
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Microbial Physiology and Metabolism
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1548052
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Characterizing starch-degrading Lactobacillaceae and associated enzymes remains relevant as various industries seek to harness their activity to produce valuable by-products, develop novel food applications, and to aid the sustainable bioconversion of starch-rich resources. To support this, we developed a targeted methodological and analysis framework utilizing complimentary phenomic and genomic assays informative of the starch degrading potential of Lactobacillaceae. Adapted starch agar plate assays incorporating diversified starch sources and states facilitated the rating of extracellular amylolytic activity by starch-processing-line isolates (Lactobacillus amylovorus (n=3), Lactobacillus amylolyticus (n=2), and Limosilactobacillus reuteri (n=2)) as weak to moderate based on the complete or partial hydrolysis of retrograded soluble (SS), or potato and wheat (WS), starches, respectively, and the partial hydrolysis of raw SS. In contrast, the known raw starch degrader, L. amylovorus NRRL B4540, was rated as strong, with complete hydrolysis of all retrograded starch sources and raw WS. To explore genetic diversity and the putative enzymes associated with phenotypic diversity amongst L. amylovorus and L. amylolyticus, a multi-amplicon sequencing approach using MinION™ was used to simultaneously sequence starch-degradation-associated genes identified from them. Gene and deduced amino acid sequence analysis suggested raw starch hydrolysis by L. amylovorus NRRL B4540 was largely attributed to amyA encoding a rare α-amylase with unique starch binding domain (targeting α-1,4 linkages), but which was predicted to also require the starch debranching activity (targeting α-1,6 linkages) associated with (putative) pul-encoded pullulanase (Pul) for complete hydrolysis. Without amyA, Pul was hypothesized necessary for observed starch degradation by L. amylovorus and L. amylolyticus test isolates; as a previously undescribed amylopullulanase with dual activity, or as a pullulanase requiring complimentary α-1,4 activity from an additional enzyme, potentially Gly2 (a putative maltogenic α-amylase). Whilst further work is required to characterize these enzymes, including those encoded by gene variants, the experimental approach described here provided the necessary evidence to warrant this. Further, this framework is likely adaptable for the direct analysis of Lactobacillaceae-rich microbiomes for amylolytic potential and for the targeted screening of various other functions across different taxa.
Keywords: Lactobacillaceae, Amplicon sequencing, nanopore, Gene assay, phenotype, Amylolytic, Starch
Received: 19 Dec 2024; Accepted: 10 Mar 2025.
Copyright: © 2025 Olivier, Bull, Bowman, Ross and Chapman. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Sandra A Olivier, Quantal Bioscience, Castle Hill, NSW 2154, Australia
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.