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Objectives: Streptococcus agalactiae, or group B Streptococcus (GBS), is a 
significant pathogen associated with severe infections in neonates, particularly 
sepsis and meningitis. The increasing prevalence of antibiotic resistance among 
GBS strains is a growing public health concern, necessitating a comprehensive 
meta-analysis to evaluate the prevalence of this resistance globally.

Methods: We conducted a comprehensive systematic search across four major 
scientific databases: Scopus, PubMed, Web of Science, and EMBASE, targeting 
articles published until December 13, 2023. This meta-analysis focused on 
studies that examined antibiotic resistance in GBS strains. The Joanna Briggs 
Institute tool was employed to assess the quality of the included studies. 
This meta-analysis applied a random-effects model to synthesize data on 
antibiotic resistance in GBS, incorporating subgroup analyses and regression 
techniques to explore heterogeneity and trends in resistance rates over time. 
Outliers and influential studies were identified using statistical methods such as 
Cook’s distance, and funnel plot asymmetry was assessed to evaluate potential 
publication bias. All analyses were conducted using R software (version 4.2.1) 
and the metafor package (version 3.8.1).

Results: This study included 266 studies from 57 countries, revealing significant 
variability in GBS antibiotic resistance rates. The highest resistance rates were 
observed for tetracycline (80.1, 95% CI: 77.1–82.8%), while tedizolid (0.1, 95% 
CI: 0.0–0.8%) showed the lowest resistance rates. Significant heterogeneity in 
resistance rates was observed, particularly for antibiotics such as azithromycin 
and gentamicin (I2 = 97.29%), variability across studies. On the other hand, 
tigecycline and ceftaroline exhibited no heterogeneity (I2 = 0%), suggesting 
consistent resistance patterns. Subgroup analyses revealed disparities in 
resistance rates based on country, continent, and methodological categories. 
Significant increase in resistance rates for several antibiotics over time, including 
clindamycin, erythromycin, ceftriaxone, cefuroxime, ciprofloxacin, levofloxacin, 
moxifloxacin, chloramphenicol, and ofloxacin. Ofloxacin and cefuroxime 
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showed particularly steep trends. Conversely, a declining resistance trend was 
observed for oxacillin.

Conclusion: This study emphasizes the growing issue of antibiotic resistance 
in GBS strains. Notable resistance to older and newer antibiotics, increasing 
resistance over time, regional disparities, and methodological variations are 
noted. Rising resistance trends for multiple antibiotics underscore the urgent 
need for global surveillance and improved antibiotic stewardship.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/view/
CRD42024566269, CRD42024566269.

KEYWORDS

antibiotic resistance, group B Streptococcus, meta-analysis, antibiotic susceptibility, 
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1 Introduction

The increasing prevalence of antibiotic resistance has emerged 
as a primary global public health concern, significantly complicating 
the management of infectious diseases across diverse populations 
(Murray et al., 2022; Heath and Jardine, 2014; Imperi et al., 2024; 
Aijaz et al., 2023). Among the myriad pathogens contributing to 
this crisis, group B Streptococcus (GBS) stands out due to its 
substantial impact on vulnerable groups, including newborns, 
pregnant women, and the elderly. GBS is a leading cause of severe 
infections in neonates, often resulting in life-threatening conditions 
such as sepsis, pneumonia, and meningitis (Alshamlan and 
Anumakonda, 2024). The timely and effective administration of 
antibiotics is crucial for mitigating these risks; however, the 
emergence of resistance to commonly prescribed antibiotics poses 
a formidable challenge to healthcare systems worldwide (Muteeb 
et al., 2023).

The treatment of GBS infections has evolved significantly with the 
introduction of antibiotics, shaping both clinical outcomes and 
bacterial resistance patterns (Sabroske et al., 2023). The first antibiotic 
used against GBS was penicillin, introduced in the 1940s, which 
revolutionized bacterial infection treatment due to its broad-spectrum 
activity and sustained efficacy (Aminov, 2010). Despite its continued 
effectiveness, alternative antibiotics such as erythromycin and 
clindamycin were introduced in the 1960s and 1970s to provide 
treatment options for penicillin-allergic patients (Solensky et  al., 
2000). Over time, additional drugs, including cephalosporins, 
vancomycin, and linezolid, were developed to combat GBS infections, 
particularly in cases of emerging multidrug-resistant (MDR) (Li et al., 
2020). However, these antibiotics’ widespread and prolonged use has 
led to the gradual emergence of resistance. While GBS has largely 
remained susceptible to penicillin, resistance has been increasingly 
reported against macrolides, lincosamides, and fluoroquinolones 
(Oliveira et al., 2022). Notably, the growing resistance to erythromycin 
and clindamycin, first reported in the late 20th century, coincided with 
their expanded clinical use (Sabroske et  al., 2023). The resistance 
profile of GBS has continued to evolve, highlighting a clear correlation 
between antibiotic pressure and bacterial adaptation (Sabroske et al., 
2023). This trend highlights the need for ongoing resistance 
monitoring and historical analysis of antibiotic use in GBS to address 
treatment challenges (Laitin et al., 2024; Muteeb et al., 2023; Hooshiar 
et al., 2024).

Previous studies have provided valuable insights into GBS 
antibiotic resistance (Sabroske et  al., 2023; Verma et  al., 2023); 
however, gaps still need to be  found in understanding its global 
epidemiology and trends. Studies on antibiotic resistance in GBS have 
often been limited to specific regions or antibiotics, resulting in 
fragmented data that fails to capture the global scope of the issue. 
However, recent research has uncovered a concerning pattern: GBS is 
increasingly resistant to widely used antibiotics like erythromycin and 
clindamycin. This trend has been observed across diverse regions, 
including Europe, North America, and South America, highlighting 
the growing challenge of managing GBS infections effectively (Al-
Subol et al., 2022; Jones et al., 2022). Moreover, earlier meta-analyses 
often require more granularity to explore potential variations in 
resistance rates across different geographic regions and periods, which 
is crucial for understanding the dynamic nature of antibiotic 
resistance. The mechanisms underlying antibiotic resistance in GBS 
involve genetic mutations, horizontal gene transfer, and the acquisition 
of resistance genes from other bacterial species (Liu and Liu, 2022; 
Arnold et  al., 2022). This has led to a rise in strains resistant to 
traditional therapies, complicating treatment protocols and 
threatening patient outcomes (Terreni et  al., 2021). Reliance on 
empirical antibiotic therapy, often based on historical susceptibility 
patterns, may need to be revised in the face of evolving resistance 
profiles (Merker et al., 2020). Consequently, healthcare providers must 
effectively adapt their strategies to manage GBS infections (Verma 
et al., 2023) and use these gaps by conducting a systematic review and 
meta-analysis to synthesize data from diverse global sources. This 
study aimed to document the current resistance landscape by 
analyzing relevant published literature to address the lack of statistical 
evaluations on antibiotic resistance in GBS. Additionally, 
we  conducted subgroup analyses based on continents, countries, 
antimicrobial susceptibility testing (AST) categories, bacterial 
diagnostic methods, and year groups to identify factors influencing 
resistance variations.

2 Methods

This investigation, implemented following PRISMA guidelines, 
integrated a meta-analysis to strengthen the outcomes. It was 
registered in the PROSPERO registry with the assigned 
code CRD42024566269.
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2.1 Eligibility criteria

The eligibility criteria for incorporating articles into the meta-
analysis were studies that investigated GBS, reported the proportion 
of resistance, determined the sample size, and published full-text 
articles in English. The exclusion criteria were languages other than 
English, case reports, single-arm studies, cohort studies, and 
pharmacokinetic studies.

2.2 Information sources

We extensively searched several major online databases, including 
Scopus, PubMed, Web of Science, and EMBASE, focusing on studies 
published up to December 2023. These databases were chosen for 
their extensive and comprehensive coverage of the biomedical 
literature, ensuring a broad scope for our systematic review.

2.3 Search strategy

The search syntax used for PubMed and other databases was as 
follows: ((“Streptococcus agalactiae OR group B strep* OR GBS OR 
S. agalactiae)).

The search syntax was adjusted according to each database’s 
guidelines (see the Supplementary material for detailed search syntax 
used for each database). This meticulous methodological approach 
aimed to cover all the necessary research topics.

2.4 Selection process

The systematic online database search results were imported into 
EndNote (version 20), and duplicates were removed. Two authors (SK 
and MB) independently searched and analyzed relevant publications 
to prevent bias. A third author (MH) investigated these disparities.

2.5 Data collection process

The extracted data included the first author(s), publication year, 
country, diagnostic method, sample source, number of positive tests, 
and the total number of individuals (sample size). To avoid errors in 
data extraction, the two authors independently extracted the necessary 
data and agreed on discrepant data.

2.6 Quality assessment and subgroup 
analysis

The Joanna Briggs Institute (JBI) tool was used to evaluate the 
quality of the included articles. Two authors (MB and SK) 
independently assessed their quality, and a third author (MH) 
investigated these disparities.

To assess the quality of the included studies, we  performed a 
comprehensive risk of bias assessment based on key methodological 
criteria. These criteria included the clarity of sample inclusion, 

detailed description of study subjects and settings, standard and 
objective criteria for measuring the condition, identification, and 
management of confounding factors, validity and reliability of 
outcome measurements, and the appropriateness of statistical analyses.

In addition, to validate the robustness of our findings, 
we conducted subgroup analyses based on study quality. The studies 
were categorized into three quality groups: low risk (L), some concerns 
(S), and high risk (H).

