the prognosis.
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FIGURE 7

Bunyavirus prognosis: predictive model interface with SHAP-based explanation.

2024). Additionally, differences in treatment management between

hospitals may affect patient outcomes, and this heterogeneity

was not fully quantified in the current model (Manikandan

et al., 2024). Future research should incorporate more treatment-

related information.

Finally, while the model demonstrated real-time applicability

with rapid computation (0.5 s per prognosis) and minimal feature

requirements, its deployment in clinical settings must adhere to

data privacy regulations (e.g., China’s PIPL and GDPR). All patient

data were anonymized and encrypted during this study, and future
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implementations will require strict access controls and ongoing

compliance audits.

Conclusion

This study developed an XGBoost-based prognostic model

for SFTS, providing both global and local explanations through

SHAP, demonstrating efficient and transparent predictive

capabilities. The development and validation of the model not only

confirmed XGBoost’s efficiency and accuracy in handling complex

medical data but also highlighted the potential of incorporating

interpretability into machine learning models. Although the model

performed well on data from two hospitals, further validation

of its external generalizability is necessary, especially in different

regions and larger sample sizes. Future studies should consider

incorporating multi-center, large-scale prospective cohort studies

and optimizing the model with more treatment-related features.

Additionally, combining complex network analysis and causal

inference methods could further reveal the interactions between

key features and the pathological mechanisms of the disease,

providing a more scientific basis for personalized medicine and

targeted interventions.
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