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Long-read metagenomics gives a 
more accurate insight into the 
microbiota of long-ripened 
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Metagenomic studies of the Gouda cheese microbiota and starter cultures are 
scarce. During the present study, short-read metagenomic sequencing (Illumina) 
was applied on 89 Gouda cheese and processed milk samples, which have been 
investigated before concerning their metabolite and taxonomic composition, the 
latter applying amplicon-based, high-throughput sequencing (HTS) of the full-
length 16S rRNA gene. Selected samples were additionally investigated using long-
read metagenomic sequencing (Oxford Nanopore Technologies, ONT). Whereas 
the species identified by amplicon-based HTS and metagenomic sequencing 
were identical, the relative abundances of the major species differed significantly. 
Lactococcus cremoris was more abundant in the metagenomics-based taxonomic 
analysis compared to the amplicon-based one, whereas the opposite was true for 
the non-starter lactic acid bacteria (NSLAB). This discrepancy was related to a higher 
fragmentation of the lactococcal DNA compared with the DNA of other species 
when applying ONT. Possibly, a higher fragmentation was linked with a higher 
percentage of dead or metabolically inactive cells, suggesting that full-length 16S 
rRNA gene amplicon-based HTS might give a more accurate view on active cells. 
Further, fungi were not abundantly present in the Gouda cheeses examined, whereas 
about 2% of the metagenomic sequence reads was related to phages, with higher 
relative abundances in the cheese rinds and long-ripened cheeses. Intraspecies 
differences found by short-read metagenomic sequencing were in agreement 
with the amplicon sequence variants obtained previously, confirming the ability of 
full-length 16S rRNA gene amplicon-based HTS to reach a taxonomic assignment 
below species level. Metagenome-assembled genomes (MAGs) were retrieved 
for 15 species, among which the starter cultures Lc. cremoris and Lactococcus 
lactis and the NSLAB Lacticaseibacillus paracasei, Loigolactobacillus rennini, and 
Tetragenococcus halophilus, although obtaining MAGs from Lc. cremoris and 
Lc. lactis was more challenging because of a high intraspecies diversity and high 
similarity between these species. Long-read metagenomic sequencing could 
not improve the retrieval of lactococcal MAGs, but, overall, MAGs obtained by 
long-read metagenomic sequencing solely were superior compared with those 
obtained by short-read metagenomic sequencing solely, reaching a high-quality 
draft status of the genomes.
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1 Introduction

The application of second-generation, high-throughput 
sequencing (HTS) has been a major breakthrough in cheese 
microbiology (Afshari et al., 2020; Parente et al., 2020; Zotta et al., 
2022). It has considerably increased the research on cheeses (Quigley 
et al., 2012), and it has allowed the detection and quantification of 
sub-dominant and difficult-to-cultivate microorganisms, compared 
with culture-dependent approaches (Yeluri Jonnala et al., 2018). The 
importance of sub-dominant bacteria that do not grow on commonly 
used agar media in cheese studies has been demonstrated by tackling 
cheese spoilage problems, such as pink discoloration (Quigley et al., 
2016) and crack formation (Decadt et al., 2024a). A widely used HTS 
approach during the past decade is amplicon-based sequencing of a 
part of the 16S rRNA gene, an approach that usually limits the 
taxonomic resolution to genus level (Parente et al., 2020). In contrast, 
shotgun metagenomics has a higher taxonomic resolution and 
accuracy compared with amplicon-based partial 16S rRNA gene HTS, 
and, in addition, it allows the analysis of the functional potential of the 
microbiota (Brumfield et al., 2020; Durazzi et al., 2021; Stothart et al., 
2023). It is, however, more expensive and requires more sophisticated 
data processing approaches (Sedlar et al., 2017; Hillmann et al., 2018).

Recently, third-generation sequencing (TGS) has become 
mainstream. The TGS platforms of PacBio and Oxford Nanopore 
Technologies (ONT) allow to obtain read lengths up to 25 kbp and 
higher, as the read length of ONT is theoretically unlimited (van Dijk 
et al., 2023). Their main drawback is the higher error rate compared 
with Illumina short-read sequencing. TGS makes amplicon-based 
sequencing of the full-length 16S rRNA gene possible, increasing the 
taxonomic resolution to species level or lower, which is enhanced by 
the use of algorithms that result in amplicon sequence variants (ASVs) 
(Callahan et al., 2019; Decadt et al., 2023). For shotgun metagenomics, 
the long reads obtained by TGS allow more complete genome 
assemblies, higher numbers of retrieved metagenome-assembled 
genomes (MAGs), and increased taxonomic classification accuracy, 
compared with short-read sequencing (van Dijk et al., 2018; Pearman 
et al., 2020; Sereika et al., 2022).

The Gouda cheese microbiota can be divided into starter lactic 
acid bacteria (SLAB) and non-starter lactic bacteria (NSLAB). The 
SLAB consist of strains of Lactococcus cremoris, Lactococcus lactis, and 
one or more Leuconostoc species (e.g., Leuconostoc mesenteroides and 
Leuconostoc pseudomesenteroides), whereas the NSLAB consist of 
strains of Lacticaseibacillus paracasei and Lactiplantibacillus plantarum 
(Decadt and De Vuyst, 2023) but also Loigolactobacillus rennini and 
Tetragenococcus halophilus (Decadt et al., 2023, 2024a, 2024b). Hence, 
the species diversity of Gouda cheese is rather low, but the starter 
cultures applied are undefined and harbor a considerable intraspecies 
diversity (Smid et al., 2014). They contain different lineages of Lc. 
cremoris and Lc. lactis, which differ in phage and plasmid profiles 
(Erkus et  al., 2013). It is, however, unclear how these Lactococcus 
lineages present in a Gouda cheese starter culture differ in flavor 
contribution. Among various Irish artisan cheeses, significant 
intraspecies differences of the SLAB Lc. lactis and Streptococcus 
thermophilus have been described, affecting the cheese volatilome 
(Walsh et al., 2020). However, the opposite has also been found. For 
instance, the four genetic lineages of S. thermophilus in an undefined 
thermophilic Swiss hard cheese starter culture are functionally 
redundant regarding their volatilome, and strains mainly differ in 

phage resistance potential (Somerville et al., 2022). To the authors’ 
knowledge, intraspecies diversity of the Gouda cheese microbiota and 
starter cultures has not yet been investigated using shotgun 
metagenomic sequencing (Decadt and De Vuyst, 2023).

The aim of the current study was to set up a methodology to 
obtain a more detailed insight into the Gouda cheese production chain 
and its microbiota, containing SLAB and NSLAB, by investigating 89 
Gouda cheese and processed milk samples using a short-read, shotgun 
metagenomic sequencing approach, and to compare these results with 
taxonomic information previously obtained by amplicon-based full-
length 16S rRNA gene HTS. Also, it aimed to retrieve MAGs using the 
short-read metagenomic sequencing datasets, MAGs using long-read 
metagenomic sequencing datasets for a selected number of samples, 
and MAGs using both types of sequencing dataset. Further, a 
methodology was set up to compare the MAGs obtained by both 
sequencing strategies as to assess which strategy allowed to obtain 
multiple MAGs for one species, given the typical starter culture 
composition, enhancing an intraspecies metagenomic approach.

2 Materials

2.1 Samples sequenced and analyzed

In the current study, 89 whole-community DNA samples, 
consisting of three groups of samples discussed in three previous 
studies on Gouda cheeses, were subjected to shotgun metagenomic 
sequencing (Table  1). Each sample was sequenced once. In those 
previous studies, the samples were analyzed for their metabolite and 
taxonomic composition, the latter by applying full-length 16S rRNA 
gene amplicon-based HTS (BioProject accession numbers 
PRJEB58546, PRJEB64168, and PRJEB64331). All samples were 
obtained from the same European Gouda cheese company, which uses 
three commercial starter cultures in rotation.

The first group of samples (34 in total) consisted of the cores of 23 
Gouda cheeses obtained from different production batches that were 
made with three different starter culture mixtures and that showed 
batch-to-batch variability in organoleptic quality, even when the same 
starter culture was used (Table  1; Decadt et  al., 2023). For all 23 
production batches, cheese cores were collected after 36 weeks of 
ripening (ready for sale), and for 11 of these cheese production 
batches, cheese cores were also collected after 75 weeks of ripening 
(long-ripened cheese). The letters A, B, and C in the sample codes 
indicate the starter culture mixture used, whereas the numbers refer 
to the different cheese production batches per starter culture.

The second group of samples (19 in total) were obtained from six 
Gouda cheese production batches, for which the cheeses showed a 
crack defect after 31 weeks of ripening (Table 1; Decadt et al., 2024a). 
The letters in the sample codes refer to the severity of the crack defect, 
namely M for medium (two batches), L for large (three batches), and 
XL for extra large (one batch), whereas the numbers indicate different 
cheese production batches. For production batches M1 and L1, three 
different cheese wheels were investigated, indicated with the letters a, 
b, and c. From each cheese wheel, two samples of the core were taken, 
namely, one sample near the crack zones, and one from zones away 
from the cracks. However, cheese wheel XL had no zones without 
cracks, resulting in a total of 10 samples obtained from crack zones, 
and nine samples obtained from zones without cracks.
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The third group of samples (36 in total) was collected during a 
longitudinal study of one Gouda cheese production batch, made with 
starter culture mixture A. Samples were collected at various key 
moments during the production process, from the thermized milk at 
the start of the production up to 100 weeks of cheese ripening 
(Table 1; Decadt et al., 2024b). During ripening, which started at 
week 2 and lasted until week 100, separate samples were taken from 
the cheese core (indicated by the letter C) and the cheese rind 
(indicated by the letter R), except for the time point after 2 weeks of 
ripening, at which only the core was sampled. As such, 15 core 
samples and 14 rind samples were obtained during the ripening 
period, in addition to eight samples from the production process 
itself (Table 1).

3 Methods

3.1 Short-read metagenomic sequencing

Whole-community DNA of the 89 samples targeted in this study 
was already obtained in the three previous studies, where it was used 
for full-length 16S rRNA gene amplicon-based HTS (Decadt et al., 
2023, 2024a, 2024b). In the current study, the same samples of 
community DNA were used for short-read and long-read 
metagenomic sequencing. The DNA extraction method used was 
based on enzymatic digestion (using lyticase, Zymolyase, lysozyme, 
and mutanolysin), a chemical/enzymatic treatment (with sodium 
dodecyl sulfate and proteinase K), and a mechanical disruption (with 
acid-washed glass beads), followed by protein removal using a mixture 
of chloroform, phenol and isoamyl alcohol, an RNase treatment, and 
DNA purification with a DNeasy Blood & Tissue Kit (Qiagen, Venlo, 
The Netherlands).