This approach allowed us to assess the potential influence of study 
quality on the overall results and ensure that our conclusions were not 
unduly affected by studies with a higher risk of bias.

2.7 Effect measures

This meta-analysis investigated the prevalence of antibiotic 
resistance by analyzing the proportion of resistant isolates across various 
research studies. Subgroup analyses and meta-regression were employed 
to understand the factors contributing to the differences in resistance 
rates, considering variables such as country of origin. In addition, this 
study explored changing trends in antibiotic resistance over time.

2.8 Synthesis methods

The analysis was performed using proportions as outcome 
measures. This study’s primary objective was to determine the 
prevalence of antibiotic resistance in bacterial strains. Its secondary 
goal was to identify the sources of heterogeneity between the groups 
through subgroup analysis and regression based on country. 
Additionally, we investigated the trends in antibiotic resistance rates 
across the years.

2.9 Statistics

A random effects model was used to fit the data. The amount of 
heterogeneity (i.e., τ2) was estimated using the DerSimonian–Laird 
estimator. In addition to the estimate of τ2, the Q-test for heterogeneity 
and I2 statistic were reported. Any heterogeneity was detected (i.e., 
τ2 > 0, regardless of the results of the Q-test). Meta-regression analysis 
was conducted using moderator analysis to investigate the trends in 
antibiotic resistance rates over time. Studentized residuals and Cook’s 
distance were used to examine whether the studies were outliers or 
influential in the model context. Studies with a studentized residual 
larger than the 100 × (1–0.05/(2 × k))th percentile of a standard 
normal distribution were considered potential outliers (i.e., using a 
Bonferroni correction with two-sided α = 0.05, for k studies included 
in the meta-analysis). Studies with Cook’s distance more extensive 
than the median plus six times the interquartile range of Cook’s 
distances were considered influential. Rank correlation and regression 
tests using the standard error of the observed outcomes as predictors 
were used to check for funnel plot asymmetry. The analysis used R 
(version 4.2.1) and the metafor package (version 3.8.1) (DerSimonian 
and Laird, 1986; Cochran, 1954; Higgins and Thompson, 2002; 
Viechtbauer and Cheung, 2010; Begg and Mazumdar, 1994; Sterne 
and Egger, 2005; Viechtbauer, 2010; Kuhn et al., 2020).

https://doi.org/10.3389/fmicb.2025.1541524
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Hsu et al. 10.3389/fmicb.2025.1541524

Frontiers in Microbiology 04 frontiersin.org

2.10 Reporting bias assessment and 
certainty assessment

We used rank correlation and Egger’s regression tests to evaluate 
funnel plot asymmetry and to detect potential reporting bias. To 
enhance the reliability of our findings, we also applied Fail-Safe N and 
Trim-and-Fill methods, ensuring that our conclusions remain robust 
and credible despite publication biases.

3 Results

3.1 Study selection

The present investigation involved compiling 50,007 studies from 
four prominent online databases: Scopus, PubMed, EMBASE, and 
Web of Science. Subsequently, 5,551 duplicate studies were excluded 
from the dataset. Additionally, 7,560 studies of non-relevant study 
types were systematically removed to ensure precision and relevance 
in the analytical framework. Furthermore, an exhaustive review 
excluded studies explicitly related to animal subjects. Ultimately, the 
assessment focused on the removed titles and abstracts of 9,790 
animal studies. The 27,106 remaining studies were conducted to refine 
the dataset and ensure its appropriateness for subsequent analysis. 
Subsequently, 26,840 studies that did not include the number or 
percentage of antibiotic-resistant isolates were excluded from the 
meta-analysis. The present systematic review and meta-analysis 
included 266 eligible studies (Abdallah et al., 2018; Abotorabi et al., 
2023; Ábrók et al., 2019; Ahmad, 2015; Akpaka et al., 2022; Al Abbas 
et al., 2022; Al Benwan and Al Banwan, 2024; Al Romaihi et al., 2018; 
Al-Matary et al., 2019; Al-Subol et al., 2022; Al-Tulaibawi, 2019; Alani 
and AlMeani, 2022; Alemán et al., 2022; Alhhazmi et al., 2016; Ali 
et  al., 2022; Ali et  al., 2020; Alp et  al., 2016; Alzayer et  al., 2023; 
AlZuheiri et al., 2021; Asghar et al., 2020; Bae et al., 2022; Baldan et al., 
2021; Balkhi et al., 2018; Belard et al., 2015; Bergal et al., 2015; Bhola 
et al., 2020; Biedenbach et al., 2015; Biobaku Oluwafunmilola et al., 
2017; Bitew et al., 2021; Björnsdóttir et al., 2019; Bob-Manuel et al., 
2021; Bolukaoto et al., 2015; Brigtsen et al., 2015; Burcham et al., 2019; 
Campisi et al., 2016; Carvalhaes et al., 2022; Chang et al., 2014; Cheng 
et al., 2020; Choi et al., 2021; Cooper et al., 2016; del Pilar Crespo-
Ortiz et  al., 2014; Creti et  al., 2017; Dashtizade et  al., 2020; de 
Figueiredo et al., 2021; Dehbashi et al., 2015; Dehdashtian et al., 2021; 
Dilrukshi et al., 2021; Dilrukshi et al., 2023; Dobrut et al., 2022; Dong 
et al., 2017; Doumith et al., 2017; Dube et al., 2022; Duncan et al., 
2017; Dutra et al., 2014; Ebrahem et al., 2023; El Shahaway et al., 2019; 
El-Gendy et al., 2021; Emaneini et al., 2016; Emaneini et al., 2014; 
Eskandarian et al., 2015; Evangelia et al., 2015; Fahim et al., 2022; 
Felemban et al., 2019; Feuerschuette et al., 2022; Flamm et al., 2014; 
Florindo et al., 2014; Foster-Nyarko et al., 2016; Frej-Mądrzak et al., 
2020; Fröhlicher et al., 2014; Fujiya et al., 2019; Gajic et al., 2019; Gao 
et al., 2019; Ge et al., 2021; Ghamari et al., 2022; Gharabeigi et al., 
2023; Gherardi et al., 2014; Girma et al., 2020; Gizachew et al., 2018; 
Gizachew et al., 2020; Gogoi et al., 2021; Gomi et al., 2019; Goudarzi 
et al., 2015; Goudarzi and Navidinia, 2019; Graux et al., 2021; Guan 
et al., 2018; Guo D. et al., 2018; Guo et al., 2019; Guo et al., 2016; Guo 
Y. et al., 2018; Hadavand et al., 2015; Haimbodi et al., 2021; Hamad 
et al., 2023; Hayes et al., 2017; Hays et al., 2016; Hernandez et al., 2022; 
Hirai et al., 2020; Hiriote et al., 2017; Hon et al., 2020; Horn et al., 

2021; Houri et al., 2017; Hsu et al., 2023a, 2023b; Hsueh, 2015; Husen 
et al., 2023; Ikebe et al., 2015; Ikebe et al., 2023; Iweriebor et al., 2023; 
Jalalifar et al., 2019; Jamrozy et al., 2020; Ji et al., 2017; Jiang et al., 
2016; Jiang et al., 2017; Jiao et al., 2022; Jisuvei et al., 2020; Jones et al., 
2022; Kaminska et al., 2020; Kang et al., 2017; Kao et al., 2019; Kardos 
et al., 2019; Karim et al., 2019; Karlowsky et al., 2014; Karlowsky et al., 
2016; Karlowsky et al., 2015; Karlowsky et al., 2017; Kawaguchiya 
et al., 2022; Kekic et al., 2021; Kernéis et al., 2017; Khan et al., 2015; 
Khan et al., 2023; Khodaei et al., 2018; Kitamura et al., 2019; Ko et al., 
2021; Kumalo et al., 2023; Laczeski et al., 2014; Lagunas-Rangel, 2018; 
Lee et al., 2022; Lee and Lai, 2015; Leykun et al., 2021; Li et al., 2018; 
Li G. et al., 2022; Li J. et al., 2019; Li X. et al., 2019; Li X. et al., 2022; Li 
et al., 2023; Li Y. et al., 2019; Liu et al., 2021; Liu et al., 2022; Liu et al., 
2023; Lopes et al., 2017; Lu et al., 2016; Lu et al., 2018; Ma et al., 2021; 
Madrid et al., 2018; Majigo et al., 2023; Majigo et al., 2022; Malek-
Jafarian et al., 2015; Malița et al., 2023; Martins et al., 2017; Matani 
et al., 2016; Mathur et al., 2014; de Melo et al., 2016; Mendes et al., 
2015a, 2015b; Metcalf et al., 2017; Miloshevski and Miloshevska, 2015; 
Minotti et al., 2023; Mišić et al., 2018; Mohamed, 2023; Mohamed 
et al., 2020; Mohamed et al., 2024; Moltó-García et al., 2016; Morfin-
Otero et  al., 2015; Moroi et  al., 2019; Morozumi et  al., 2014; 
Motallebirad et al., 2021a, 2021b; Mousavi et al., 2016; Mubanga et al., 
2015; Mudzana et al., 2021; Mudzikati and Dramowski, 2015; Mukesi 
et al., 2019; Mulu et al., 2015; Mwei et al., 2018; Nabavinia et al., 2020; 
Nagano et al., 2019; Newland et al., 2020; Ngom et al., 2023; Ngonzi 
et al., 2018; Njoku et al., 2017; Nkembe et al., 2018; Novosak et al., 
2020; Numanović et al., 2017; de Oliveira Luiz et al., 2019; Ojo et al., 
2019; Palacios-Saucedo et al., 2022; Panahi et al., 2023; Perim et al., 
2015; Perme et al., 2020; Pfaller et al., 2016; Piccinelli et al., 2015; 
Piérard and Stone, 2021; Pimentel et al., 2016; Proudmore et al., 2023; 
Qadi et al., 2021; Qiu et al., 2021; Rasamiravaka et al., 2016; Renteria 
et al., 2014; Rostami et al., 2021; Saad et al., 2018; Safari et al., 2021; 
Saffar et al., 2016; Sahraee et al., 2019; Said et al., 2019; Santana et al., 
2020; Sapugahawatte et al., 2022; Schuab et al., 2015; Shabayek and 
Abdalla, 2014; Shadbad et al., 2020; Shen et al., 2019; Shipitsyna et al., 
2020; Shrestha et al., 2020; Sigaúque et al., 2018; Simoni et al., 2018; 
Slotved et al., 2021; Soares et al., 2013; Stewart et al., 2020; Størdal 
et al., 2022; Suhaimi et al., 2017; Sulung et al., 2023; Swann et al., 2014; 
Tan et al., 2022; Tang et al., 2020; Teatero et al., 2015a; Teatero et al., 
2017; Teatero et  al., 2015b; Tesfaye et  al., 2022; Tsai et  al., 2019; 
Tulyaprawat et al., 2021; Van Du et al., 2021; Venkatnarayan et al., 
2014; Vuillemin et al., 2021; Wang et al., 2015a, 2015b; Wang S. et al., 
2018; Wang X. et al., 2018; Wang Y-H. et al., 2015; Wang et al., 2014; 
Warrier et  al., 2022; Wataradee et  al., 2023; Wilkie et  al., 2019; 
Williams et al., 2023; Woldu et al., 2014; Wu et al., 2019; Yan et al., 
2016; Yayan et al., 2015; Yong et al., 2015; Yoon et al., 2015; Yu et al., 
2021; Zakerifar et al., 2023; Zeng et al., 2016; Zhang et al., 2015; Zhang 
et al., 2021; Zhang et al., 2022; Zhang et al., 2023; Zhou et al., 2022; 
Zhou et  al., 2023). Supplementary Table  1 presents the detailed 
characteristics of these studies and extracted data. The PRISMA 
flowchart, presented in Figure  1, summarizes the screening and 
selection process for the included presagers.

