
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Antimicrobials, Resistance and Chemotherapy
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1542029
This article is part of the Research Topic Breaking the Biofilm Barrier: Analysis of Molecular Mechanisms Underlying Biofilm Formation and Identification of Novel Antimicrobial Approaches View all 6 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Objective: This study aims to investigate the synergistic effects and biofilm inhibition mechanisms of ceftazidime-avibactam (CZA) combined with aztreonam (ATM) against carbapenem-resistant Klebsiella pneumonia (CRKP) commonly found in the local clinical setting, providing new insights for clinical anti-infective strategies.We selected a total of 150 non-duplicate clinical isolates of CRKP from multiple hospitals in Ningbo. Common carbapenemase genes were detected using PCR. Broth microdilution and timekill assays were used to evaluate the in vitro synergistic effects of CZA and ATM, both individually and in combination, on CRKP isolates with different enzyme types, and the fractional inhibitory concentration index (FICI) was calculated. The crystal violet staining method and bacterial cell permeability assay were employed to assess the impact of CZA, ATM, and their combination on the cell structure and biofilm formation capacity of CRKP. Real-time quantitative PCR (qRT-PCR) was used to measure the expression levels of biofilm-related genes (Luxs, mrkA, wbbM, pgaA, and wzm) in CRKP under treatment with CZA, ATM, or their combination.The comparison of synergistic indices for different enzyme-type CRKP strains with CZA and ATM combination therapy showed a statistically significant difference (p<0.01). The time-kill assay indicated that the time-kill curves for strains carrying blaKPC-2 and blaNDM-1 resistance genes were similar between the monotherapy and combination therapy groups, while the CZA+ATM combination therapy group showed a significant decrease in bacterial concentration after 4-8 hours of cultivation compared to the CZA and ATM monotherapy groups. The crystal violet staining and bacterial cell permeability assays demonstrated that the CZA+ATM combination significantly reduced biofilm formation and increased cellular structure disruption in CRKP. The qRT-PCR results showed that CZA combined with ATM notably decreased the expression levels of biofilm-related genes Luxs, mrkA, wbbM, pgaA, and wzm in CRKP.The combination of ATM and CZA shows a strong synergistic antibacterial effect against CRKP strains with various enzyme types, with particularly notable synergy in strains carrying the blaKPC-2 resistance gene. Additionally, this combination significantly disrupts the cellular structure of CRKP and inhibits biofilm formation.
Keywords: CRKP, carbapenemase, Ceftazidime-avibactam, Aztreonam, Combined drug sensitivity
Received: 09 Dec 2024; Accepted: 04 Mar 2025.
Copyright: © 2025 Guangfen, Zhang, Wu, Xu, Qiu, Chen, Cui, Zhou and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Jian Zhou, Department of Infectious Diseases, Ningbo Medical Centre Li Huili Hospital, Ningbo, 315010, Zhejiang Province, China
Qingcao Li, Department of Clinical Laboratory, Affiliated Hospital, Ningbo University, Ningbo, Zhejiang Province, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.