The whole-community DNA samples were sequenced using an 
Illumina NovaSeq platform, applying a 2 × 250 bp paired-end 
sequencing approach and using a 500–1,500 bp fragment library 
(VUB-ULB BRIGHTcore sequencing facility, Jette, Belgium). Each 
sample was sequenced once. The quality of the metagenomic sequence 
reads (MSRs) obtained was visually assessed with FastQC (version 
0.11.9; Andrews, 2018), followed by quality filtering and trimming 
using Trimmomatic (version 0.39; Bolger et al., 2014). For adapter 
trimming, the minimum adapter length was set to 2, the required 
match accuracy between two ligated adapters or between any adapter 
sequence and a read was set to 30 and 10, respectively, and a maximum 
mismatch count of 2 was used. The first 12 bases of the reads were 
removed, the minimal mean quality score was set to 20 over a sliding 
window of 4 bases, and the minimum quality score at both ends of the 
MSRs was set to 20. The minimum MSR length was set to 50 bases.

The forward and reverse high-quality paired-end reads obtained 
with Trimmomatic were merged using PANDAseq (version 2.11; 
Masella et al., 2012), with the minimum overlap set to 10 bases. The 
merged sequences obtained were subsequently pooled with the 
forward unpaired sequences from both Trimmomatic and PANDAseq, 
and with the reverse unpaired sequences from Trimmomatic, yielding 
89 high-quality MSR (HQ-MSR) datasets.

3.2 Taxonomic identification based on 
short-read metagenomic sequence reads

Taxonomic identification of all HQ-MSRs was determined at 
three taxonomic levels, namely, genus, species, and intraspecies.

3.2.1 Genus level
To perform taxonomic identification at genus level, three 

alignment-based approaches were used. The HQ-MSRs were aligned 
to the non-redundant protein database [nr; National Center for 
Biotechnology Information (NCBI), Bethesda, Maryland, 
United States] using DIAMOND (Buchfink et al., 2015), after which 
the output was further analyzed using MEGAN (Huson et al., 2016) 
with the lowest common ancestor (LCA) minimum score set to 100. 
In addition, the HQ-MSRs were analyzed using Kaiju, relying on a 
dedicated database that was developed using the nr protein database 
(Menzel et al., 2016). Furthermore, the HQ-MSRs were aligned to the 

TABLE 1 Overview of the samples codes of the 89 Gouda cheese and 
processed milk samples sequenced.

Samples (34) from Gouda cheeses with batch-to-batch 
variability

36 weeks of ripening, starter culture mixture A A1_36 – A8_36

36 weeks of ripening, starter culture mixture B B1_36 – B7_36

36 weeks of ripening, starter culture mixture C C1_36 – C8_36

75 weeks of ripening, starter culture mixture A A2_75, A7_75, A8_75

75 weeks of ripening, starter culture mixture B B1_75, B5_75, B6_75, B7_75

75 weeks of ripening, starter culture mixture C C3_75, C4_75, C7_75, C8_75

Samples (19) from Gouda cheeses with crack defects

Zones with cracks M1a_Cr, M1b_Cr, M1c_Cr, 

M2_Cr, L1a_Cr, L1b_Cr, L1c_

Cr, L2_Cr, L3_Cr, XL_Cr

Zones without cracks M1a_Z, M1b_Z, M1c_Z, M2_Z, 

L1a_Z, L1b_Z, L1c_Z, L2_Z, 

L3_Z

Samples (36) from a longitudinal study of a Gouda 
cheese production batch

Thermized milk 0.0 h

Pasteurized milk after starter addition 0.9 h

Curd after cutting 1.8 h C

Whey after cutting 1.8 h W

Whey after washing 3.0 h W*

Curd after draining 3.7 h

Curd before brining 7.5 h

Cheese after brining 3 d

Cheese core (C) and rind (R) at 2, 4, 8, 12, 18, 

25, 31, 36, 40, 45, 55, 65, 75, 85, and 100 weeks 

of ripening

2 w C, 2 w R – 100 w C, 100 w R

For the cheese samples with batch-to-batch variability, the letters A, B, and C refer to the 
starter culture mixture used, followed by a number referring to the different cheese 
production batches per starter culture, followed by a number referring to the duration of the 
ripening (in weeks). For the cheeses with crack defects, M, L, and XL refer to the severity of a 
crack defect (medium, large, and extra large, respectively). The numbers indicate different 
cheese production batches, whereas small letters (a, b, and c) indicate different cheese wheels 
that were investigated of the same Gouda cheese production batch. The samples from the 
longitudinal study of a Gouda cheese production batch, from thermized milk to long-
ripened cheeses, are indicated by their time point during the production process. *, only 
sequenced using long-read metagenomic sequencing.
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non-redundant nucleotide database (nt; NCBI), to a subset of the 
RefSeq nucleotide database (NCBI), containing viral, bacterial, 
archaeal, and lower eukaryotic sequences, and to a similar subset of 
the RefSeq protein database (NCBI) using Kraken2 (Wood et  al., 
2019). The combination of different tools and databases allowed a 
software- and database-independent identification of the HQ-MSRs 
(Vermote et al., 2022). To verify if the combination of Kraken2 with 
the RefSeq nucleotide and the nt databases could identify viruses 
correctly, 308 Skunavirus sequences were downloaded from the NCBI 
Virus database and aligned to a subset of the RefSeq nucleotide 
database, as well as to a subset of the RefSeq protein database, 
using Kraken2.

3.2.2 Species level
To perform taxonomic identification at species level, metagenomic 

recruitment plotting was applied. This method is based on the 
alignment of the HQ-MSRs to reference genomes to evaluate whether 
the corresponding species is present in the sample sequenced 
(Vermote et al., 2018). The evaluation is based on the application of 
minimum values for sequence identity and sequence coverage (see 
below), and the resulting plots are visually inspected. Before doing so, 
the 36 HQ-MSR datasets of the samples from the longitudinal study 
of a Gouda cheese production batch were aligned to the Bos taurus 
(Hereford) genome sequence (GCA_002263795.2) using blastn 
(Altschul et al., 1990). Sequence reads with a sequence identity and 
query coverage higher than 60% were deleted from the HQ-MSR 
datasets, as they were assumed to belong to Bos taurus and thus not 
from a microbial origin.

Next, the actual metagenomic recruitment plotting was performed 
for all 89 HQ-MSR datasets. As a first and preparatory step, a custom 
BLAST database was constructed, based on the output of the tools 
used for the taxonomic analysis at genus level. This database contained 
genome sequences of the type strains of all species belonging to those 
genera that had more than 0.1% of all sequences assigned to them. In 
the case no genome sequence was available for the type strain or the 
genome sequence was unreliable due to contamination, a genome 
sequence of another strain of the same species with the highest 
assembly level was used (Vermote et al., 2018). Next, the 89 HQ-MSR 
datasets were aligned to this custom BLAST database using blastn. The 
output was filtered using an in-house R script, which omitted all reads 
having a sequence identity lower than 60% and a sequence overlap 
shorter than 50 bases. The script also considered only the best hit, or 
randomly selected between the best hits in the case that several hits 
had the same highest bit score. The sequence alignment results 
obtained were subsequently plotted for all species that had more than 
300 HQ-MSRs assigned to it using an in-house R script. All plots were 
manually checked and only the species with HQ-MSRs spread over 
the whole genome length were retained, as illustrated in 
Supplementary Figure S1, as this is an indication that the related 
species was present in the sample sequenced. Finally, for each species 
retained, the aligned HQ-MSRs were counted and expressed as 
relative abundances of all HQ-MSRs for all species retained.

3.2.3 Intraspecies level
Whereas metagenomic recruitment plotting was used for 

taxonomic identification at the species level, this approach allowed in 
some cases to obtain insights into the intraspecies level too. Hereto, 
genomes of different subspecies were included in the custom BLAST 

database, namely, Lc. cremoris subsp. cremoris, Lc. cremoris subsp. 
tructae, Lc. lactis subsp. hordniae, Lc. lactis subsp. lactis, Leuc. 
mesenteroides subsp. cremoris, Leuc. mesenteroides subsp. dextranicum, 
Leuc. mesenteroides subsp. jonggajibkimchii, Leuc. mesenteroides subsp. 
mesenteroides, Leuc. mesenteroides subsp. sake, Lacc. paracasei subsp. 
paracasei, Lacc. paracasei subsp. tolerans, T. halophilus subsp. 
halophilus, and T. halophilus subsp. flandriensis. Additionally, the type 
strain of Weissella jogaejeotgali was included as well, although this 
species is currently considered as a synonym of Weissella thailandensis 
(Kwak et al., 2019). The ratio of the total number of reads recruited by 
multiple genomes within the same species was calculated for all 89 
HQ-MSR datasets examined, and the average and standard deviations 
of all ratios were reported. Another way of identification below species 
level was done by expert inspection of the metagenomic 
recruitment plots.

In addition, StrainPhlAn3 (Truong et al., 2017) was used to assess 
strain-level differences among the 34 samples from the cheeses with 
batch-to-batch variability and the 19 samples from the cheeses with 
crack defects. Hereto, the HQ-MSRs were mapped to a database of 
species-specific marker genes (mpa_v30, accessed January 2021) using 
the companion tool MetaPhlAn3 (v3.0.13, Beghini et al., 2021). Then, 
all marker gene sequences were used to construct consensus marker 
gene sequences for each sample. The marker genes for Lacp. 
plantarum, Leuc. pseudomesenteroides, Loil. rennini, and T. halophilus 
were extracted and used to construct the phylogeny in the phylophlan 
accurate mode. The database still considered Lc. cremoris and Lc. lactis 
as the same species and, hence, only a joint phylogeny for both species 
could be obtained. The database did not contain marker genes for 
Lacc. paracasei and, hence, those were added manually. Hereto, a 
pangenome of Lacc. paracasei was constructed in anvi’o (Eren et al., 
2015), using 53 genomes. To identify all single-copy core genes only 
found in this species, 25 genomes of lacticaseibacilli other than Lacc. 
paracasei were added, as well as 17 genomes of different 
lactiplantibacilli. Additionally, one genome of Lactococcus laudensis, 
Lc. cremoris, Lc. lactis, Lentilactobacillus buchneri, Leuc. 
pseudomesenteroides, Limosilactobacillus fermentum, Loil. rennini, and 
T. halophilus were added, representing more distinctly related LAB 
species, of which most were found in the cheese samples. A total of 
478 single-copy core genes was found, of which 110 were randomly 
taken from Lacc. paracasei Zhang and added to the mpa_v30 database. 
The final phylogenetic trees were visualized using the R package ggtree 
(Yu et al., 2017).