3.2 Study characteristics

The reports came from 57 countries (Australia, Nigeria, Iran, 
Japan, Serbia, Brazil, Cameroon, Portugal, Argentina, Poland, 
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Malaysia, Taiwan, Switzerland, Norway, Indonesia, Kenya, Tanzania, 
Ethiopia, Bahrain, Palestinian Territories, Namibia, Bosnia & 
Herzegovina, Canada, Hong Kong SAR China, Unknown, Germany, 
Botswana, Nepal, Saudi Arabia, Italy, Ireland, Kuwait, Qatar, Thailand, 

Mozambique, Egypt, Syria, United States, Hungary, India, Sri Lanka, 
Iceland, Slovenia, Mexico, Colombia, China, France, Pakistan, 
Trinidad & Tobago, United Arab Emirates, Malawi, Gambia, Lesotho, 
South Africa, Iraq, Vietnam, Zimbabwe). Six continents [Oceania, 

FIGURE 1

PRISMA flow chart of the article selection procedure. This PRISMA flow diagram illustrates identifying and selecting relevant studies for inclusion in the 
review. Studies were identified through a comprehensive search of PubMed, EMBASE, Web of Science, and Scopus databases. After removing 
duplicates and excluding irrelevant studies, 267 were included in the final review.
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Africa, Asia, Europe, North America, South America, and NA (Not 
Applicable)]. NA indicates studies that include data from multiple 
continents rather than being confined to a single geographic region. 
These studies were included in this meta-analysis. Reports cover the 
years from 2013 to 2023.

3.3 Results of syntheses

3.3.1 Comprehensive antibiotic-specific 
meta-analysis results

The proportion of penicillin resistance in 108 reports, with 979 
resistant isolates among 68,461 investigated isolates, was 0.017 (0.013, 
0.024), and heterogeneity between reports was not significant 
(I2 = 0.00%, p > 0.999). The proportion of ampicillin resistance in 63 
reports, with 622 resistant isolates among 15,558 investigated isolates, 
was 0.031 (0.02, 0.046), and heterogeneity between reports was 
insignificant (I2 = 0.00%, p = 0.993). The proportion of SAM resistance 
through six reports, with four resistant isolates among 229 investigated 
isolates, was 0.043 (0.012, 0.14), and heterogeneity between reports 
was insignificant (I2 = 49.25%, p = 0.080). The proportion of cefazolin-
resistant isolates in 11 reports, with 39 resistant isolates among the 
1744 isolates, was 0.013 (0.002, 0.079), and the heterogeneity between 
reports was insignificant (I2 = 0.00%, p = 0.694). The proportion of 
clindamycin-resistant isolates among 108 reports, with 14,263 
resistant isolates among 51,066 investigated isolates, was 0.293 (0.269, 
0.319), and heterogeneity between reports was significant (I2 = 83.33%, 
p = 0.001). The proportion of erythromycin resistance in 217 reports, 
with 15,548 resistant isolates among 47,934 investigated isolates, was 
0.35 (0.324, 0.378), and the heterogeneity between reports was 
significant (I2 = 95.76%, p = 0.001). The proportion of vancomycin 
resistance in 93 reports, with 604 resistant isolates among 45,009 
investigated isolates, was 0.014 (0.01, 0.02), and the heterogeneity 
between reports was significant (I2 = 87.35%, p = 0.001). The 
proportion of ceftriaxone resistance in 77 reports, with 724 resistant 
isolates among 30,196 investigated isolates, was 0.062 (0.039, 0.097), 
and the heterogeneity between reports was significant (I2 = 91.54%, 
p = 0.001). The proportion of amoxicillin-resistant isolates in 10 
reports, with 43 resistant isolates among the 9,837 investigated 
isolates, was 0.035 (0.006, 0.178), and the heterogeneity between 
reports was significant (I2 = 91.79%, p = 0.001). The proportion of 
cefuroxime resistance through 17 reports, with 53.3 resistant isolates 
among 4,806 investigated isolates, was 0.03 (0.012, 0.07), and 
heterogeneity between reports was significant (I2 = 82.72%, p = 0.001). 
The proportion of cefotaxime resistance through 33 reports, with 367 
resistant isolates among 6,595 investigated isolates, was 0.032 (0.017, 
0.06), and heterogeneity between reports was not significant 
(I2 = 0.00%, p > 0.999). The proportion of meropenem resistance in 13 
reports, with 24 resistant isolates among 26,329 investigated isolates, 
was 0.007 (0.003, 0.017), and heterogeneity between reports was not 
significant (I2 = 0.00%, p > 0.999). The proportion of imipenem 
resistance through 11 reports, with 26 resistant isolates among 384 
investigated isolates, was 0.065 (0.023, 0.166), and heterogeneity 
between reports was significant (I2 = 58.66%, p = 0.007). The 
proportion of azithromycin resistance in 21 reports, with 3,580 
resistant isolates among 21,334 investigated isolates, was 0.41 (0.28, 
0.554), and the heterogeneity between reports was significant 
(I2 = 97.29%, p = 0.001). The proportion of clarithromycin-resistant 

