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with bacterial cytological 
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Developing new antibiotics poses a significant challenge in the fight against 
antimicrobial resistance (AMR), a critical global health threat responsible for 
approximately 5 million deaths annually. Finding new classes of antibiotics that 
are safe, have acceptable pharmacokinetic properties, and are appropriately active 
against pathogens is a lengthy and expensive process. Therefore, high-throughput 
platforms are needed to screen large libraries of synthetic and natural compounds. 
In this review, we present bacterial cytological profiling (BCP) as a rapid, scalable, 
and cost-effective method for identifying antibiotic mechanisms of action. Notably, 
BCP has proven its potential in drug discovery, demonstrated by the identification of 
the cellular target of spirohexenolide A against methicillin-resistant Staphylococcus 
aureus. We present the application of BCP for different bacterial organisms and 
different classes of antibiotics and discuss BCP’s advantages, limitations, and 
potential improvements. Furthermore, we highlight the studies that have utilized 
BCP to investigate pathogens listed in the Bacterial Priority Pathogens List 2024 
and we identify the pathogens whose cytological profiles are missing. We also 
explore the most recent artificial intelligence and deep learning techniques that 
could enhance the analysis of data generated by BCP, potentially advancing our 
understanding of antibiotic resistance mechanisms and the discovery of novel 
druggable pathways.
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1 Introduction

The World Health Organization (WHO) has declared antimicrobial resistance (AMR) as 
one of the most severe global health threats facing humanity. AMR is the ability of a microbe 
to survive and grow in the presence of a chemical thought to prevent this effectively. It has 
been estimated that in 2019 alone, antimicrobial resistance killed at least 1.27 million people 
globally, more deaths than HIV/AIDS or malaria, with 4.95 million deaths associated with 
AMR (Murray et al., 2022). According to the Centers for Disease Control and Prevention’s 
Antibiotic Resistance Threats Report (Centers for Disease Control and Prevention (U.S.), 
2019), in the United States, over 2.8 million antibiotic-resistant infections appear every year, 
leading to over 35,000 deaths. Furthermore, AMR has been predicted to lead to a total loss of 
up to $100 trillion for the global economy by 2050 (O’Neill, 2016). These alarming statistics 
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underscore the urgent need to develop effective therapeutics to 
combat antimicrobial resistance.

The efforts undertaken in the field of AMR until now have not 
been enough despite the enormous research effort and inventive 
therapeutic approaches. Since 1940, antimicrobials have been used 
widely (Gardner, 1940; Gardner, 1945) and beyond treating 
infections, antibiotics enabled many modern medical procedures, 
such as open-heart surgeries, organ transplants, and cancer therapies 
(Hutchings et al., 2019). Even before 1940 and for about 60 years 
after, most antibiotics were discovered by culturing microbial 
samples from soil for compounds already expressed by microbes 
(Walsh, 2000; Hutchings et  al., 2019). However, over the last 
20 years, the lipopeptides and the oxazolidinones have been the only 
two new antibiotic classes created and have been effective only 
against Gram-positive bacteria (Luepke et al., 2017). The last novel 
antibiotic class introduced to kill Gram-negative bacteria was the 
quinolones when nalidixic acid was synthesized in 1962 (Tacconelli 
et al., 2018). Although recent developments have shown potential 
against Gram-negative bacteria, such as Zosurabalpin, a new 
antibiotic that disrupts bacterial lipopolysaccharide (LPS) transport 
from the inner membrane to the outer membrane (Zampaloni et al., 
2024), further advancements in antibiotic discovery are needed. To 
facilitate the discovery of novel druggable pathways, new high-
throughput screens based on Bacterial Cytological Profiling have 
been developed.

This review emphasizes the use of bacterial cytological profiling 
(BCP) as a highly effective method for discovering novel antibiotics 
and rapidly identifying antibiotic targets in a cost-effective manner. 
BCP initially creates a library that captures the overall profile of 
bacterial morphological and physiological changes at a single-cell level 
induced by antibiotics with known mechanisms of action. This profile 
includes details on bacterial cell shapes and sizes, fluorescent 
intensities and spatial distribution of DNA, and fluorescent 
distribution of membrane dyes (Nonejuie et al., 2013; Quach et al., 
2016; Samernate et al., 2023). The library is then utilized to classify 
existing antibiotics based on the specific components of bacterial cells 
they target and to discover new antibiotics. In this review, we also 
highlight how BCP is used to expand our quantitative understanding 
of antibiotic pharmacodynamics and bacterial stress responses, as well 
as how BCP enhances the development of non-traditional antibacterial 
strategies such as phage therapies (Deep et al., 2024; Tsunemoto et al., 
2023; Birkholz et al., 2024; Thammatinna et al., 2020; Soonthonsrima 
et al., 2023; Naknaen et al., 2023; Naknaen et al., 2024).

2 Antibiotic mechanism of action and 
antibiotic targets

AMR arises from either genetic alterations or phenotypic changes 
in pathogens (Corona and Martinez, 2013; Davies and Davies, 2010; 
Jago et al., 2025). To effectively tackle antibiotic-resistant bacteria, it is 
essential to understand how antibiotics work, which is known as their 
mechanism of action (MOA), see Table  1. Understanding MOA 
involves studying how antibiotics affect bacterial physiology and 
molecular interaction with bacterial targets (Figure  1). However, 
identifying the MOA presents a significant limitation in drug 
discovery. In some cases, the exact MOA is determined years after a 
drug’s approval, as seen with daptomycin (Grein et al., 2020).