3.3 Long-read metagenomic sequencing

Long-read metagenomic sequencing was performed using whole-
community DNA of four samples from the longitudinal study of a 
production batch, namely 3.0 h  W, 18 w C, 45 w C, and 45 w R 
(Table  1), using the ONT’s MinION sequencer (Oxford, 
United Kingdom). Sample 3.0 h W was only sequenced using long-
read metagenomic sequencing because there was too little DNA 
available to also sequence it using short-read metagenomic 
sequencing. For each sample, 1 μg of whole-community DNA samples 
(same aliquots as were used for full-length 16S rRNA gene amplicon-
based HTS in previous studies and short-read metagenomic 
sequencing in the current study) was used to prepare the DNA library 
using the SQK-LSK110 Ligation Sequencing kit (ONT), following the 
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manufacturer’s instructions. The final DNA library was loaded on an 
R9.4.1 FLO-MIN106 flow cell. For each sample, one flow cell was 
used. Basecalling of the raw sequencing signal was performed using 
Guppy (v6.0.6; ONT). Only the reads classified as “pass” by Guppy 
(Qscore >9) were considered for any downstream analysis. Trimming 
was performed using NanoFilt (v2.8.0; De Coster et  al., 2018) to 
remove the adapters and low-quality bases at both extremities of the 
reads (headcrop, 40; tailcrop, 20) and to discard the reads shorter 
than 500 bp.

3.4 Taxonomic identification based on 
long-read metagenomic sequence reads

Metagenomic recruitment plotting was performed to 
taxonomically identify the HQ-MSRs obtained at species level, 
similarly as described above. Briefly, all long-read HQ-MSRs were 
aligned to the same custom BLAST database as used for the short-read 
HQ-MSRs using blastn. The output was filtered using the same 
in-house filtering R script as mentioned above, and omitting all reads 
having a sequence identity lower than 70%. The sequence alignment 
results obtained were subsequently plotted using an in-house R script, 
optimized for long reads. Plots of all species were manually checked 
and species without well-spread reads were rejected as illustrated in 
Supplementary Figure S2, using a similar strategy as for the short-read 
metagenomic recruitment plotting.

Finally, for each species that was retained, the sum of all bases of 
all reads recruited was considered and expressed as relative 
abundances compared to the sum of all bases of all reads of all species 
retained. In this way, the variable length of the reads was also taken 
into account, in contrast to the short-read sequencing approach, for 
which all reads had a comparable short length and the count of the 
reads was as such reliable. A second analysis was performed by 
omitting all reads shorter than a certain threshold read length. The 
threshold was set to values between 1 and 10 kbp. Distributions of the 
read lengths per species were plotted with the geom_density function 
in ggplot2 (version 3.3.5; Wickham, 2016).

Based on the results of the long-read metagenomic sequencing, so 
far unpublished sequence data of high-throughput amplicon-based 
HTS of the V4 region of the 16S rRNA gene for two Gouda cheese 
samples (the cores of the batch A1 cheeses taken after 26 and 31 weeks 
of ripening) were considered in the current study as well. The 
amplification and sequencing were carried out as described previously, 
using the primer set F515/R806 (De Bruyn et al., 2017).

3.5 Metagenome-assembled genome 
reconstruction

3.5.1 Assembly, binning, and functional analysis 
of short-read metagenomic sequences

For the assembly and binning, the 89 HQ-MSR datasets were 
divided over five subsets, namely, one subset containing all datasets of 
samples from the longitudinal study of a Gouda cheese production 
batch, one subset containing all datasets of the samples from Gouda 
cheeses with crack defects, and three subsets containing the datasets 
of the samples from Gouda cheeses with batch-to-batch variability, 
divided per starter culture mixture used. For all five subsets, all 

HQ-MSRs were co-assembled using MEGAHIT (version 1.2.9; Li 
et  al., 2015) with a minimum contig length of 1,000 bases. The 
resulting contigs were further filtered to a minimum length of 2,500 bp 
using anvi’o, a comprehensive analysis platform combining cutting-
edge computational strategies for data-enabled microbiology (Eren 
et al., 2015). Taxonomic profiling of the contigs was performed by 
classification of the anvi’o-generated predicted genes using Kaiju. 
Next, the HQ-MSRs of each dataset were mapped to the co-assembly 
obtained using Bowtie2 (Langmead and Salzberg, 2012), resulting in 
an anvi’o profile for each HQ-MSR dataset. These anvi’o profiles were 
merged into one anvi’o profile database, and the profiles obtained were 
subsequently binned using CONCOCT (Alneberg et al., 2014). Next, 
only bins with a completion of more than 75% were manually refined, 
based on a stable G + C content and consistent read coverage, to 
be  able to obtain bins with a high completion (>75%) and low 
redundancy (<10%). The resulting bins are further referred to 
as MAGs.

In addition, and based on the results obtained, a selection of the 
89 HQ-MSR datasets was divided into another series of five different 
subsets, and processed in the same way as described above. Three of 
these subsets contained only HQ-MSR datasets related to the cores of 
the Gouda cheese with batch-to-batch variability with a low relative 
abundance of Lactococcus, divided per starter culture mixture used. 
Two subsets contained HQ-MSR datasets of samples having one of the 
two main clusters of T. halophilus (Table 2).

For each metagenomic bin, the species-level identification was 
determined using fastANI (v1.33; Jain et  al., 2018) and a custom 
BLAST database made of whole-genome sequences of type strains for 
each species of the main genera found in all metagenomic samples, as 
described previously (Vermote et al., 2018). Functional annotation of 
the contigs of the MAGs was done using Prokka (version 1.14.6; 
Seemann, 2014), with the default settings, an e-value cut-off of 1 × 
10−20, and addition of gene features for each coding DNA sequence 
(CDS). The output file was used to manually search for genes of 
interest, including 5S, 16S, and 23S rRNA genes and tRNA genes.

3.5.2 Assembly, binning, and functional analysis 
of long-read metagenomic sequences

To assess the best methodology to reconstruct high-quality MAGs 
using short reads, long reads, or a combination of both, a comparison 

TABLE 2 Overview of the five additional subsets, with the HQ-MSR 
datasets included in each subset for metagenome-assembled genome 
(MAG) retrieval.

Subset Samples

Cheese cores with low relative abundance of Lactococcus

Starter culture mixture A A8_75, M2_Cr, L2_Cr, XL_Cr

Starter culture mixture B B1_75, B7_75, L1a_Cr, L1b_Cr, L1c_Cr, L3_Cr

Starter culture mixture C C3_75, C7_75, C8_75

Tetragenococcus halophilus

Cluster 1 M1a_Cr, M1b_Cr, M1c_Cr, L3_Cr

Cluster 2 B1_75, B5_36, C4_75, C5_75, C7_75, C8_75

A, B, and C refer to the starter culture mixture used, whereas M, L, and XL refer to the 
severity of a crack defect (medium, large, and extra large, respectively). The numbers indicate 
different cheese production batches, whereas small letters (a, b, and c) indicate different 
cheese wheels of the same Gouda cheese production batch. 36w, ripened for 36 weeks; 75w, 
ripened for 75 weeks.
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of different software tools was performed (Supplementary Figure S3). 
For a correct reconstruction, only the four short-read HQ-MSR 
datasets, corresponding with the four Gouda cheese samples of the 
long-read sequencing, were used. Sample 1.8 h W (sequenced with 
short-read sequencing solely) and sample 3.0 h W (sequenced with 
long-read sequencing solely) were considered as corresponding 
samples given the fact that these samples were very similar regarding 
microbial composition according to the results obtained previously 
(Decadt et al., 2024b). Unless stated otherwise, all tools were used with 
their default settings. The quality-filtered and trimmed short reads 
were used to perform a co-assembly using MEGAHIT (v1.2.9; Li et al., 
2015; assembly further referred to as COM) with the “bubble level” set 
to 1, and metaSPAdes (v3.14.0; Nurk et al., 2017; assembly further 
referred to as COS) with the k-mer size set to 77. The short-read 
co-assemblies were curated with metaMIC (Lai et al., 2022), and are 
further referred to as COM.MIC and COS.MIC, respectively.

Quality-filtered and trimmed long reads were co-assembled using 
metaFlye (v2.9.1; Kolmogorov et  al., 2020). Two different 
co-assemblies were generated, namely, one with the option to keep 
haplotypes (COFH), and one without that option (COF). To determine 
whether the incorporation of short reads would allow to correct a 
metagenome assembled using long reads only, and hence would 
improve subsequent downstream analysis, the COFH assembly was 
subjected to a polishing strategy, as is typically performed for genomes 
(Díaz-Muñoz et al., 2022). Briefly, four iterations of Racon (v1.4.21; 
Vaser et al., 2017) and one iteration of medaka (v1.5.0; ONT) were 
used to obtain more accurate consensus sequences, using only long 
reads. Next, the Illumina short reads were used to correct the 
co-assembly by means of Pilon (v1.24; Walker et al., 2014; COFHP). 
This co-assembly was further processed using Strainberry (v1.1; 
Vicedomini et  al., 2021; COFHPB), aiming at achieving a higher 
haplotype resolution of the MAGs.

The eight different co-assemblies generated were used as input to 
perform an automatic metagenomic binning using CONCOCT (v1.1.0; 
Alneberg et al., 2014). The quality of the metagenomic bins was evaluated 
using CheckM (v1.2.2; Parks et al., 2015). Only metagenomic bins with 
at least 10% completeness were considered. The species-level 
identification was performed using fastANI (v1.33; Jain et al., 2018), as 
described above. If a bin could not be identified at species level using this 
method, it was identified at genus level using Kraken2 (v2.0.8; Wood 
et al., 2019). The 16S rRNA copy number obtained was compared with 
the information from the rrnDB database (Stoddard et al., 2015). To 
compare all MAGs obtained with the MAGs obtained using short-read 
metagenomic sequence reads (Section 3.5.1), the average nucleotide 
identity (ANI) and the full ANI values were calculated between each pair 
of the same species using pyANI (Pritchard et  al., 2016). Finally, 
functional annotation of the MAGs (> 75% completion and < 10% 
redundancy) obtained by COM.MIC (considered as the best short-read 
method; this study), COFH (considered as the best long-read method; 
this study), and COFHP (considered as the best method combining long 
and short reads; this study) was done using Prokka (version 1.14.6; 
Seemann, 2014), as described above.