isolates in 11 reports, with 480 resistant isolates among the 1,468 
investigated isolates, was 0.434 (0.303, 0.575), and the heterogeneity 
between reports was significant (I2 = 93.05%, p = 0.001). The 
proportion of erythromycin resistance through seven reports, with 
300 resistant isolates among 554 investigated isolates, was 0.597 (0.31, 
0.829), and heterogeneity between reports was significant (I2 = 96.27%, 
p = 0.001). The proportion of tetracycline resistance in 62 reports, 
with 21,931 resistant isolates among 28,322 investigated isolates, was 
0.801 (0.771, 0.828), and heterogeneity between reports was significant 
(I2 = 80.79%, p = 0.001). The proportion of doxycycline resistance 
through five reports, with 188 resistant isolates among 372 investigated 
isolates, was 0.649 (0.371, 0.853), and heterogeneity between reports 
was significant (I2 = 93.66%, p = 0.001). The proportion of TMP-SMX 
resistant isolates in 29 reports, with 371 resistant isolates among the 
5,705 investigated isolates, was 0.213 (0.107, 0.378), and the 
heterogeneity between reports was significant (I2 = 93.33%, p = 0.001). 
The proportion of ciprofloxacin resistance through 42 reports, with 
502.9 resistant isolates among 3,558 investigated isolates, was 0.179 
(0.127, 0.246), and heterogeneity between reports was significant 
(I2 = 87.16%, p = 0.001). The proportion of levofloxacin resistance in 
62 reports, with 3,756 resistant isolates among 46,465 investigated 
isolates, was 0.086 (0.068, 0.108), and heterogeneity between reports 
was significant (I2 = 51.53%, p = 0.001). The proportion of gentamicin 
resistance through 32 reports, with 649 resistant isolates among 
12,155 investigated isolates, was 0.19 (0.08, 0.389), and heterogeneity 
between reports was significant (I2 = 97.29%, p = 0.001). The 
proportion of linezolid resistance in 45 reports, with 17 resistant 
isolates among 18,117 investigated isolates, was 0.008 (0.006, 0.011), 
and heterogeneity between reports was not significant (I2 = 0.00%, 
p > 0.999). The proportion of daptomycin resistance in 22 reports, 
with four resistant isolates among 10,690 investigated isolates, was 
0.003 (0.002, 0.007), and the heterogeneity between reports was 
insignificant (I2 = 5.23%, p = 0.390). The proportion of tigecycline-
resistant isolates among the 30 reports, with zero resistant isolates 
among the 3,066 investigated isolates, was 0.007 (0.004, 0.012), and 
heterogeneity between reports was insignificant (I2 = 0.00%, 
p = 0.996). The proportion of nitrofurantoin-resistant isolates in the 
12 reports, with 73 resistant isolates among the 627 investigated 
isolates, was 0.124 (0.055, 0.258), and the heterogeneity between 
reports was significant (I2 = 83.52%, p = 0.001). The proportion of 
ceftaroline resistance through four reports, with zero resistant isolates 
among 176 investigated isolates, was 0.012 (0.003, 0.048), and 
heterogeneity between reports was insignificant (I2 = 0.00%, 
p = 0.933). The proportion of tedizolid resistance through four 
reports, with zero resistant isolates among 5,213 investigated isolates, 
was 0.001 (0, 0.008), and heterogeneity between reports was 
insignificant (I2 = 49.62%, p = 0.114). The proportion of cefepime 
resistance in 25 reports, with 179 resistant isolates among the 5,231 
investigated isolates, was 0.063 (0.027, 0.142), and heterogeneity 
between reports was significant (I2 = 89.76%, p = 0.001). The 
proportion of moxifloxacin resistance in 20 reports, with 110 resistant 
isolates among the 1,431 investigated isolates, was 0.063 (0.033, 0.12), 
and heterogeneity between reports was significant (I2 = 86.10%, 
p = 0.001). The proportion of oxacillin resistance in nine reports, with 
41 resistant isolates among the 1,069 investigated isolates, was 0.062 
(0.012, 0.261), and heterogeneity between reports was significant 
(I2 = 85.61%, p = 0.001). The proportion of teicoplanin resistance in 
eight reports, with three resistant isolates among the 1,274 investigated 
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isolates, was 0.007 (0.003, 0.021), and heterogeneity between reports 
was insignificant (I2 = 0.00%, p = 0.882). The proportion of Q/D 
resistance in 15 reports, with 67 resistant isolates among the 1,260 
investigated isolates, was 0.014 (0.003, 0.065), and heterogeneity 
between reports was insignificant (I2 = 0.00%, p = 0.472). The 
proportion of chloramphenicol resistance in 57 reports, with 500 
resistant isolates among 10,245 investigated isolates, was 0.072 (0.048, 
0.107), and the heterogeneity between reports was significant 
(I2 = 93.25%, p = 0.001). The proportion of cefditoren resistance in 
four reports, with 44 resistant isolates among 20,636 investigated 
isolates, was 0.003 (0, 0.238), and heterogeneity between reports was 
significant (I2 = 95.23%, p = 0.001). The proportion of norfloxacin 
resistance in nine reports, with 168 resistant isolates among the 865 
investigated isolates, was 0.157 (0.084, 0.274), and the heterogeneity 
between reports was significant (I2 = 87.99%, p = 0.001). The 
proportion of AMC resistance in six reports, with 31 resistant isolates 
among the 2033 investigated isolates, was 0.196 (0.023, 0.713), and 
heterogeneity between reports was significant (I2 = 75.79%, p = 0.001). 
The proportion of cefoxitin resistance through four reports, with 14 
resistant isolates among 184 investigated isolates, was 0.186 (0.031, 
0.622), and heterogeneity between reports was significant (I2 = 81.58%, 
p = 0.001). The proportion of norfloxacin resistance in four reports, 
with 18 resistant isolates among the 499 investigated isolates, was 
0.096 (0.006, 0.648), and the heterogeneity between reports was 
significant (I2 = 91.42%, p = 0.001). The proportion of ofloxacin 
resistance through six reports, with 98 resistant isolates among 292 
investigated isolates, was 0.273 (0.049, 0.731), and heterogeneity 
between reports was significant (I2 = 94.61%, p = 0.001). The 
proportion of amikacin resistance in nine reports, with 652 resistant 
isolates among the 9,033 investigated isolates, was 0.196 (0.076, 0.422), 
and heterogeneity between reports was significant (I2 = 73.85%, 
p = 0.001). The proportion of nalidixic acid resistance through three 
reports, with 102 resistant isolates among 135 investigated isolates, 
was 0.749 (0.42, 0.925), and heterogeneity between reports was 
insignificant (I2 = 3.10%, p = 0.356).

Figure 2 shows a forest plot of the observed outcomes and the 
estimate based on the random-effects model. Table  1 details the 
antibiotic resistance patterns among GBS spp.

3.4 Subgroup analysis

This passage offers a comprehensive overview of the subgroup 
analyses of antibiotic resistance. Supplementary Table  2 and  
Figures  3, 4 present detailed data on the subgroups, offering a 
complete view of resistance patterns and trends. The analyses 
investigated differences in resistance rates based on geography, AST 
methods, trends over time, and study quality.

3.4.1 Subgroup analysis based on countries
The subgroup analysis revealed a statistically significant disparity 

in the prevalence of antibiotic resistance, including resistance to 
chloramphenicol, ciprofloxacin, clindamycin, erythromycin, 
gentamicin, imipenem, levofloxacin, moxifloxacin, norfloxacin, 
ofloxacin, tetracycline, and vancomycin. Serbia had the lowest 
chloramphenicol resistance rate, with a prevalence of 0.1%. 
Conversely, Vietnam had the highest resistance rate, with a prevalence 
of 52.4%.

Germany had the lowest prevalence rate of ciprofloxacin 
resistance, 1.5%. Conversely, Mexico had the highest resistance 
rate, 55.6%.

Iceland had the lowest rate of resistance to clindamycin, with a 
prevalence rate of 1%. Conversely, Nigeria showed the highest 
resistance rate (76.2%).

South Africa had the lowest erythromycin resistance rate, at 1.4%. 
Conversely, the country with the highest resistance rate, at 88.9%, 
was unknown.

Portugal has the lowest prevalence of gentamicin (0.3%). In 
contrast, Serbia showed the highest resistance rate (72.7%).

Japan had the lowest imipenem resistance rate, at 1.1%. 
Conversely, India had the highest resistance rate, at 95%.

Portugal had a 0.1% prevalence of resistance to the antibiotic 
levofloxacin. Conversely, Syria had the highest resistance 
rate, at 30%.

Brazil has the lowest resistance rate to moxifloxacin, with a 
prevalence rate of 0.4%. Conversely, Taiwan had the highest resistance 
rate, with a prevalence of 44.6%.

Bahrain had the lowest resistance rate for the antibiotic 
norfloxacin, with a prevalence rate of 0.4%. Conversely, Brazil showed 
the highest rate of resistance (37.5%).

Taiwan had the lowest prevalence rate of resistance to the 
antibiotic ofloxacin, at 5.8%. Conversely, Syria had the highest 
resistance, at 50%. Mexico had the lowest rate of resistance to 
tetracycline prevalence, at 4.3%. Conversely, Nigeria had the highest 
resistance rate, with a prevalence of 98.5%. Switzerland had the lowest 
vancomycin resistance rate at 0%. Conversely, Syria had the highest 
resistance rate, with a prevalence of 95.5% (Figure 3).

Supplementary Table 4 provides a subgroup analysis highlighting 
the countries with the highest and lowest resistance patterns for 
each antibiotic.

3.4.2 Subgroup analysis based on continents
The subgroup analysis revealed a statistically significant disparity 

in the prevalence of antibiotic resistance, including resistance to 
azithromycin, cefuroxime, chloramphenicol, clindamycin, 
erythromycin, levofloxacin, moxifloxacin, norfloxacin, ofloxacin, 
TMP-SMX, and vancomycin. For the antibiotic azithromycin, the 
continent with the lowest resistance rate was the Americas, with a 
prevalence of 9.1%. Conversely, the continent with the highest 
resistance rate was NA, with a prevalence of 72.2%.

Europe had the lowest resistance rate to cefuroxime, with a 
prevalence of 0.2%. Conversely, the continent with the highest 
resistance rate was the Americas, which had a prevalence of 11.7%.

Europe had the lowest prevalence of chloramphenicol use (0.4%), 
while Asia had the highest prevalence (14.1%).

The Americas had the lowest resistance rate to clindamycin, at 
11.5%. Conversely, Asia had the highest resistance rate, at 37.7%.

For the antibiotic erythromycin, the continent with the lowest 
resistance rate was the Americas, which had a prevalence of 14.9%. 
Conversely, Asia had the highest resistance rate, with a prevalence of 
43.4%. Europe had the lowest prevalence of levofloxacin (1.7%), while 
Asia had the highest prevalence (12.7%). The continent with the 
lowest resistance rate to moxifloxacin was the Americas, with a 
prevalence of 0.8%. Conversely, the continents with the highest 
resistance rates were observed in Asia, with a prevalence of 22.6%. 
Asia had the lowest prevalence of norfloxacin (1.1%).
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Conversely, NA had the highest prevalence (29%). Asia had the 
lowest resistance rate to the antibiotic ofloxacin, with a prevalence rate 
of 11.2%. Conversely, the continent with the highest resistance rate 
was NA, with a prevalence of 78.4%. Europe had the lowest resistance 
rate to TMP-SMX, with a prevalence rate of 0.8%. Conversely, the 
continent with the highest resistance rate was the Americas, with a 
prevalence rate of 61.5%.

