![Man ultramarathon runner in the mountains he trains at sunset](https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png)
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Infectious Agents and Disease
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1555220
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Clostridioides difficile (C. difficile) is a leading cause of hospital-associated diarrhea, primarily due to gut dysbiosis following antibiotic use. Probiotics have been found to provide several benefits to hosts via modulation of the gut microbiota and their metabolites. However, till now, no conventional probiotics have been clearly proven to be an effective prophylactic option for CDI prevention. Therefore, more studies on developing specific probiotic candidates targeting CDI and improving diversity of probiotics administrated are needed. In this study, a humanorigin highly diverse and highly targeted probiotic cocktail (Pro11) containing 11 various probiotic species was developed against C. difficile. Pro11 protected mice against CDI with lower clinical scores and higher survival rates, and inhibited C. difficile in vivo with less C. difficile burden and toxins production determined in colon. Histological analysis demonstrated that Pro11 strengthened gut barrier, reducing gut permeability (less secreted sCD14 in serum) and gut inflammation. In addition, gut microbiome analysis demonstrated that Pro11 increased gut microbiome diversity and beneficial species. Along with gut microbiome modulation, gut metabolites including butyrate, were significantly increased in the probiotics-fed group. Results from this study highlighted probiotics as a promising CDI therapy as gut microbiota modulators, which will lay the foundation for translating probiotics in mitigating CDI and other intestinal pathogens for clinical use.
Keywords: hospital-associated diarrhea, Clostridioides difficile, Probiotics, gut microbiome, gut metabolites
Received: 03 Jan 2025; Accepted: 10 Feb 2025.
Copyright: © 2025 Gurung, Courreges, Wang, Malgor and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Shaohua Wang, Ohio University, Athens, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.