3.6 Statistics

A Spearman correlation was calculated between Gouda cheese 
ripening time and the relative abundances of viral and fungal DNA for 

both cheese core and rind samples of the longitudinal study of a 
production batch. Additionally, a paired t-test was performed between 
relative abundances of viruses and fungi in the cheese cores and rinds, 
and between the relative abundances of bacterial species found by 
short-read shotgun metagenomics compared with high-throughput, 
full-length 16S rRNA amplicon-based HTS obtained in previous 
studies. The results were considered significant when the p-value 
<0.05. All statistical analyses were performed in R (version 4.1.0; R 
Core Team, 2021).

4 Results

4.1 Taxonomic identification based on 
short-read metagenomic sequence reads

4.1.1 Genus level
For the 89 HQ-MSR datasets obtained, five alignment-based 

approaches were applied for taxonomical identification at genus level. 
The two approaches using nucleotide-based identification (Kraken2 
NCBI nt and Kraken2 RefSeq nucleotide) could identify more reads 
at genus level compared to the three approaches using protein-based 
identification (DIAMOND, Kaiju, and Kraken2 RefSeq protein) 
(Supplementary Figure S4). All five approaches identified Lactococcus 
as the most abundant genus in almost all samples examined. 
Exceptions were sample A8 (cheeses with batch-to-batch variability), 
and M2, L1b, and L2 (cheeses with crack defects), which had 
Loigolactobacillus as the most abundant genus in the case of 
DIAMOND (and Kaiju for L1b). Additionally, the rinds of the cheeses 
obtained after 65 and 100 weeks of ripening from the longitudinal 
study had Tetragenococcus as most abundant genus according to all 
approaches. The thermized milk (0.0 h) of the longitudinal study had 
Mammalia as most abundant taxonomic group according to Kraken2 
NCBI nt, Kraken2 RefSeq nucleotide, and DIAMOND, whereas 
Kraken2 RefSeq protein and Kaiju resulted in Babesia and 
Staphylococcus, respectively, as the most abundant genera.

Besides Lactococcus, other abundant genera present in the Gouda 
cheese samples were Tetragenococcus, Loigolactobacillus, and 
Leuconostoc, except for the Kraken2 Refseq nucleotide approach that 
showed almost no Loigolactobacillus. Additionally, this approach did 
not detect viruses, and showed a higher relative abundance of Bacillus 
compared with the other approaches. This could be related to the 
database used, as all 308 Skunavirus sequences downloaded from the 
NCBI Virus database were identified as Bacillus thuringiensis by 
Kraken2 Refseq nucleotide, whereas all these sequences were correctly 
assigned to Skunavirus using Kraken2 Refseq protein.

According to Kraken2 NCBI nt, on average 1.9% of the reads were 
viral (median of 0.8%). More precisely, 50 samples had less than 1% 
viral reads, 21 samples had between 1 and 3% viral reads, 17 samples 
had between 3 and 8% viral reads, and one sample had 14.8% viral 
reads (Supplementary Table S1). More than 95% of these viral reads 
were assigned to Skunavirus, a lactococcal phage. The second and 
third most abundant viral genera, Vedamuthuvirus and Sandinevirus, 
were also lactococcal phages. In the samples from the Gouda cheeses 
with batch-to-batch variability, a higher relative abundance of viruses 
was found in the longest ripened cheeses (75 weeks) in seven out of 
11 cheeses examined. Similarly, in the Gouda cheese samples from the 
longitudinal study, there was a significant (p < 0.05) increase in 
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relative abundance of viral reads as a function of the ripening time. 
Additionally, the relative abundance of the viral reads was significantly 
higher in the cheese rinds compared to the cheese cores (p < 0.05).

Fungal reads were a minority, with an average relative abundance 
of 0.064% and a maximum relative abundance of 0.200% among all 
samples examined. The relative abundance of fungi did not 
significantly increase with the ripening time, neither was it different 
in the cheese cores compared to the rinds. The most abundant genus 
for all samples was Saccharomyces (on average 41.8% of all fungal 
reads), followed by Debaryomyces (on average 5.2% of all fungal reads).

4.1.2 Species level
The taxonomic identification at species level based on 

metagenomic recruitment plotting showed that Lc. cremoris was the 
most abundant species with an average relative abundance of 55.4% 
for all samples examined (standard deviation of 16.5%) (Figures 1, 2). 
Lactococcus lactis was the second most abundant species, with an 
average relative abundance of 24.0% for all samples (standard 
deviation of 8.8%). Other abundant species were Loil. rennini and 
T. halophilus, especially in the samples of cheeses with cracks and in 
the rind samples from the longitudinal study. Lactococcus laudensis 
and Leuc. pseudomesenteroides were present at lower relative 
abundances. The thermized milk sample (0.0 h) of the longitudinal 
study was odd compared to all other samples and contained mostly 
B. taurus.

Next, the species-level identification based on metagenomic 
recruitment plotting was compared with the data of species-level 
identification using high-throughput, full-length 16S rRNA amplicon-
based HTS (Decadt et al., 2023, 2024a, 2024b) (Figures 1, 2). Although 
the species identified were the same in all samples (except for the 

thermized milk sample from the longitudinal study), the relative 
abundances differed between both methods. The relative abundances 
of Lc. cremoris and Lc. laudensis were significantly higher in the 
metagenomic recruitment plots compared with the amplicon-based 
HTS approach, whereas the opposite was true for most other species. 
Only the relative abundance of Lc. lactis was not significantly different 
between both methods.

4.1.3 Intraspecies level
With respect to the intraspecies level, the number of reads 

obtained through metagenomic recruitment plotting and assigned to 
Lc. cremoris subsp. cremoris were approximately five times higher than 
those assigned to Lc. cremoris subsp. tructae in all samples examined 
(Supplementary Table S2). The same was the case for Lc. lactis subsp. 
lactis compared with the lesser abundant Lc. lactis subsp. hordniae. 
Additionally, Leuc. mesenteroides subsp. cremoris was also more 
abundant compared with all other Leuc. mesenteroides subspecies. 
Probably, Lc. cremoris subsp. cremoris, Lc. lactis subsp. lactis, and Leuc. 
mesenteroides subsp. cremoris were the subspecies present in the 
samples, and the other subspecies were not present but found by the 
metagenomic recruitment plotting because of high genetic similarities. 
Lacticaseibacillus paracasei subsp. paracasei was almost twice as 
abundant as Lacc. paracasei subsp. tolerans, suggesting it was foremost 
the former subspecies that was present. The number of reads recruited 
for both T. halophilus subspecies was very similar.

Additionally, the number of reads recruited for Leuconostoc 
falkenbergense and Leuc. pseudomesenteroides [reclassified as Leuc. 
falkenbergense by the genome taxonomy database (GTDB), but not yet 
by the NCBI Genome database at the moment of analysis] were very 
similar (ratio of 0.91). As a consequence of the undecided taxonomic 

FIGURE 1

Taxonomic classification at the species level of the high-quality metagenomic sequence reads for the 23 Gouda cheeses with batch-to-batch 
variability and the cheeses with crack defects (names as explained in Table 1). Top, relative abundance based on high-throughput, full-length 16S rRNA 
amplicon-based sequencing, as reported previously (Decadt et al., 2023, 2024a). Bottom, relative abundance based on metagenomic recruitment 
plotting of high-quality metagenomic sequence reads; reads not assigned to any species are not shown. The category “Minorities” includes all species 
identified that were represented by less than 0.4% for both methods.
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status of the genomes used, and for comparison purposes with the 16S 
rRNA amplicon-based sequence data obtained, the reads of both 
species were summed and considered as Leuc. pseudomesenteroides. 
For some Gouda cheese samples, there was a gap consistently present 
at the same genomic location for Leuc. pseudomesenteroides, as 
depicted in the recruitment plot (Supplementary Figure S5). The same 
samples also had some gaps in the recruitment plot for Leuc. 
falkenbergense. All cheese samples with these characterizing gaps were 
from Gouda cheeses made with starter culture mixture C, whereas all 
cheese samples without these gaps were from Gouda cheeses made 
with starter culture mixtures A or B, although Gouda cheeses made 
with starter culture mixture B had almost no Leuconostoc reads 
(Decadt et  al., 2023). There were two Gouda cheese batches that 
deviated from this trend, namely, sample C3 from the cheeses with 
batch-to-batch variability had no gaps, such as the Gouda cheeses 
made with starter culture mixture A, and sample M1 from the cheeses 
with cracks defects made with starter culture mixture A, had gaps 
compared to the Gouda cheeses made with starter culture mixture 
C. The recruitment plots for Loil. rennini also showed some gaps 
(Supplementary Figure S6), but the gaps were consistently at the same 
locations in the genomes for all samples, suggesting all Loil. rennini 
strains in the Gouda cheese ecosystem of the present study deviated 
in the same way from the reference strain. Additionally, five times 
more reads were recruited for the genome of W. jogaejeotgali 
compared with W. thailandensis (Supplementary Table S2), which 
suggested that both genomes differed significantly and that the 

strain(s) in the Gouda cheese ecosystem of the present study were 
more alike the W. jogaejeotgali genome (Supplementary Figure S7).

Next, the most prevalent bacterial species were investigated using 
StrainPhlAn. The analysis of Leuc. mesenteroides, Staphylococcus 
equorum, and Lacticaseibacillus rhamnosus failed because of a lack of 
reads for these species. Owing to the relatively recent elevation of Lc. 
cremoris to the species level, after being a Lc. lactis subspecies (Li et al., 
2021), the available database of species-specific marker genes was not 
updated yet. The main difference between the Gouda cheese samples 
was, therefore, species-based, and related to the cheese age. Of the 
cheeses with the study on batch-to-batch variability, 20 of the 23 Gouda 
cheeses ripened for 36 weeks were part of the Lc. cremoris cluster, 
whereas eight of the 11 Gouda cheeses ripened for 75 weeks were part 
of the Lc. lactis cluster. Additionally, 14 of the 19 cheese samples of the 
study on crack defects clustered with Lc. cremoris, whereas the 
remaining five clustered with Lc. lactis. All Gouda cheese samples from 
the longitudinal study from 65 until 100 weeks of ripening were part of 
the Lc. lactis cluster, together with those after 0, 2, and 4 weeks of 
ripening, whereas the other samples clustered with Lc. cremoris.