Europe had the lowest vancomycin prevalence (0.4%), and Africa 
had the highest (8.5%) (Figure 4A).

3.4.3 Subgroup analysis based on AST category
The subgroup analysis revealed a statistically significant disparity in 

the prevalence of antibiotic resistance to amikacin and amoxicillin. 
Among the various AST categories are clavulanate, ceftriaxone, 
ciprofloxacin, clindamycin, doxycycline, erythromycin, imipenem, 
TMP-SMX, and vancomycin. The disc method was the AST category 
with the lowest resistance to amikacin, with a prevalence rate of 11.1%. 
Conversely, the AST category with the highest resistance rate (99.3%) 
was observed in the MIC database. For the AMC, the AST category with 

FIGURE 2

Overall, forest plot of the proportion of antibiotic resistance of GBS in individual studies. Each dot represents the resistance rate in a single study, with 
the size of the dot reflecting the sample size. The red square and error bars indicate the pooled estimate and 95% confidence interval.
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TABLE 1 Meta-analysis statistics of worldwide antibiotic resistance in GBS.

Antibiotic K (n, N) Proportion 95% CI 
(LCI, HCI)

I2 p1 p2

Penicillin 216 (979, 68,461) 0.017 (0.013, 0.024) 89.08% p < 0.001 p < 0.001

Ampicillin 126 (622, 15,558) 0.031 (0.020, 0.046) 90.80% p < 0.001 p < 0.001

SAM 6 (4, 229) 0.043 (0.012, 0.140) 49.25% p < 0.001 p = 0.080

Cefazolin 12 (39, 1744) 0.013 (0.002, 0.079) 92.99% p < 0.001 p < 0.001

Clindamycin 216 (14,263, 51,066) 0.293 (0.269, 0.319) 96.10% p < 0.001 p < 0.001

Erythromycin 221 (15,548, 47,934) 0.350 (0.324, 0.378) 96.02% p < 0.001 p < 0.001

Vancomycin 186 (604, 45,009) 0.014 (0.010, 0.020) 88.77% p < 0.001 p < 0.001

Ceftriaxone 78 (724, 30,196) 0.062 (0.039, 0.097) 91.66% p < 0.001 p < 0.001

Amoxicillin 10 (43, 9,837) 0.035 (0.006, 0.178) 91.79% p < 0.001 p < 0.001

Cefuroxime 17 (53.3, 4,806) 0.030 (0.012, 0.070) 82.72% p < 0.001 p < 0.001

Cefotaxime 67 (367, 6,595) 0.032 (0.017, 0.060) 91.90% p < 0.001 p < 0.001

Meropenem 27 (24, 26,329) 0.007 (0.003, 0.017) 64.91% p < 0.001 p < 0.001

Imipenem 12 (26, 384) 0.065 (0.023, 0.166) 69.46% p < 0.001 p < 0.001

Azithromycin 21 (3,580, 21,334) 0.410 (0.280, 0.554) 97.29% p = 0.218 p < 0.001

Clarithromycin 12 (480, 1,468) 0.434 (0.303, 0.575) 94.11% p = 0.357 p < 0.001

Erythrocin 7 (300, 554) 0.597 (0.310, 0.829) 96.27% p = 0.519 p < 0.001

Tetracycline 124 (21,931, 28,322) 0.801 (0.771, 0.828) 95.82% p < 0.001 p < 0.001

Doxycycline 5 (188, 372) 0.649 (0.371, 0.853) 93.66% p = 0.293 p < 0.001

TMP-SMX 30 (371, 5,705) 0.213 (0.107, 0.378) 93.67% p = 0.002 p < 0.001

Ciprofloxacin 43 (502.9, 3,558) 0.179 (0.127, 0.246) 90.42% p < 0.001 p < 0.001

Levofloxacin 125 (3,756, 46,465) 0.086 (0.068, 0.108) 96.32% p < 0.001 p < 0.001

Gentamicin 32 (649, 12,155) 0.190 (0.080, 0.389) 97.29% p = 0.004 p < 0.001

Linezolid 90 (17, 18,117) 0.008 (0.006, 0.011) 20.92% p < 0.001 p = 0.047

Daptomycin 23 (4, 10,690) 0.003 (0.002, 0.007) 42.57% p < 0.001 p = 0.017

Tigecycline 30 (0, 3,066) 0.007 (0.004, 0.012) 0.00% p < 0.001 p = 0.996

Nitrofurantoin 12 (73, 627) 0.124 (0.055, 0.258) 83.52% p < 0.001 p < 0.001

Ceftaroline 4 (0, 176) 0.012 (0.003, 0.048) 0.00% p < 0.001 p = 0.933

Tedizolid 4 (0, 5,213) 0.001 (0.000, 0.008) 49.62% p < 0.001 p = 0.114

Cefepime 26 (179, 5,231) 0.063 (0.027, 0.142) 90.32% p < 0.001 p < 0.001

Moxifloxacin 20 (110, 1,431) 0.063 (0.033, 0.120) 86.10% p < 0.001 p < 0.001

Oxacillin 9 (41, 1,069) 0.062 (0.012, 0.261) 85.61% p = 0.001 p < 0.001

Teicoplanin 9 (3, 1,274) 0.007 (0.003, 0.021) 37.75% p < 0.001 p = 0.117

QD 16 (67, 1,260) 0.014 (0.003, 0.065) 90.81% p < 0.001 p < 0.001

Chloramphenicol 57 (500, 10,245) 0.072 (0.048, 0.107) 93.25% p < 0.001 p < 0.001

Cefditoren 4 (44, 20,636) 0.003 (0.000, 0.238) 95.23% p = 0.014 p < 0.001

Norfloxacins 9 (168, 865) 0.157 (0.084, 0.274) 87.99% p < 0.001 p < 0.001

AMC 7 (31, 2033) 0.196 (0.023, 0.713) 88.08% p = 0.234 p < 0.001

Cefoxitine 4 (14, 184) 0.186 (0.031, 0.622) 81.58% p = 0.142 p < 0.001

Norfloxacin 4 (18, 499) 0.096 (0.006, 0.648) 91.42% p = 0.123 p < 0.001

Ofloxacin 6 (98, 292) 0.273 (0.049, 0.731) 94.61% p = 0.332 p < 0.001

Amikacin 10 (652, 9,033) 0.196 (0.076, 0.422) 84.66% p = 0.012 p < 0.001

Nalidixicacid 4 (102, 135) 0.749 (0.420, 0.925) 77.42% p = 0.130 p = 0.004

K, number of reports; n, number of resistant isolates; N, number of total isolates; LCI, 95% lower limit confidence interval; HCI, 95% higher limit confidence interval; p1, p-value of difference 
from zero resistance rate; p2, p-value of heterogeneity between reports; QD, quinupristin/dalfopristin; AMC, amoxicillin-clavulanic acid; SAM, ampicillin/sulbactam; TMP-SMX, 
Trimethoprim/sulfamethoxazole.

https://doi.org/10.3389/fmicb.2025.1541524
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Hsu et al. 10.3389/fmicb.2025.1541524

Frontiers in Microbiology 10 frontiersin.org

the lowest resistance rate was the disc method, which exhibited a 
prevalence rate of 27.6%. Conversely, the AST category with the highest 
resistance rate was observed in other categories, with a prevalence rate 
of 97.6%.

The combination method had the lowest resistance rate for 
ceftriaxone, with a prevalence of 0.6%. Conversely, the disc method 
had the highest resistance rate, with a prevalence of 14.1%.

For ciprofloxacin, the AST category with the lowest resistance rate 
was MIC base, with a prevalence rate of 4.7%. Conversely, the AST 
category with the highest resistance rate was the disc method, with a 
prevalence of 24.2%.

For clindamycin, the AST category with the lowest resistance rate 
was MIC base, with a prevalence rate of 27.2%. Conversely, the AST 
category with the highest resistance rate was observed in other 
categories, with a prevalence rate of 46.8%.

For doxycycline, the AST category with the lowest resistance rate was 
the MIC, with a prevalence of 52.9%. Conversely, the AST category with 
the highest resistance rate (99.2%) was observed for the disc method.

For erythromycin, the AST category with the lowest resistance 
rate was the combination method, with a prevalence of 25.5%. 
Conversely, the AST category with the highest resistance rate was 
observed in other categories, with a prevalence rate of 52.8%.

FIGURE 3

Worldwide map for prevalence of antibiotics resistance in GBS.
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For imipenem, the AST category with the lowest resistance rate 
was MIC base, with a prevalence rate of 1.1%. Conversely, the AST 
category with the highest resistance rate was the disc method, with a 
prevalence of 10.5%.

For TMP-SMX, the AST category with the lowest resistance rate 
was MIC, with a prevalence rate of 0.9%. Conversely, the AST category 
with the highest resistance rate was observed in other categories, with 
a prevalence rate of 74.8%.

For vancomycin, the AST category with the lowest resistance 
rate was MIC base, with a prevalence rate of 0.7%. Conversely, the 
AST category with the highest resistance rate was observed for the 
disc method, with a prevalence of 2.6% (Figure 4B).

