Skip to main content

ORIGINAL RESEARCH article

Front. Microbiol.

Sec. Infectious Agents and Disease

Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1546744

This article is part of the Research Topic Bacterial Pathogens and Virulence Factor Genes: Diversity and Evolution View all 17 articles

Whole-genome analysis and antimicrobial resistance phenotype of Vagococcus fluvialis isolated from wild Niviventer

Provisionally accepted
Jian Zhou Jian Zhou 1,2Ying Liu Ying Liu 1Tao Gu Tao Gu 2Jingzhu Zhou Jingzhu Zhou 1Fengming Chen Fengming Chen 1Yong Hu Yong Hu 2Shijun Li Shijun Li 2*
  • 1 Guizhou Centre for Disease Control and Prevention, Guiyang, China
  • 2 Guizhou Medical University, Guiyang, Guizhou Province, China

The final, formatted version of the article will be published soon.

    Vagococcus fluvialis (V. fluvialis), a Gram-positive bacterium belonging to the Enterococcaceae family, has been associated with human infections, including bacteremia and endocarditis. Its zoonotic potential raises concerns for public health, yet research on its antimicrobial resistance and pathogenicity is still limited. This study aimed to isolate and characterize V. fluvialis from wild Niviventer, analyze its genomic features (including antimicrobial resistance and virulence genes), and evaluate its antibiotic susceptibility profile to assess potential public health risks. We first isolated V. fluvialis (strain 25C42) from the rectum of wild Niviventer, confirmed through Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing. Whole-genome sequencing (WGS) was performed using second-and third-generation technologies, with subsequent quality control and assembly. 6 databases including KEGG, COG, CARD and VFDB were used for genome annotation. Antibiotic susceptibility was evaluated according to Clinical and Laboratory Standards Institute (CLSI) guidelines, determining the minimum inhibitory concentrations (MIC) for 16 antibiotics. Strain 25C42 was identified as V.fluvialis, confirmed by MALDI-TOF MS and 16S rRNA sequencing.WGS revealed a genome length of 2,720,341 bp, GC content of 32.57%. Functional genomic analysis identified 2,268 genes in the COG database and 2,023 genes in KEGG, highlighting key metabolic and cellular processes. Notably, 119 virulence genes and 65 antimicrobial resistance genes were found, indicating significant resistance potential. Phylogenetic analysis demonstrated a close relationship with other Vagococcus species, particularly V. fluvialis (ANI 98.57%, DDH 88.6%). Antibiotic susceptibility tests indicated strain 25C42 was resistant to clindamycin, tetracycline, rifampicin, cefoxitin and levofloxacin. Our findings reveal that the wild rodent-derived V. fluvialis strain 25C42 harbors clinically relevant antimicrobial resistance determinants and virulence-associated genes. The high genomic integrity and extensive functional gene annotation underscore its metabolic versatility. Notably, strain 25C42 exhibits significant antimicrobial resistance, necessitating ongoing surveillance and research to understand its implications for public health and environmental monitoring, as well as strategies for effective therapeutic intervention.

    Keywords: Vagococcus fluvialis, Niviventer, whole genome sequencing, genes annotation, Drug Resistance

    Received: 17 Dec 2024; Accepted: 26 Mar 2025.

    Copyright: © 2025 Zhou, Liu, Gu, Zhou, Chen, Hu and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Shijun Li, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    95% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more