For Leuc. pseudomesenteroides, two clusters could 
be  distinguished across the Gouda cheese samples examined 
(Figure 3), which were in accordance with the starter culture mixtures 
used, with the same two exceptions as described above in the case of 
the metagenomic recruitment plots. The StrainPhlAn clustering was 
completely in line with the ASV profiles found previously (Decadt 
et al., 2023). Indeed, the Leuc. pseudomesenteroides_02 ASV was only 

FIGURE 2

Taxonomic classification at the species level of the high-quality metagenomic sequence reads for the processed milk and cheese samples from the 
longitudinal study of a Gouda cheese production batch (C, curd/core; W, whey; R, rind). Top, relative abundance based on high-throughput, full-length 
16S rRNA amplicon-based sequencing, as reported previously (Decadt et al., 2024b). Bottom, relative abundance based on metagenomic recruitment 
plotting of high-quality metagenomic sequence reads; reads not assigned to any species are not shown. The category “Minorities” includes all species 
identified that were represented by less than 1% for both methods.
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found in one of the clusters, the Leuc. pseudomesenteroides_03 ASV 
only in the other cluster. One cheese sample (B3) was in between both 
clusters and had the ASVs of both clusters. Similarly, for T. halophilus, 
two main clusters coincided with two different ASV profiles as found 
previously (Decadt et al., 2023; Figure 4).

Only 11 Gouda cheese samples had a sufficient number of 
sequence reads for Lacc. paracasei to be  detected by StrainPhlAn 
(Figure 5). They were mainly clustered based on the starter culture 
mixtures used. In the case of Lacp. plantarum and Loil. rennini, all 
cheese samples were part of one cluster (Figures 6, 7).

4.2 Taxonomic identification based on 
long-read metagenomic sequence reads

Taxonomic identification of the four Gouda cheese samples 
subjected to long-read metagenomic sequencing resulted in the 
same main species as those that were found with the short-read 
metagenomic sequencing and high-throughput, full-length 16S 
rRNA amplicon-based HTS approaches (Figure 8). Also, the relative 
abundances of these species were in agreement with those of the 
short-read sequencing data. However, when the minimal read 
length of the long-read sequences considered for taxonomic 
analysis was increased, these relative abundances were more in 
agreement with those obtained by high-throughput, full-length 16S 
rRNA amplicon-based HTS (Figure  8). The number of reads 
decreased with increasing minimal read length, but the number of 

reads assigned to Lactococcus, especially Lc. cremoris, decreased 
much faster compared with the number of reads assigned to other 
species. This was also illustrated by the density plots of the read 
length for each main species (Supplementary Figure S8). A minimal 
read length of 6 kbp resulted into the closest similarity of relative 
abundances compared to the amplicon-based sequencing data.

The species-dependent differences of the read length for long-read 
metagenomic sequencing raised the question if the relative 
abundances of taxa determined by amplicon-based HTS might also 
depend on the length of the amplicon sequence targeted. Indeed, to 
be amplified, the target sequence needs to be complete. Mathematically, 
the fraction I of intact target sequences with length L (300 bp for the 
V4 region and 1,500 bp for the full-length 16S rRNA gene) as a 
function of a hypothetically, completely equal fragment size S (to 
be  interpreted as if all the DNA was fragmented in n pieces with 
exactly the same length S) is

 
1 0S LI if S L and I if S L

S
− +

= ≥ = <

This equation is visualized in Supplementary Figure S9. In 
practice, the DNA will never be fragmented in n pieces with exactly 
the same length S, but this mathematical equation allowed to 
understand differences in relative abundance if different species have 
different levels of fragment sizes concerning their DNA. Species with 
more fragmented DNA, such as Lactococcus, will tend to be  less 
abundant in full-length 16S rRNA gene amplicon-based HTS 

FIGURE 3

Intraspecies-level classification of the Gouda cheese starter culture species Leuconostoc pseudomesenteroides across the cheese samples examined. 
Left. Intraspecies-level phylogeny based on single nucleotide variants recovered from species-specific marker genes using StrainPhlAn3. Sample 
names are as explained in Table 1. Red dots, Gouda cheeses made with starter culture mixture A; green dots, Gouda cheeses made with starter culture 
mixture B; blue dots, Gouda cheeses made with starter culture mixture C; purple dot, reference genome of Leuc. pseudomesenteroides 4882. Right. 
Intraspecies-level diversity based on amplicon sequence variants (ASVs) obtained previously for the corresponding samples of the intraspecies-level 
phylogeny shown left (Decadt et al., 2023, 2024a). The colors represent the different ASVs found as well as their ratio. The black dots represent the 
total relative abundance of Leuc. pseudomesenteroides in the amplicon-based sequence data of each sample.
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FIGURE 4

Intraspecies-level classification of Tetragenococcus halophilus. The description of the figure is analogous to Figure 3. Purple dots, reference genomes; 
F, T. halophilus subsp. flandriensis DSM 23766; H, T. halophilus subsp. halophilus DSM 20339. The category “Minorities” includes all ASVs that were 
represented by less than 1.5% of the total amplicon-based sequence reads in all samples.

FIGURE 5

Intraspecies-level classification of Lacticaseibacillus paracasei. The description of the figure is analogous to Figure 3. Purple dot, reference genome of 
Lacc. paracasei Zhang ASM1924v3. The category “Minorities” includes all ASVs that were represented by less than 0.5% of the total amplicon-based 
sequence reads in all samples. The ASVs of samples without sufficient high-quality metagenomic sequence reads to obtain an intraspecies phylogeny 
using StrainPhlAn3 are not shown.
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compared with partial sequencing of the V4 region solely. Indeed, this 
was evident for Gouda cheese sample A1, for which both methods 
were applied at two different time points (Supplementary Figure S10).

4.3 Metagenome-assembled genome 
reconstruction using short-read 
metagenomic sequence reads

Using only the short-read HQ-MSR datasets, a total of 31 MAGs 
with at least 75% completion and no more than 10% redundancy were 

obtained for the five different HQ-MSR data subsets considered, 
encompassing 14 different species. Only one MAG of Lc. cremoris and 
not any MAG of Lc. lactis could be retrieved, despite their high relative 
abundance in all Gouda cheese samples examined. Since it was 
assumed that these high relative abundances might have hampered 
MAG recruitment, especially given the close similarity between Lc. 
cremoris and Lc. lactis, three new subsets, each containing HQ-MSR 
datasets of cheese samples related to one of the three starter culture 
mixtures applied and having low relative abundances for Lactococcus, 
were used to reconstruct Lc. cremoris and Lc. lactis MAGs, which did 
result in two Lc. lactis MAGs and one Lc. cremoris MAG. Additionally, 

FIGURE 6

Intraspecies-level classification of Lactiplantibacillus plantarum. The description of the figure is analogous to Figure 3. Purple dot, reference genome of 
Lacp. plantarum subsp. plantarum ATCC 14917. The ASVs of samples without sufficient high-quality metagenomic sequence reads to obtain an 
intraspecies phylogeny using StrainPhlAn3 are not shown.

FIGURE 7

Intraspecies-level classification of Loigolactobacillus rennini. The description of the figure is analogous to Figure 3. Purple dot, reference genome of 
Loil. rennini DSM 20253. The ASVs of samples without sufficient high-quality metagenomic sequence reads to obtain an intraspecies phylogeny using 
StrainPhlAn3 are not shown.
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two T. halophilus MAGs were obtained, using two subsets of the 
HQ-MSR datasets, related to the two distinct clusters of T. halophilus 
(Figure 4), and for which one MAG was obtained per cluster. The 
overall strategy to divide the 89 HQ-MSR datasets into distinct subsets 
resulted in a total of 56 MAGs related to 15 species 
(Supplementary Table S3).

4.4 Metagenome-assembled genome 
reconstruction using long- and short-read 
metagenomic sequence reads

The four Gouda cheese samples sequenced with both short- and 
long-read sequencing resulted in eight different co-assemblies 
(Supplementary Figure S3). The largest contigs as well as the highest 
contig N50 values were obtained with the co-assemblies obtained 
with the long-read HQ-MSRs solely (Supplementary Figure S11). 
The use of Flye with the parameter to keep haplotypes (COFH) did 
not result in a difference compared with the use of Flye without this 
parameter (COF). The three first iterations of Racon reduced the 
number of contigs from 16,721  in the COFH co-assembly to 
12,611 in the COFHP one. This also came with a reduction of the 
total co-assembly size of 17.6%. The metaSPAdes co-assembly 
(COS) resulted in the highest number of contigs for all methods 
used. A reduction with 88.0% of the total number of contigs was 
obtained when metaMIC was applied (COS.MIC), while only 
reducing the total co-assembly size with 35%. Only six metagenomic 
bins could be reconstructed from the co-assemblies obtained with 
metaSPAdes and the short-read HQ-MSRs, of which five had a high 
completeness (Supplementary Table S4). The co-assemblies 
obtained with the long-read HQ-MSRs solely led to eight 

metagenomic bins with high completion. Using Flye with the 
parameter to keep haplotypes resulted in an unexpected reduction 
of the average bin completeness and a slight increase of the 
redundancy. The application of a polishing step using long and short 
reads resulted in a general improvement of the completeness and a 
reduction of the redundancy of the bins obtained, although the total 
number of reconstructed bins remained the same. In contrast, the 
application of metaMIC on the MEGAHIT co-assembly (COM.
MIC) resulted in the appearance of an extra metagenomic bin, 
which resulted in a substantial reduction of the redundancy of the 
outlying bin from which it originated. Finally, Strainberry worsened 
the metagenomic binning in terms of completeness and redundancy, 
suggesting that the metagenome contained a microbial complexity 
that was difficult to handle with this tool. For example, the 
T. halophilus metagenomic bins had an average completeness and 
redundancy of 94.8 and 9.3%, respectively, for all long-read 
co-assemblies until Strainberry was applied, decreasing the 
completeness to 83.3% and increasing the redundancy to 32.5% 
(Supplementary Table S4). The metagenomic bins corresponding to 
T. halophilus obtained with the short-read co-assemblies were, in 
contrast, practically free of redundancy (<2.0%). The Lc. laudensis 
metagenomic bin also increased its redundancy from 0.9 to 25.6% 
upon the application of Strainberry.