3.4.4 Subgroup analysis based on different 
bacterial diagnostic methods

The data highlights variability in resistance rates depending on the 
diagnostic technique used. When culture methods were employed, 
resistance was notably higher for antibiotics such as ampicillin (43.7%) 
and amoxicillin (33.8%). Trimethoprim (30.2%) and 

amoxicillin-clavulanate (21%) showed significant resistance in 
culture-based approaches.

PCR-based diagnostics, however, revealed differing resistance 
rates, with certain antibiotics demonstrating lower or less 
reported resistance levels. When culture and serotyping or PCR 
were combined, resistance patterns diversified further, reflecting 
the sensitivity and specificity of these diagnostic techniques. The 
distribution underscores the influence of diagnostic 
methodologies on reported antibiotic resistance rates, 
emphasizing the importance of standardized approaches for 
reliable assessments (Figure 4C).

3.4.5 Subgroup analysis based on year-group
Subgroup analysis revealed a statistically significant disparity in the 

prevalence of antibiotic resistance, including resistance to cefditoren, 
ceftriaxone, clindamycin, erythromycin, levofloxacin, and 
moxifloxacin. For cefditoren, the year with the lowest resistance rate 
was 2020–2023, with a prevalence rate of 0%. Conversely, the year with 
the highest resistance rate was 2013–2019, with a prevalence rate of 6%.

FIGURE 4

Subgroup analysis results of GBS isolates. (A) Compression of the prevalence of antibiotic-resistant in GBS isolates between continents. 
(B) Compression of the prevalence of antibiotic-resistant in GBS isolates between AST methods. (C) Compression of the prevalence of antibiotic-
resistant in GBS isolates based on different bacterial diagnostic methods. (D) Compression of the prevalence of antibiotic-resistant in GBS based on 
years.
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For the antibiotic ceftriaxone, the year with the lowest resistance 
rate was 2013–2019, with a prevalence rate of 3.1%. Conversely, the 
year with the highest resistance rate was 2020–2023, with a prevalence 
rate of 9.7%.

For the antibiotic clindamycin, the year group with the lowest 
resistance rate was 2013–2019, with a prevalence rate of 24.6%. 
Conversely, the year with the highest resistance rate was 2020–2023, 
with a prevalence rate of 32.3%.

For the antibiotic erythromycin, the year group with the lowest 
resistance rate was 2013–2019, with a prevalence rate of 29.9%. 
Conversely, the year group with the highest resistance rate was 
observed in 2020–2023, with a prevalence rate of 38.8%.

For the antibiotic levofloxacin, the year group with the lowest 
resistance rate was 2013–2019, with a prevalence rate of 4.1%. 
Conversely, the year group with the highest resistance rate was 
observed in 2020–2023, with a prevalence rate of 13.1%.

For the antibiotic moxifloxacin, the year group with the lowest 
resistance rate was 2013–2019, with a prevalence rate of 1.8%. 
Conversely, the year group with the highest resistance rate was 
observed in 2020–2023, with a prevalence rate of 10.9% (Figure 4D).

3.4.6 Subgroup analysis based on quality group
Subgroup analysis revealed a statistically significant disparity in 

the prevalence of antibiotic resistance, including amikacin, cefditoren, 
cefepime, chloramphenicol, clindamycin, norfloxacin, and 
tetracycline. For amikacin, the quality group with the lowest resistance 
rate was low, with a prevalence rate of 9.7%. Conversely, the quality 
group with the highest resistance rate was observed to be at some risk, 
with a prevalence rate of 77.1%.

The group with the lowest resistance rate to cefditoren was at risk, 
with a prevalence rate of 0%. Conversely, the high-risk group had the 
highest resistance rate observed in high risk, with a prevalence rate of 
22%. For cefepime, the quality group with the lowest resistance rate 
was in the low-risk category, with a prevalence rate of 4.4%. 
Conversely, the quality group with the highest resistance rate was 
observed in the Some-Risk category, with a prevalence rate of 59%.

For the antibiotic chloramphenicol, the quality group with the 
lowest resistance rate was low-risk, with a prevalence rate of 6%. 
Conversely, the quality group with the highest resistance rate was 
observed to be at some risk, with a prevalence of 32.9%.

For the antibiotic clindamycin, the quality group with the lowest 
resistance rate was at high risk, with a prevalence rate of 9.9%. 
Conversely, the quality group with the highest resistance rate was 
observed to be at some risk, with a prevalence of 34.6%.

For norfloxacin, the quality group with the lowest resistance rate 
was at risk, with a prevalence rate of 0.5%. Conversely, the low-risk 
group had the highest resistance rate observed in low risk, with a 
prevalence rate of 18.5%.

For the antibiotic tetracycline, the quality group with the lowest 
resistance rate was at high risk, with a prevalence of 7.8%. Conversely, 
the low-risk group had the highest resistance rate observed in low risk, 
with a prevalence rate of 81.8%.

3.5 Risk of bias assessment

Overall, 266 studies were assessed for methodological quality 
using the JBI checklist. Of the included studies, 209 (78.6%) were 

classified as low risk, demonstrating strong methodological rigor with 
minimal risk of bias. Forty-two studies (15.8%) were identified as 
having some concerns, indicating minor methodological limitations 
that may affect the reliability of findings. Additionally, 15 studies 
(5.6%) were classified as high risk, highlighting significant 
methodological weaknesses that could impact study validity and 
interpretation. Overall, the majority of studies exhibited a low risk of 
bias, ensuring a high level of confidence in the synthesized evidence. 
However, the presence of studies with some concerns or a high risk of 
bias suggests the need for careful interpretation of findings, 
particularly in areas where methodological limitations may have 
influenced results. The results of this assessment are summarized in 
Supplementary Table  3, which provides a detailed risk of bias 
evaluation for each included study.

3.6 Meta-regression

The meta-regression analysis revealed a statistically significant 
positive correlation between resistance rates over the years for several 
antibiotics, indicating an increasing trend in resistance. Notable 
findings include clindamycin [r = 0.07, p = 0.001, 95% CI (0.028, 
0.112)], erythromycin [r = 0.08, p < 0.001, 95% CI (0.038, 0.123)], 
ceftriaxone [r = 0.24, p = 0.008, 95% CI (0.063, 0.417)], cefuroxime 
[r = 0.416, p = 0.007, 95% CI (0.116, 0.716)], ciprofloxacin [r = 0.204, 
p = 0.003, 95% CI (0.068, 0.339)], levofloxacin [r = 0.23, p < 0.001, 
95% CI (0.145, 0.316)], moxifloxacin [r = 0.315, p = 0.034, 95% CI 
(0.024, 0.605)], chloramphenicol [r = 0.148, p = 0.047, 95% CI (0.002, 
0.293)], and ofloxacin [r = 0.698, p < 0.001, 95% CI (0.296, 1.101)]. 
Among these, ofloxacin, cefuroxime, and moxifloxacin exhibited 
particularly steep increases in resistance over time. In contrast, 
oxacillin showed a statistically significant negative correlation with 
resistance rates over the years [r = −0.78, p = 0.040, 95% CI (−1.381, 
−0.034)], indicating a declining trend in resistance. These findings 
underscore the growing threat of antibiotic resistance, particularly for 
commonly used antibiotics while highlighting a rare positive trend in 
the decreasing resistance to oxacillin (Figure 5).

3.7 Publication bias assessment

The Egger and Begg tests were employed to assess funnel plot 
asymmetry and rank correlation, which indicate publication bias.

For antibiotics such as tetracycline (p = 0.055) and doxycycline 
(p < 0.001), the Egger test indicated varying levels of potential 
publication bias, with doxycycline suggesting more substantial 
evidence of bias due to its p-value below 0.05. The Begg test, however, 
yielded p-values above 0.05 for both antibiotics, suggesting less 
consistent evidence of bias. Similarly, ciprofloxacin (p = 0.040) and 
levofloxacin (p < 0.001) showed low p-values in the Egger test, 
supporting the likelihood of bias, while the Begg test was more mixed 
in its findings. The “Fail-Safe N” values were substantial for 
tetracycline (141,092) and levofloxacin (185,807), highlighting robust 
findings, whereas ciprofloxacin (5,542) and doxycycline (0) 
demonstrated lower thresholds.

For macrolides like azithromycin (p = 0.047) and clarithromycin 
(p = 0.084), the Egger test suggested borderline evidence of publication 
bias, while the Begg test returned higher p-values, indicating weaker 
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support for bias. The “Fail-Safe N” values were moderate for 
azithromycin (Aijaz et  al., 2023; Mohamed et  al., 2024) and 
clarithromycin (Piccinelli et al., 2015), suggesting fewer studies would 
be  needed to overturn the observed results. The “Trim and Fill” 
analysis adjusted the effect sizes to 0.410 for azithromycin and 0.434 
for clarithromycin, reflecting the estimated true effect sizes after 
correcting for potential bias.

Other antibiotics, such as tigecycline (p = 0.003) and daptomycin 
(p = 0.025), also showed significant Egger test results, suggesting 
potential bias, with moderate “Fail-Safe N” values of 4,002 and 3,588, 
respectively. Their “Trim and Fill” adjusted effect sizes were 0.007 and 
0.011, indicating minimal impact after correcting for bias.

Lastly, for agents like nitrofurantoin (p = 0.006) and cefepime 
(p = 0.007), the Egger test revealed significant results, while the Begg 
test returned mixed findings. The “Fail-Safe N” values were relatively 
low for nitrofurantoin (Mwambia, 2021) and moderate for cefepime 
(2,095), reflecting varying levels of robustness. Their adjusted effect 
sizes under Trim and Fill were 0.150 and 0.118, providing insights into 
the corrected estimates after addressing bias. Table  2 and 
Supplementary Figure 1 summarize antibiotic resistance trends in 
GBS isolates, combining detailed statistical analysis with visual 
representation to highlight resistance patterns and assess the 
robustness of the findings.

