![Man ultramarathon runner in the mountains he trains at sunset](https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png)
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
REVIEW article
Front. Microbiol.
Sec. Food Microbiology
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1543716
This article is part of the Research Topic Application of Novel Technologies for the Inactivation and Reduction of Fungi and Mycotoxins View all 5 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
During the production and storage of agricultural products, molds frequently occur as contaminants that can produce a wide range of secondary metabolites, the most important of which are mycotoxins.To solve these problems, the industry uses various methods, products and processes. This review examines the latest advances in novel non-thermal technologies for post-harvest inactivation of filamentous fungi and reduction of mycotoxins. These technologies include high pressure processes (HPP), ozone treatment, UV light, blue light, pulsed light, pulsed electric fields (PEF), cold atmospheric plasma (CAP), electron beams, ultrasound (US) and nanoparticles. Using data from previous studies, this review provides an overview of the primary mechanisms of action and recent results obtained using these technologies and emphasizes the limitations and challenges associated with each technology. The innovative non-thermal methods discussed here have been shown to be safe and efficient tools for reducing food mold contamination and infection. However, the effectiveness of these technologies is highly dependent on the fungal species and the structural characteristics of the mycotoxins. New findings related to the inactivation of fungi and mycotoxins underline that for a successful application it is essential to carefully determine and optimize certain key parameters in order to achieve satisfactory results. Finally, this review highlights and discusses future directions for non- thermal technologies. It emphasizes that they meet consumer demand for clean and safe food without compromising nutritional and sensory qualities.
Keywords: Emerging Technologies, Post-harvest treatment, Filamentous fungal suppression, Reduction of mycotoxin, Food Safety, Food Preservation, food quality
Received: 11 Dec 2024; Accepted: 12 Feb 2025.
Copyright: © 2025 Molina Hernandez, Grande Tovar, Neri, Delgado-Ospina, Rinaldi, Cordero-Bueso and Chaves. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Johannes Delgado-Ospina, University of San Buenaventura Cali, Cali, Valle del Cauca, Colombia
Clemencia Chaves, University of Teramo, Teramo, Italy
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.