Almost every metagenomic bin generated by any of the 
co-assembly methods used had a redundancy below 3%, suggesting 
the presence of one main population per bin (Supplementary Table S4). 
The exception, however, was a metagenomic bin identified as Lc. 
cremoris, whose redundancy was on average 89.6% for all unpolished 
co-assemblies (i.e., COF, COFH, COM, and COS) 
(Supplementary Table S4 and Supplementary Figure S12). This bin 
had an estimated genome size ranging from 4.18 to 6.86 Mbp, 

FIGURE 8

Taxonomic classification at the species level of all sequence reads for the cheeses from the longitudinal study of a Gouda cheese production batch. 
Left. Classification expressed as relative abundance of base pairs assigned to each species based on metagenomic recruitment plotting of long-read 
metagenomic sequencing. Reads not assigned to any species are not shown. By default, all reads shorter than 0.5 kbp were removed, but, additionally, 
higher minimal read lengths were used as a cut-off criterium, indicated on the X-axis. The black dots on the Y-axis represent the percentage of total 
base pairs retained by the increased minimal read length, compared to the default filtering. Right. Classification based on short-read metagenomic 
sequencing (SMG) and high-throughput, full-length 16S rRNA amplicon-based sequencing (16S). The category “Minorities” includes all species 
identified that were represented by less than 1%. W, whey; C, core; R, rind.
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suggesting the presence of at least two populations of Lc. cremoris, or 
a closely related species. The polishing pipeline used to improve the 
long-read co-assembly (COFHP) resulted in 31.0% reduction of the 
redundancy of this particular bin, while improving the completeness 
with 0.86%. The COM.MIC co-assembly was the only one able to 
resolve this bin in two different ones, and it did so while maintaining 
high percentages of completeness for both of them. Furthermore, the 
genome size of the bins obtained (2.00 and 2.06 Mbp) were similar to 
the sizes expected for these LAB species (between 2.4 and 2.5 Mbp). 
One of these haplotype-resolved bins was identified as Lc. lactis 
instead, highlighting the importance of performing a successful 
haplotype phasing step.

The number of predicted gene functions was much higher for the 
MAGs obtained by COFH and COFHP than for those obtained by 
COM.MIC (Supplementary Table S5), mainly because they contained 
much more ‘hypothetical proteins’. Additionally, the long-read 
co-assemblies contained more predicted gene functions that were 
found at least twice within the MAGs. For each of the three 
co-assembly strategies applied, the MAGs had unique predicted gene 
functions that were not found with the two other strategies, and 
COFH and COFHP led to more predicted gene functions than COM.
MIC (Supplementary Figure S13). COFHP yielded the most predicted 
gene functions for all MAGs, except for the Lc. laudensis and Lacp. 
plantarum MAGs, for which COFH yielded slightly more predicted 
gene functions compared with COFHP and considerably more 
compared with COM.MIC.

As an approximation to assess the correctness of the MAG 
assemblies, the MAGs were aligned to the 16S rRNA gene of the 
corresponding species for all eight co-assembly strategies applied. 
None of the MAGs reconstructed using short-read sequences solely 
contained a complete 16S rRNA gene, which was also the case for all 
other short-read-based MAGs obtained in the present study 
(Supplementary Table S3). In contrast, most MAGs reconstructed 
using long-read sequences solely resulted in complete 16S rRNA genes 
(Table 3), which also resulted in a correct copy number of these genes 
according to the rrnDB database in the case of Lacc. paracasei, Leuc. 
pseudomesenteroides, Loil. rennini, and T. halophilus. The COFHPB 
strategies showed also here to be less performant, with an incorrect 
16S rRNA gene copy number for Leuc. pseudomesenteroides. All long-
read-based MAGs also contained 5S and 23S rRNA genes, and all 20 
tRNA genes (18 in the case of W. thailandensis). Aligning the 16S 

rRNA gene sequences from the MAGs with the ASVs obtained with 
full-length 16S rRNA amplicon-based HTS previously (Decadt et al., 
2023), there was at least one co-assembly with exactly the same 16S 
rRNA gene sequence as in the ASVs, including the same ratio, for all 
species for which a correct copy number of 16S rRNA genes was 
found. This concerned five ASVs for T. halophilus, three different 
abundant ASVs for Lacc. paracasei and Loil. rennini, for both in a 3:1:1 
ratio, and two ASVs for Leuc. pseudomesenteroides in a 3:1 ratio 
(Table 3). In the case of T. halophilus, for instance, the five 16S rRNA 
gene sequences retrieved with COFHP were identical to the 
corresponding ASVs, whereas those found with COF and COFH had 
only one gap compared with the corresponding ASVs, missing one 
thymine in a homopolymer sequence of seven thymines. Overall, 
COFHP retrieved the highest number of exact matches with the ASVs.

4.5 Metagenome-assembled genome 
comparison and functional analysis

As multiple MAGs were obtained for the species Lacc. paracasei 
(8), Lacp. plantarum (3), Lc. laudensis (8), Lc. cremoris (2), Lc. lactis 
(2), Leuc. pseudomesenteroides (8), Loil. rennini (8), and T. halophilus 
(9) (Supplementary Table S3), those MAGs were compared per species 
based on full ANI percentage. Overall, small differences were found 
for all these species. In the case of T. halophilus, the MAGs of the two 
different subsets (T1 and T2) shared a full ANI value of only 77.5% 
and an ANI value of 97.8%.

A basic functional analysis was done for the MAGs with the 
highest completion per species (Supplementary Table S3) and for all 
MAGs obtained with COFHP. In the case of Lc. cremoris and Lc. lactis, 
all MAGs obtained and listed in Supplementary Table S3, as well as 
those retrieved by COM.MIC, were considered. For T. halophilus, the 
two MAGs representing both clusters mentioned above were used. 
The genes of interest were related to lactate production, diacetyl/
acetoin production, and biogenic amine production, and also various 
aminopeptidases were targeted (Supplementary Table S6). Whereas 
the lactococci and T. halophilus contained only genes encoding 
enzymes involved in the production of l-lactate, Leuc. 
pseudomesenteroides contained only genes encoding enzymes involved 
in the production of d-lactate. The other LAB species contained genes 
involved in the production of both, of which only Lacp. plantarum also 

TABLE 3 Number of copies of the 16S rRNA gene in the metagenome-assembled genomes (MAGs) retrieved by long-read metagenomic sequencing 
(COF and COFH), and long-read metagenomic sequencing with polishing of the short reads (COFHP and COFHPB) of whole-community DNA from the 
Gouda cheese samples.

MAG COF COFH COFHP COFHPB rrnDB

Lacticaseibacillus paracasei 5 (1) 5 (1) 5 (5) 5 (5) 5

Lactiplantibacillus plantarum 2 (1) 2 (1) 2 (2) 2 (2) 5

Lactococcus laudensis 1 (1) + 2 SF 1 (1) + 1 SF 1 (1) + 1 SF [1 (0)] Genus: 6

Leuconostoc pseudomesenteroides 4 (4) 4 (4) 4 (3) 3 (1) 4

Loigolactobacillus rennini 5 (1) 5 (1) 5 (5) 5 (5) Genus: 5

Tetragenococcus halophilus 5 (0) 5 (0) 5 (5) [5 (1)] 5

Weissella thailandensis 1 (0) + 3 MF 1 (0) + 3 MF 1 (0) + 3 MF 1 (0) + 3 MF 8

Incomplete 16S rRNA genes are referred to as small fragments (SF, <100 bp) and medium fragments (MF, 450–550 bp). In the case the metagenomic bins did not meet the qualifications of a 
MAG, the number is indicated between squared brackets. Numbers underlined in bold are in accordance with the median copy number as found in the rrnDB (Stoddard et al., 2015) for the 
species, or the genus if no species data were available (last column). The number between brackets is the number of 16S rRNA gene sequences that had an exact match with an amplicon 
sequence variant (ASV) found in the corresponding samples previously (Decadt et al., 2024b).
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contained all genes involved in lactate racemisation. All species, 
except for T. halophilus, contained genes encoding acetolactate 
synthase and acetolactate decarboxylase involved in diacetyl/acetoin 
production. Genes related to the production of biogenic amines were 
mainly found in Loil. rennini, such as genes encoding an inducible 
ornithine decarboxylase producing putrescine, the related ornithine 
carbamoyltransferase and putrescine-ornithine antiporter, and a 
tryptophan decarboxylase. Loigolactobacillus rennini also contained 
genes encoding a glutamate decarboxylase and a glutamate/gamma-
aminobutyrate antiporter.

In the case of the T. halophilus MAGs, no genes related to biogenic 
amine production were found, although high sequence identity 
(>99%) was obtained with the histidine decarboxylase-encoding genes 
hdcA and hdcB, and the histidine/histamine antiporter-encoding gene 
hdcP in the contigs of the three subsets related to starter culture 
mixtures A, B, and C before binning. For the subset related to the 
cheeses with crack defects, only a match with hdcP was found, whereas 
no matches were found for any of the three histamine-related genes in 
the subset corresponding with the samples from the longitudinal 
study of a Gouda cheese production batch, nor in the long-read 
subset. Specifically in the metagenomic DNA of the subset of samples 
corresponding with T1, not any of the three histamine-related genes 
were found, whereas all three histamine-related genes were found in 
the metagenomic DNA of the subset of samples corresponding 
with T2.

Whether most genes encoding aminopeptidases were found in all 
species (i.e., aminopeptidase C, aminopeptidase N, aminopeptidase 
YpdF, methionine aminopeptidase, neutral endopeptidase, and 
peptidase T), a gene encoding aminopeptidase E was not found in the 
lactococci and Leuc. pseudomesenteroides MAGs, whereas a gene 
encoding aminopeptidase PepS was only present in Lacc. paracasei 
and T. halophilus, and a gene encoding carboxypeptidase was only 
present in Leuc. pseudomesenteroides and T. halophilus. A gene 
encoding glutamyl endopeptidase, based on which glutamate can 
be released, was only found in Loil. rennini.