4 Discussion

GBS, known as Streptococcus agalactiae, is a significant pathogen 
in neonates, pregnant women, and immunocompromised 
individuals (Shrestha et al., 2020). It can cause severe infections such 
as sepsis, pneumonia, meningitis in newborns and various invasive 
diseases in adults (Lin et al., 2021). Antibiotic resistance in GBS 
infections is an increasing concern in clinical settings (Hayes et al., 
2020). Penicillin and ampicillin are the primary antibiotics used to 
treat GBS infections (Alotaibi et al., 2023). Although these drugs are 
highly effective, resistance to them remains rare. However, 
alternative antibiotics, such as erythromycin and clindamycin, are 
used for individuals allergic to penicillin (Nadeau and 
Edwards, 2019).

The resistance profile of GBS to various antibiotics is a critical 
consideration in treatment strategies (Di Renzo et al., 2015). Studies 
have shown that while GBS is resistant to certain antibiotics, such as 
gentamicin, erythromycin, and clindamycin, it remains susceptible to 
essential drugs, such as penicillin, cefuroxime, cefotaxime, and 
vancomycin (Mwambia, 2021; Kasem et al., 2024). This information 
is crucial for selecting appropriate antibiotics for managing GBS 
infections, ensuring effective treatment, and reducing the risk of 
complications (Alotaibi et al., 2023). The emergence of antibiotic-
resistant strains, especially pathogens such as GBS, underscores the 
need for continuous monitoring and surveillance to track resistance 
patterns and inform clinical practice (Yang et  al., 2024). This 
systematic review and meta-analysis provide a comprehensive 
overview of the antibiotic resistance rates of GBS isolates to various 
antibiotics, highlighting significant findings and trends.

First, this systematic review and meta-analysis successfully 
identified 334 eligible studies from 57 countries across six continents, 
representing a substantial and diverse dataset. Comprehensive 
geographical coverage underscores the global nature of GBS. The 

variations in antibiotic resistance rates across different regions and 
countries highlight the importance of localized strategies for 
combating antibiotic resistance, considering regional factors such as 
healthcare practices, antibiotic use, and socioeconomic conditions 
(Coque et  al., 2023). The use of standards for antimicrobial 
susceptibility testing is crucial for this discussion.

Key findings indicated that resistance rates for penicillin and 
ampicillin were meager at 1.7 and 3.1%, respectively, with no 
significant heterogeneity observed. This finding reinforces the 
continued effectiveness of antibiotics for GBS. Similarly, vancomycin 
and linezolid showed low resistance rates (1.4 and 0.8%, respectively), 
suggesting their reliability for treating GBS infections. Meropenem 
and daptomycin also demonstrated resistance rates of 0.7 and 0.3%, 
respectively, indicating their strong efficacy against GBS.

Moderate resistance rates of 6.2 and 6.3% were observed for 
ceftriaxone and cefepime, respectively, along with significant 
heterogeneity, indicating varied efficacy across different regions or 
settings. Clindamycin and erythromycin, however, showed notably 
high resistance rates of 29.3 and 35%, respectively, with significant 
heterogeneity, raising concerns regarding their reliability in treating 
GBS infections. Tetracycline and doxycycline exhibited extremely high 
resistance rates of 80.1 and 64.9%, respectively, with significant 
heterogeneity, suggesting the limited utility of these antibiotics in 
treating GBS infections. Similarly, azithromycin and clarithromycin 
showed high resistance rates (41 and 43.4%, respectively), indicating 
widespread resistance.

Subgroup analyses have provided valuable insights into the 
evolving landscape of antibiotic resistance in GBS. The variations 
observed based on year groups, continental locations, countries, 
detection methods, antimicrobial susceptibility test guidelines, and 
risk of bias assessment demonstrated the dynamic nature of the 
resistance problem.

This comprehensive review and subgroup analysis emphasizes the 
complex and multifaceted nature of antibiotic resistance in GBS. These 
findings highlight the importance of localized data, standardized 
testing methods, and high-quality research in understanding and 
addressing antibiotic resistance. Effective management of GBS 
infections requires ongoing surveillance, tailored antibiotic 
stewardship programs, and continuous adaptation of treatment 
guidelines based on the latest evidence. By addressing these challenges, 
healthcare providers can better manage GBS infections and mitigate 
the impact of antibiotic resistance on public health.

Subgroup analysis revealed significant geographical variations in 
antibiotic resistance rates for GBS, underscoring the importance of local 
epidemiological data in informing treatment guidelines and antibiotic 
stewardship programs. The resistance rates for clindamycin, erythromycin, 
and tetracycline showed marked differences across regions.

The significant geographical variations in antibiotic resistance 
rates suggest that local factors, such as antibiotic prescription 
practices, public health policies, and access to healthcare resources, 
play crucial roles in shaping resistance patterns (Felemban et al., 2019; 
Iweriebor et  al., 2023). Studies have shown that differences in 
antibiotic prescribing practices across regions contribute to varying 
resistance rates; for instance, countries with stringent antibiotic 
regulations and robust healthcare infrastructure often report lower 
resistance levels, whereas those with lax policies and limited healthcare 
resources face higher resistance challenges (Felemban et al., 2019; 
Iweriebor et al., 2023).
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TABLE 2 Evaluation of publication bias in meta-analysis.

Antibiotic Egger test Begg test Fail and Safe Trim and Fill

Penicillin p < 0.001 p < 0.001 192,532 0.047 (0.035, 0.062)

Ampicillin p < 0.001 p < 0.001 50,472 0.065 (0.045, 0.092)

SAM p = 0.588 p = 0.719 97 0.043 (0.012, 0.140)

Cefazolin p = 0.090 p = 0.002 757 0.035 (0.008, 0.135)

Clindamycin p < 0.001 p = 0.401 215,655 0.337 (0.309, 0.365)

Erythromycin p = 0.008 p = 0.209 116,614 0.390 (0.361, 0.420)

Vancomycin p < 0.001 p < 0.001 165,823 0.033 (0.024, 0.045)

Ceftriaxone p < 0.001 p = 0.129 15,590 0.136 (0.090, 0.200)

Amoxicillin p < 0.001 p = 0.156 285 0.035 (0.006, 0.178)

Cefuroxime p < 0.001 p = 0.490 1,408 0.107 (0.047, 0.225)

Cefotaxime p < 0.001 p < 0.001 14,741 0.065 (0.037, 0.110)

Meropenem p = 0.984 p < 0.001 3,456 0.020 (0.008, 0.048)

Imipenem p = 0.333 p = 0.046 314 0.134 (0.055, 0.293)

Azithromycin p = 0.047 p = 0.242 4,199 0.410 (0.280, 0.554)

Clarithromycin p = 0.084 p = 0.638 229 0.434 (0.303, 0.575)

Erythrocin p = 0.326 p > 0.999 0 0.597 (0.310, 0.829)

Tetracycline p = 0.055 p = 0.509 141,092 0.753 (0.719, 0.784)

Doxycycline p < 0.001 p = 0.069 0 0.649 (0.371, 0.853)

TMP-SMX p = 0.002 p = 0.479 442 0.277 (0.146, 0.463)

Ciprofloxacin p = 0.040 p = 0.191 5,542 0.179 (0.127, 0.246)

Levofloxacin p < 0.001 p < 0.001 185,807 0.141 (0.113, 0.176)

Gentamicin p = 0.361 p = 0.570 1,782 0.190 (0.080, 0.389)

Linezolid p < 0.001 p < 0.001 40,937 0.018 (0.013, 0.025)

Daptomycin p = 0.025 p < 0.001 3,588 0.011 (0.005, 0.025)

Tigecycline p = 0.003 p < 0.001 4,002 0.007 (0.004, 0.012)

Nitrofurantoin p = 0.006 p = 0.737 301 0.150 (0.068, 0.300)

Ceftaroline p = 0.518 p = 0.083 52 0.012 (0.003, 0.048)

Tedizolid p = 0.024 p = 0.056 134 0.001 (0.000, 0.008)

Cefepime p = 0.007 p = 0.480 2,095 0.118 (0.053, 0.242)

Moxifloxacin p < 0.001 p = 0.537 1,857 0.115 (0.063, 0.200)

Oxacillin p = 0.841 p = 0.046 278 0.062 (0.012, 0.261)

Teicoplanin p = 0.002 p = 0.045 467 0.016 (0.006, 0.039)

Q/D p < 0.001 p < 0.001 898 0.025 (0.007, 0.083)

Chloramphenicol p < 0.001 p = 0.203 24,616 0.121 (0.083, 0.175)

Cefditoren p = 0.048 p > 0.999 194 0.015 (0.000, 0.410)

Norfloxacins p < 0.001 p = 0.477 433 0.226 (0.126, 0.372)

AMC p = 0.505 p = 0.773 15 0.196 (0.023, 0.713)

Cefoxitine p = 0.995 p > 0.999 16 0.186 (0.031, 0.622)

Norfloxacin p < 0.001 p = 0.333 10 0.096 (0.006, 0.648)

Ofloxacin p = 0.747 p > 0.999 10 0.273 (0.049, 0.731)

Amikacin p = 0.490 p > 0.999 1,951 0.196 (0.076, 0.422)

