
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Microbe and Virus Interactions with Plants
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1543933
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Microbial remediation technology has the characteristics of high efficiency and environmental protection, which has attracted attention. However, there is complexity in the microorganism-soilplant system. The effects of microbial agents on soil nutrients, plant quality, rhizosphere, and endophytic microorganisms are still unclear. Here, we demonstrate the application of Bacillus megaterium NCT-2 as a multifunctional agent that concurrently addresses salinization-driven nutrient imbalances and reshapes keystone microbial taxa to restore soil-plant homeostasis. The results showed that NCT-2 agent improved the soil nutrients, reduced the loss of nitrogen and sulfur, increased the content of available phosphorus, and decreased the electrical conductivity. The agent increased the number of bacteria and fungi in the soil. Meanwhile, NCT-2 agent improved the vegetable quality and yield. Specifically, the NCT-2 agent significantly increased the aboveground fresh weight, underground fresh weight, total flavonoids, antioxidant enzyme activity, ascorbic acid, Cu, Zn, Fe, P and K in lettuce, while significantly reduced nitrate. The chlorophyll a, chlorophyll b, carotenoids, and total chlorophyll were significantly increased by the agent. Critically, highthroughput sequencing revealed NCT-2-driven enrichment of stress-resilient taxa (e.g. Firmicutes, Acidobacteria) and functional synergists (e.g. Acetobacter), which correlated with soil nutrient fluxes and plant antioxidant capacity. By decoupling the interplay between microbial community restructuring and systemic remediation outcomes, this work establishes a novel framework for leveraging keystone taxa to optimize salinized agroecosystems.
Keywords: Secondary salinized soil, Microbial agent, Soil nutrient, Vegetable quality, microbial community
Received: 13 Dec 2024; Accepted: 02 Apr 2025.
Copyright: © 2025 You, Li, Wang, Zhao, Zhang, Chu, Yang and Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Yimin You, Jilin Agriculture University, Changchun, 130118, Jilin Province, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.