5 Discussion

Up to now, shotgun metagenomic sequencing has not been 
investigated to study the intraspecies diversity and functional 
potential of the Gouda cheese microbiota (Smid et al., 2014). The 
current study tackled the microbial composition of 89 Gouda cheese 
and cheese production-related samples using short-read shotgun 
metagenomics. It allowed to determine the high relative abundance 
of Lc. cremoris in the Gouda cheese starter cultures used and 
throughout the Gouda cheese production chain. Further, the bacterial 
identities were compared with data obtained previously by amplicon-
based HTS of the full-length 16S rRNA gene, namely, for the whole 
Gouda cheese production chain (Decadt et al., 2024b), Gouda cheese 
wheels showing batch-to-batch variability in organoleptic quality 
(Decadt et al., 2023), and Gouda cheeses with crack defects (Decadt 
et al., 2024a). The short-read metagenomic data showed a higher 
relative abundance of Lc. cremoris and a lower one of NSLAB during 
cheese ripening, compared with the amplicon-based 
HTS. Additionally, these short-read metagenomic sequence data 
allowed to retrieve MAGs of 15 different species and, hence, perform 
a functional analysis to unravel the contribution of both SLAB and 

NSLAB to Gouda cheesemaking. Finally, long-read metagenomic 
sequencing of four Gouda cheese samples yielded an additional 
dataset that could be  used for taxonomic analysis and MAG 
recruitment as well as functional analysis. Those MAGs were of a 
higher quality than those obtained by short-read metagenomic 
sequencing. Consequently, these data allowed to compare the short- 
and long-read metagenomic sequencing approaches.

For short-read metagenomics, the taxonomic identification at 
genus level was very similar for all five alignment-based methodologies 
followed. The NSLAB species Loigolactobacillus was an exception, as 
it was considered not abundantly present based on the methods 
relying on the RefSeq nucleotide database. Indeed, according to the 
phylogenetic tree of StrainPhlAn, the Loigolactobacillus species 
present in the Gouda cheese samples examined deviated from the 
reference strain. Hence, this illustrated the disadvantage of databases 
with only one representative genome per species. Further, the analysis 
relying on DIAMOND with the nr database showed a low relative 
abundance of viral DNA. In the case of the analysis with Kraken2, 
relying on the RefSeq nucleotide database, there was even not any hit 
with viral DNA entries. Instead, more hits with Bacillus entries 
occurred. Indeed, a Skunavirus-related sequence was present in a 
B. thuringiensis genome in this database, which is unusual given the 
specific association of Skunavirus with Lactococcus. Either the 
Skunavirus might yet be a prophage of B. thuringiensis, or it should 
be  considered as a contaminating sequence. The presence of 
contaminating sequences in databases can never be excluded, and the 
chance that they are discovered increases with increasing taxonomic 
differences, which can be compared with the redundancy of yeast 
genomes with bacterial sequences (Donovan et  al., 2018; Lupo 
et al., 2021).

Overall, Kraken2 applied with the nt database was the best 
approach to assign short-read metagenomic sequences, as it could 
identify both viruses and Loigolactobacillus, and it had the lowest 
percentage of unidentified reads. However, new tools are constantly 
developed and, although Kraken2 is a very fast method, other tools, 
such as KMCP, claim to offer a more accurate taxonomic profiling 
reliable at species level (Shen et al., 2023). However, tools as KMCP do 
not easily allow the detection of new species, unlike metagenomic 
recruitment plotting. The latter methodology was used in the present 
study and can give a good indication of the presence of new species, 
or species for which there is no genome sequence available yet in the 
public domain (Verce et al., 2019).

It was presumed that yeasts were not abundant in the samples 
investigated (Decadt et al., 2023, 2024b), which was confirmed by the 
genus-level identification of the current study, as yeasts had a relative 
abundance of less than 0.1% in all Gouda cheese samples examined. 
In general, the yeast counts of Gouda cheeses are between 1.0 and 3.0 
log (CFU/g) (Aljewicz and Cichosz, 2017; Nalepa et al., 2020). Further, 
a meta-analysis of 184 various Irish artisan cheese samples has 
reported a mean relative abundance of 2% eukaryotic DNA, but a 
major presence (20%) of viral DNA (Walsh et  al., 2020). The 
percentage of viral reads was tenfold lower in the Gouda cheese 
samples of the current study, but in contrast to other studies, the 
present study considered the age of the cheeses as well as the location 
of the samples in the cheeses, which revealed a significantly higher 
viral abundance in long-ripened cheeses and in the rinds. The lower 
water activity in the rinds and long-ripened Gouda cheeses, combined 
with a higher relative abundance of NSLAB (Decadt et  al., 2023, 
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2024b), might generate bacterial stress on Lactococcus, and may 
further induce the lytic cycle of its Skunavirus prophage (Garneau and 
Moineau, 2011), resulting in the multiplication of the phage and, 
hence, a higher relative abundance of viral DNA.

At species level, short-read shotgun metagenomics confirmed the 
presence of the Gouda cheese bacterial species that have been reported 
using amplicon-based HTS targeting the full-length 16S rRNA gene 
previously (Decadt et  al., 2023, 2024a, 2024b). Another study 
comparing short-read shotgun metagenomics with amplicon-based 
HTS of the full-length 16S rRNA gene (applying the ONT platform) 
has shown that the use of both methods lead to the same dairy core 
microbiota, but that minorities might differ, whereas amplicon-based 
HTS detects fewer species (Rubiola et al., 2022). Compared to the 
latter study that has reported 13 core families and 1,078 different 
genera across all milk filter samples examined, the results of both 
methods were more similar in the present Gouda cheese study, which 
thus showed a more limited diversity of the abundant species (>0.4%). 
The main difference between both methods in the present study was 
the relative abundance of Lc. cremoris, which was significantly higher 
according to the short-read shotgun metagenomics data. 
Consequently, the relative abundance of the NSLAB was significantly 
lower according to short-read shotgun metagenomics compared with 
the amplicon-based full-length 16S rRNA gene HTS. The high relative 
abundance of Lactococcus was in line with the genus-level 
identification done with the five different alignment-based approaches 
applied. Whereas the data of the amplicon-based HTS are biased by 
the gene copy number, shotgun metagenomic data are biased by the 
genome size (Stothart et al., 2023). The median 16S rRNA gene copy 
number of Lactococcus is six, whereas that of Tetragenococcus, 
Loigolactobacillus, Lactiplantibacillus, and Lacticaseibacillus is five, and 
that of Leuconostoc four (Stoddard et al., 2015). This would suggest a 
higher relative abundance of Lactococcus via amplicon-based HTS 
compared with shotgun metagenomics, the opposite of what was 
found in the current study. The genome size of Lc. cremoris KW2 and 
that of Lc. lactis LAC460 is 2.43 Mbp, which is comparable with the 
genome size of T. halophilus MJ4 (2.39 Mbp), somewhat longer than 
that of Lc. laudensis DSM 28961, Leuc. pseudomesenteroides 
FDAARGOS_1003, and Loil. rennini DSM 20253 (2.30, 2.11, and 
2.27 Mbp, respectively), and shorter than that of Lacc. paracasei 
362.5013889 and Lacp. plantarum SRCM100442 (3.03 and 3.22 Mbp, 
respectively). Hence, the genome size differences can neither explain 
the discrepancy between amplicon-based HTS and short-read 
shotgun metagenomics. However, the additional long-read 
metagenomic sequencing of four Gouda cheese samples showed that 
the relative abundance of the species involved varied as a function of 
the read length, with a lower relative abundance of Lc. cremoris when 
considering a higher minimal read length cut-off. This indicated that 
the DNA of Lc. cremoris was more fragmented compared to that of 
Lacc. paracasei, Leuc. pseudomesenteroides, Loil. rennini, and 
T. halophilus, and thus allowed to explain the differences between 
amplicon-based HTS and short-read metagenomic sequencing. 
Indeed, for full-length 16S rRNA gene amplicon-based HTS, the 
1,500-bp long gene needs to be  complete (not fragmented) to 
be amplified. In contrast, the fragments sequenced during short-read 
metagenomic sequencing were only between 500 and 1,500 bp long, 
of which 2 × 250 bases were sequenced given the paired-end way of 
sequencing. Consequently, full-length 16S rRNA gene amplicon-
based HTS will preferentially target species with a higher degree of 

DNA integrity compared with short-read metagenomic sequencing. 
This is also a main, and overlooked, difference between high-
throughput amplicon-based HTS of the partial (for instance, the V4 
hypervariable region of the 16S rRNA gene) versus the full-length 16S 
rRNA gene.

Knowing the underlying reason why the outcome of short-read 
metagenomic sequencing differed from that of full-length 16S rRNA 
gene amplicon-based HTS, did not answer the question which method 
would be the most accurate one. One could argue that the relative 
abundances of short-read metagenomic sequencing were the most 
reliable, since all DNA was directly sequenced, without the possible 
introduction of a PCR bias owing to eventual preferential 
amplifications. Indeed, the latter can be the case with amplicon-based 
HTS. However, the finding that differences in DNA fragment sizes 
were species-specific raised the question if these differences had a 
biological meaning. During cheese ripening, most Lactococcus cells go 
into a viable but not culturable state, or die (Gobbetti et al., 2018), 
which might be related to the higher fragmentation of the DNA of 
Lactococcus compared with other abundant species. If lactococci die 
in the same way as streptococci, for which DNA is fragmented before 
the cells lyse (Regev-Yochay et al., 2007), the short DNA fragments 
could come from degraded DNA of dead cells that were intact enough 
to end up in a cell pellet. Additionally, partially fragmented DNA can 
be present in extracellular vesicles that might be retained during cell 
pelleting (Bose et al., 2021; Yu et al., 2018). Consequently, DNAses can 
be added after cell pelleting to ensure the removal of extracellular 
DNA (Gatti et al., 2008), although it is more common to treat samples 
with propidium monoazide (PMA) that binds to extracellular DNA 
and DNA of membrane-compromised cells to do so (Emerson et al., 
2017). Indeed, photoactivation degrades bound DNA, and only DNA 
from intact cells is then sequenced (Emerson et al., 2017). In cheese 
studies, significantly lower relative abundances of Lactococcus have 
been found after a PMA treatment (Barzideh et al., 2022; Porcellato 
and Skeie, 2016), which is comparable with the differences between 
shotgun metagenomics and full-length 16S rRNA gene amplicon-
based HTS in the current study. Hence, there is an indication that the 
relative abundances obtained by full-length 16S rRNA gene amplicon-
based HTS might reflect better the intact cell population compared 
with shotgun metagenomics. However, more research should 
be performed, including PMA treatments and/or the use of DNAses, 
to confirm this hypothesis.