Nalidixicacid p = 0.005 p = 0.333 6 0.749 (0.420, 0.925)

This table provides a comprehensive assessment of potential publication bias in the meta-analysis using a range of statistical techniques. Included are statistics generated from Egger’s method, 
Begg’s method, the Fail-Safe N (NFS), and the Trim-and-Fill method. These methods are applied to investigate the presence of bias and its impact on the meta-analysis results, ensuring the 
robustness and reliability of the findings. QD, quinupristin/dalfopristin; AMC, amoxicillin-clavulanic acid; SAM, ampicillin/sulbactam; TMP-SMX, Trimethoprim/sulfamethoxazole.
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Significant heterogeneity was observed for several antibiotics, 
including clindamycin, erythromycin, and tetracycline. This variation 
suggests that regional antibiotic use policies and differences in 

bacterial strains may significantly influence resistance patterns. For 
example, research has demonstrated that GBS strains exhibit varying 
resistance levels depending on local prescribing habits and public 

FIGURE 5

Meta-regression analysis of antibiotic resistance in GBS isolates over time. The results are visualized in scatter plots, illustrating the trend in the 
proportion of antibiotic-resistant GBS isolates over the years. The analysis revealed significant increases in resistance for several antibiotics, including 
clindamycin, erythromycin, ceftriaxone, cefuroxime, ciprofloxacin, levofloxacin, moxifloxacin, chloramphenicol, and ofloxacin, with notably steep 
increases in cefuroxime, moxifloxacin, and ofloxacin. Conversely, oxacillin showed a significant decrease in resistance over time.
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health policies, which can contribute to increased resistance rates 
(Wang S. et  al., 2018; Hsu et  al., 2021). Furthermore, antibiotic 
resistance tends to be higher in regions with poor healthcare access 
and inadequate regulation of antibiotic sales, leading to self-
medication and misuse (Chen et  al., 2023; Campisi et  al., 2016). 
Therefore, addressing local antibiotic use policies and strengthening 
healthcare infrastructure is essential for controlling GBS resistance 
and ensuring effective treatment options.

Furthermore, the high heterogeneity (I2 values) observed across 
multiple antibiotics indicates substantial variability among the 
included studies, reflecting differences in study methodologies, 
geographic distribution, and temporal trends in GBS resistance. One 
key source of heterogeneity stems from variations in AST methods, 
including differences in breakpoints, testing protocols, and regional 
laboratory standards. Furthermore, microbiological diagnostic 
approaches may vary, with some studies relying solely on culture-
based methods while others incorporate molecular techniques such 
as PCR for pathogen identification and resistance gene detection. 
Studies that combine culture with serotyping or culture with 
PCR-based detection may introduce further variability in resistance 
estimates. Additionally, geographic differences in antibiotic 
prescribing practices and selective pressure, along with temporal 
shifts in resistance trends, likely contribute to the observed 
heterogeneity. Addressing these methodological discrepancies 
through standardized protocols and region-specific analyses is crucial 
for improving the comparability and interpretability of resistance 
data in GBS research.

Subgroup analysis revealed geographical variations in resistance 
rates, with clindamycin resistance being the lowest in Iceland (1%) and 
highest in Nigeria (76.2%), which could be attributed to higher usage 
rates, over-the-counter availability, and lack of stringent antibiotic 
policies, emphasizing the importance of local surveillance and tailored 
antibiotic stewardship programs. Erythromycin resistance also varied, 
being the lowest in South Africa (1.4%), possibly reflecting stringent 
control measures and targeted antibiotic use. An unspecified region 
reported a resistance rate as high as 88.9%, indicating severe misuse 
or overuse of erythromycin and the necessity for immediate public 
health interventions and highest in the unspecified regions (88.9%).

Continental differences were noted, with Asia showing the highest 
resistance rates to several antibiotics, including erythromycin (43.4%) 
and clindamycin (37.7%), compared to lower rates in the Americas 
and Europe. This suggests that broader regional factors, such as 
healthcare infrastructure and antibiotic use policies, might affect 
resistance patterns and the need for enhanced antibiotic stewardship 
and surveillance programs to curb the rise of resistance.

The observed differences in resistance rates based on AST 
methods highlight the importance of methodological standardization. 
Using reliable and validated testing methods consistently ensures 
accurate resistance data, critical for effective clinical decision-making 
and public health strategies.

MIC-based methods reported an extremely high resistance rate to 
amikacin (99.3%) compared to disc methods (11.1%), highlighting the 
importance of standardized testing methods to ensure consistent and 
reliable data. These results show that MIC methods might be more 
sensitive for detecting resistant strains.

Similar variations were noted for other antibiotics, underscoring 
the need for standardized testing protocols to ensure consistent and 
reliable resistance data across different laboratories and studies.

Recent studies (2020–2023) have generally reported higher 
resistance rates for several antibiotics, including ceftriaxone (9.7%) 
and clindamycin (32.3%). This indicates a potentially increasing trend 
in the resistance.

Temporal trends indicate an increase in resistance rates for several 
antibiotics over recent years (2020–2023), including ceftriaxone 
(9.7%) and clindamycin (32.3%). This reflects a worrying upward 
trend in GBS resistance and underscores the need for ongoing 
surveillance and updated treatment guidelines.

The quality of the studies also affected the reported resistance 
rates. Studies categorized as “high risk” often reported higher 
resistance rates. For instance, tetracycline resistance was highest in 
low-risk studies (81.8%), suggesting that study quality can impact the 
reported resistance rates.

Variations in study quality underscore the need for high 
methodological standards in the research. High-quality studies 
provide reliable data for accurately assessing the burden of antibiotic 
resistance and informing effective interventions.

Given the observed antibiotic resistance trends in GBS, it is crucial 
to consider the clinical implications for treatment guidelines and 
healthcare policies. The emergence of MDR strains underscores the need 
for updated treatment protocols, particularly for high-risk populations 
such as neonates, pregnant women, and the elderly. Clinicians should 
be guided by more dynamic, region-specific susceptibility data rather 
than relying solely on historical resistance patterns. Additionally, 
antibiotic stewardship programs should be  strengthened to reduce 
unnecessary antibiotic use and slow the progression of resistance. 
Policies should focus on regular surveillance and implementing rapid 
diagnostic tools, including PCR-based methods, to ensure timely and 
appropriate treatment. Developing new antibiotics and alternatives to 
current therapies should also be  prioritized to address the growing 
challenge of multidrug resistance in GBS infections.

Despite the rigorous methodology employed in this study, several 
limitations should be acknowledged. One key limitation is the potential 
influence of publication bias, even though we assessed it using funnel 
plots and statistical tests. Studies with negative or inconclusive results 
are less likely to be  published, which may lead to overestimating 
antibiotic resistance rates in GBS. This selective reporting bias could 
distort the true resistance landscape, as studies showing lower 
resistance rates or no significant trends might be underrepresented.

Additionally, missing or unpublished data may result in 
geographic disparities, particularly in regions with limited surveillance 
studies or where only certain resistance profiles are reported. The 
exclusion of smaller studies or those published in non-indexed 
journals further contributes to potential data gaps. Variability in study 
methodologies, including differences in AST protocols and diagnostic 
approaches (culture-based vs. PCR-based methods), may also 
introduce heterogeneity in the findings.

Furthermore, while we performed subgroup analyses based on 
study quality, the risk of bias in included studies may still affect the 
overall conclusions. Some studies lacked detailed reporting on key 
methodological aspects, such as sample selection criteria and control 
for confounding variables, which could influence resistance estimates. 
Future research should prioritize standardized surveillance 
methodologies and explore strategies such as gray literature searches, 
data sharing initiatives, and the inclusion of preprint studies to 
mitigate publication bias. Expanding resistance monitoring programs 
across diverse geographic regions and clinical settings will be essential 
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to ensure a more comprehensive and globally representative 
understanding of GBS antibiotic resistance trends.

The variability of GBS resistance patterns across different 
continents and even within various regions of the same country is an 
essential limitation of this study. Several factors, including differences 
in local antimicrobial use, regional healthcare practices, and pathogen 
characteristics, may influence this variability. Our data represent a 
broad overview of global resistance patterns, but these patterns may 
not be  universally applicable. We  recommend that future studies 
explore regional variations in more detail, as this could provide 
valuable insights into the local drivers of resistance and support the 
development of region-specific treatment strategies.

5 Conclusion

In conclusion, this study highlighted the varying resistance patterns 
of GBS across different antibiotics, regions, and testing methods. The low 
resistance rates to penicillin, ampicillin, vancomycin, and linezolid 
suggest that these remain effective treatments for GBS infection. 
However, the high resistance rates to clindamycin, erythromycin, and 
tetracycline necessitate cautious use and consideration of local resistance 
patterns when choosing treatment options. This systematic review and 
meta-analysis, encompassing data from 334 studies across 57 countries, 
revealed significant geographical variations and trends, underscoring the 
need for localized antibiotic stewardship programs and continuous 
global surveillance to combat antibiotic resistance effectively. Increasing 
antibiotic resistance in GBS infections poses a significant challenge, 
particularly for neonates, pregnant women, and immunocompromised 
individuals. In recent years, the increasing trend in resistance rates has 
highlighted the urgent need for continuous surveillance, high-quality 
research, and adaptive treatment guidelines. Future research should 
focus on standardizing AST methods and improving study quality to 
ensure more reliable and comparable data across regions and periods, 
ultimately enhancing our ability to manage GBS infections and mitigate 
the impact of antibiotic resistance on public health.
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