The cheese microbiota forms an ecosystem that has a rather 
limited microbial species diversity but contains different strains of 
some of those species (Smid et al., 2014). The short-read and long-
read metagenomic datasets obtained in the current study served as 
ideal datasets to assess various bioinformatics tools and strategies as 
to their capabilities to be able to distinguish those strains. Based on 
StrainPhlAn, two main intraspecies clusters could be distinguished for 
both Leuc. pseudomesenteroides and T. halophilus, which was 
completely in line with the ASV-based clustering reported previously 
(Decadt et al., 2023). It indicated the presence of (at least) two strains 
for each species. Whereas StrainPhlAn was applied to assess whether 
it could distinguish the different strains present for some of these 
species, it was not able to do so, as it only considered one consensus 
cluster, making this tool unsuited to analyze metagenomes in which 
multiple strains of the same species are to be expected. Likewise, full-
length 16S rRNA gene amplicon-based HTS might not always be able 
to distinguish different strains, as the 16S rRNA gene can be very 

https://doi.org/10.3389/fmicb.2025.1543079
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Decadt et al. 10.3389/fmicb.2025.1543079

Frontiers in Microbiology 16 frontiersin.org

conserved in some species, such as staphylococci (Van Reckem 
et al., 2020).

With regard to metagenomic recruitment plotting, this 
approach allowed to pinpoint the most likely subspecies in the case 
of the SLAB Lc. cremoris and Lc. lactis, and the NSLAB Lacc. 
paracasei and Leuc. mesenteroides. It could not assign the 
T. halophilus reads to one subspecies, possibly because the difference 
between the reference genomes of both subspecies of this species is 
as small as between any T. halophilus genome. However, 
metagenomic recruitment plotting indicated that the HQ-MSRs 
that matched with Weissella genomes did so for W. jogaejeotgali but 
not for W. thailandensis. This suggested that W. jogaejeotgali might 
be considered as a subspecies of W. thailandensis, and not just as a 
synonym (Kwak et al., 2019). Although MAGs could be constructed 
for a total of 15 species, there was never more than one MAG per 
species within any subset of HQ-MSR data, despite the strain 
diversity within some species. The poor MAG retrieval for Lc. lactis 
and Lc. cremoris could be improved by using less cheese samples 
with a lower relative abundance of both lactococci. A knowledgeable 
selection of the samples is thus very important to obtain reliable 
results, as a high relative abundance of a species might at some 
point be counterproductive in generating MAGs of that species if 
multiple strains are present. Similarly, using more samples might 
increase redundancy rather than completion. Likewise, only when 
carefully selecting and combining the HQ-MSR datasets that 
already showed to be related to one of the T. halophilus clusters, two 
distinct MAGs for the two main T. halophilus clusters could 
be  obtained. However, not all differences between the two 
T. halophilus clusters were included in the corresponding MAGs, 
since plasmid-encoded genes are mostly not incorporated into 
MAGs (Vermote et  al., 2023). In particular, genes related to 
histamine production by T. halophilus are plasmid-encoded and this 
plasmid is not present in all strains (Ma et al., 2024). Indeed, the 
HQ-MSR datasets related to one T. halophilus cluster contained all 
genes associated with histamine production, whereas the HQ-MSR 
datasets related to the other T. halophilus cluster did not contain any 
of those genes. Hence, when different MAGs of the same species are 
obtained, it might be a good practice to also consider the genes in 
the contigs that are not part of the MAGs to detect 
missed functionalities.

According to the minimum information about a metagenome-
assembled genome (MIMAG) standards proposed by the Genomic 
Standards Consortium, MAGs need a completion of >90%, a 
redundancy of <5%, and the presence of all 23S, 16S, and 5S rRNA 
genes, and at least 18 tRNA genes, to be qualified as high-quality 
MAGs (Bowers et al., 2017). Whereas several short-read MAGs in the 
present analysis met these requirements for completion and 
redundancy, none of them contained the requested rRNA and tRNA 
genes. Hence, it seemed that MAGs obtained by short-read 
metagenomic sequencing cannot meet these criteria, at least in the 
current study. Long-read metagenomic sequencing might be necessary 
to obtain high-quality MAGs. Indeed, all seven long-read sequencing 
MAGs of the present study contained all the genes requested, and only 
the MAG of W. thailandensis, with a completion lower than 90%, did 
not meet  all those requirements to be  considered as a high-
quality MAG.

The retrieval of 16S rRNA genes from MAGs generated using 
short-read metagenomic sequencing is known to be  problematic 

(Yuan et al., 2015). Only 7% of the MAGs obtained from more than 
3,500 human gut metagenomes contained 16S rRNA genes, with a 
significantly lower copy number compared to complete RefSeq 
genomes (Hiseni et al., 2022). Although there are tools available to 
optimize 16S rRNA gene retrieval from MAGs obtained by short-read 
metagenomic sequencing (Pericard et al., 2018; Song et al., 2022), they 
could not be applied to optimize the correct retrieval of other genes 
witnessing the same problem because of a high similarity between 
different MAGs. In addition, the cheese microbiota has a significant 
level of horizontal gene transfer (Bonham et al., 2017; Walsh et al., 
2020), and it is, therefore, questionable if short-read metagenomic 
sequencing can always deal with this.

In addition to the superior retrieval of the different rRNA genes, 
the long-read shotgun metagenomic sequencing, applied for four 
Gouda cheese samples, yielded more MAGs, compared with short-
read shotgun metagenomic sequencing. Also, these MAGs 
contained more predicted gene functions. This suggested that long-
read metagenomics might be superior to short-read metagenomics 
with regard to MAG retrieval, albeit that polishing the long-read 
sequencing data with short-read sequencing data further increased 
their accuracy. The latter was seen in the case of the 16S rRNA 
genes. Indeed, other studies have found a higher number of MAGs 
with ONT long-read sequencing compared to Illumina short-read 
sequencing (Meslier et  al., 2022; Sereika et  al., 2022). Further, 
although Illumina polishing significantly increases the MAG 
retrieval and quality in the case the R9.4.6 flow cell is used (Overholt 
et al., 2020; Sereika et al., 2022), long-read sequencing can already 
be used as stand-alone technique for (meta)genome sequencing 
(Sereika et al., 2022; Zhao et al., 2023) when the R10.4.1 flow cell 
is used.

The application of the Strainberry tool had a detrimental effect 
on the quality of the MAGs. Moreover, it failed completely to 
separate strains. In the case of Lc. cremoris and Lc. lactis, a large 
intraspecies variety, combined with a high similarity between both 
species, might be the main cause of this failure (Smid et al., 2014). 
Although Strainberry has difficulties with separating very closely 
related strains (Vicedomini et al., 2021), it can be assumed that such 
separation is difficult for all tools. Hence, strain-level resolution of 
undefined, mesophilic starter cultures that typically contain several 
lineages (Erkus et  al., 2013; Smid et  al., 2014), is probably not 
feasible yet by the current metagenomic approaches. More 
philosophically, all MAGs retrieved were in fact a consensus of 
genomes that are very closely related and might or might not be the 
same strain. Moreover, there is no clear cut-off concerning similarity 
between two genomes to be considered as belonging to the same 
strain (Van Rossum et  al., 2020), suggesting that strain-level 
metagenomics is more an ultimate aim than a real possibility. This 
does not exclude the possibility to detect different clusters within a 
species, as shown in the case of T. halophilus during the present 
study. Of the two main T. halophilus clusters, only cluster 2 
contained genes for histamine production, corroborating with 
correlations of metabolites and the corresponding ASVs (Decadt 
et  al., 2023). This illustrates the usefulness of intraspecies 
metagenomics. The fact that these findings come from a selection of 
specific Gouda cheese samples containing only one T. halophilus 
cluster illustrates an alternative, less black-box approach compared 
with the use of so-called strain-specific tools that did not give 
satisfying results.
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The functional analysis of the MAGs of all species mentioned 
above confirmed L-lactate production by lactococci and T. halophilus 
(Kim, 2014; Chun et al., 2019), diacetyl/acetoin production by all 
species except T. halophilus (Chun et al., 2019; McAuliffe et al., 2019), 
aminopeptidase activity by all species (Savijoki et al., 2006; Kieliszek 
et  al., 2021), and biogenic amine production by Loil. rennini and 
T. halophilus (Kazou et al., 2017; Decadt et al., 2024a; Ma et al., 2024).

6 Conclusion

Metagenomic sequencing gave a deep insight into the composition 
of the Gouda cheese microbiota. The SLAB Lc. cremoris was the most 
abundant species in all Gouda cheeses examined, thereby occurring 
from the starter addition upon, including the cores and rinds of the 
long-ripened cheeses, followed by the SLAB Lc. lactis. Whereas 
around 2% of the DNA in the Gouda cheeses originated from phages, 
the yeast fraction was negligible. The relative abundances of NSLAB 
species as found by metagenomic sequencing was significantly lower 
compared with those obtained by full-length 16S rRNA gene 
amplicon-based HTS. The identities of all species found in each 
sample were the same for both sequencing methodologies, even on 
intraspecies level. Long-read metagenomic sequencing showed a 
species-specific fragmentation of the DNA, with lactococcal DNA 
being more fragmented compared with that of the SLAB Leuc. 
pseudomesenteroides and the NSLAB Lacc. paracasei, Loil. rennini, and 
T. halophilus. It is likely that a higher degree of DNA fragmentation 
was related to a higher degree of inactivity or death of the 
corresponding species. Hence, full-length 16S rRNA gene amplicon-
based HTS might give a more accurate view on the relative abundances 
of the active bacteria compared with both short-read metagenomic 
sequencing and partial 16S rRNA gene amplicon-based HTS, and 
might be a good alternative to PMA treatments or other approaches 
to separate the active from the inactive and dead microbial cells. 
Additionally, short-read metagenomic sequencing could not result in 
high-quality MAGs, but long-read metagenomics could. The latter 
might thus be the better choice for MAG retrieval and subsequent 
functional analysis. However, both short-read and long-read 
metagenomic sequencing had difficulties with obtaining MAGs for Lc. 
cremoris and Lc. lactis, owing to their high level of intraspecies 
diversity. The use of less samples, with low relative abundances of these 
species, was the best approach to obtain lactococcal MAGs, suggesting 
that more data do not always lead to better results. Although 
intraspecies differences were found, for instance, for T. halophilus, no 
metagenomic approach could really give strain-level insights. A 
functional analysis of the MAGs of all species mentioned above 
revealed genes related to l-lactate production (lactococci and 
T. halophilus), d-lactate production (Leuc. pseudomesenteroides), 
diacetyl/acetoin production (not T. halophilus), aminopeptidase 
activity (all species), and biogenic amine production (Loil. rennini and 
T. halophilus), confirming earlier metabolomic data.
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