Traditionally, the pathway inhibited by a compound has been 
identified mainly through macromolecular synthesis (MMS) assays. 
These assays use radioactively labeled precursors for peptidoglycan, 
lipid, protein, RNA, or DNA synthesis (Cotsonas King and Wu, 2009), 
enabling the identification of whether one or more pathways are 
targeted. However, compounds that act on different stages of the same 
pathway cannot be identified. Despite being an important technique, 
MMS assays are limited by low accuracy, low resolution, low 
throughput and time-consuming (Nonejuie et al., 2013).

To address the limitations associated with MMS assays, diverse 
alternative techniques to identify the MOA have been developed 
(Silver, 2011; Da Cunha et  al., 2021). These include biochemical 
approaches, that can start with molecular docking—a computational 
technique used to predict how a small molecule, such as an antibiotic, 
binds to its target (Fan et al., 2019). A complementary approach is 
affinity chromatography, which identifies direct biophysical 
interactions between antimicrobials and their targets where the 
antibiotic interacts with protein from whole-cell extracts (Hudson and 
Lockless, 2022; Hage et al., 2012; Franken et al., 2015). However, this 
requires a large amount of the test compound, which is often 
unavailable, particularly during the early stages of drug discovery 
(Nonejuie et al., 2013).

Identification of the molecular target can be  achieved by 
employing genetic approaches (Cacace et al., 2017), such as resistance 
selection (Hudson and Lockless, 2022), testing specifically designed 
indicator strains or genetically modified mutant strains (Freiberg 
et al., 2005; Zlitni et al., 2013; Donald et al., 2009) and using pattern 
recognition techniques based on metabolomics (Vincent et al., 2016; 
Ribeiro da Cunha et al., 2020), such as Nuclear Magnetic Resonance 
Spectroscopy (Dörries et  al., 2014; Hoerr et  al., 2016) or Mass 
Spectrometry (Zampieri et  al., 2018), as well as transcriptomics 
(Boshoff et  al., 2004) through methods like hybridization assays 
(Boshoff et al., 2004) or next-generation sequencing (O’Rourke et al., 
2020) and proteomics (Bandow and Hecker, 2007; Bandow et  al., 
2003). These approaches could be  used independently or in 
conjunction with BCP to provide insights into antibiotic targets.

High-throughput screening platforms have been compared 
(Zampieri et  al., 2018; Ayon, 2023) including some alternative 
discovery strategies (Quinn and Dyson, 2024). While these additional 
methods offer several benefits, they face significant limitations, 
particularly their time-consuming nature, which impacts their overall 
effectiveness. High cost and technical expertise are shared drawbacks 
of metabolomics, proteomics, and transcriptomics, as these methods 
rely on sophisticated equipment and complex data analysis. Similarly, 
transcriptional profiling and genetic approaches share the limitation 
of being unable to directly pinpoint molecular targets (Nonejuie et al., 
2013). Apart from all limitations in determining MOA, discovering 
novel compounds that are active against Gram-positive and Gram-
negative bacteria remains challenging.

The process of discovering and developing new classes of 
antibiotics is particularly challenging, as they must exhibit acceptable 
pharmacokinetic properties, demonstrate safety, and efficacy 
(Tacconelli et al., 2018). Moreover, producing antibiotics offers limited 
profit margins due to the high production costs and the extended 
process of research, testing, and approval (Tacconelli et al., 2018). 
Therefore, new, high-throughput screening platforms are needed for 
the fast and inexpensive screening of large libraries of synthetic and 
natural compounds that are highly effective against human pathogens 
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(Lewis, 2013; Lewis et al., 2024). The following section reviews the 
quick and scalable bacterial cytological profiling methods (BCPs) and 
discusses their availability for some of the most important human 
pathogens as outlined in the latest WHO 2024 report.

3 BCP to identify the mechanism of 
action

In 2013, Poochit et al. designed Bacterial Cytological Profiling 
(BCP) analysis for E. coli cells using different classes of antibiotics 
(Nonejuie et  al., 2013) (Figure  2). BCP data are obtained using 
fluorescent microscopy of E. coli cells stained with fluorescent 
membrane and DNA dyes as well as fluorescent reporter for 
membrane permeability. Using image analysis software, various 
bacterial cell parameters, such as cell length, width, solidity, and DNA 
content, are extracted (Nonejuie et al., 2013). Subsequently, complex 
multidimensional data are analyzed using the Principal Component 
Analysis (PCA) technique, to cluster cells based on their cytological 

profile to identify the MOA of known and unknown antibacterial 
compounds (Figure 2; Box 1).

Since cytological profiling produces data at a single-cell level 
(Samernate et  al., 2023), it uses morphological data such as 
bacterial chromosomal condensation, or cell shape changes in 
response to antimicrobials to differentiate between different 
targeted metabolic pathways (Nonejuie et al., 2013) (Figure 3). 
Furthermore, this approach can lead to the identification of 
antibiotics that are effective against multidrug-resistant bacteria 
(Quach et al., 2016).

BCP takes advantage of the limited presence of cell-cycle 
checkpoints in bacteria (Nonejuie et  al., 2013). When stressed by 
antibiotics, bacteria show phenotypical changes that are characteristic 
of the antibiotic target. For example, compounds that target the 
ribosome by stopping protein synthesis (e.g., tetracycline and 
chloramphenicol) produce circular chromosomes and wide cells 
(Nonejuie et al., 2013; Wu et al., 2019) (Figure 3).

During antibacterial treatment, rod-shaped bacteria (bacilli) 
can shrink and take on an oval form, known as ovoid cells (Spratt, 

TABLE 1 *General classification of antibiotics based on their target and chemical structure, including their mechanism of action.

Target Chemical 
structure

Mechanism of action Generic name 
examples

Cell wall β-Lactams Inhibit penicillin-binding proteins (PBPs) that crosslink peptidoglycan 

chains in the bacterial cell wall (Lima et al., 2020), disrupting cell wall 

integrity and causing cell lysis (Baquero and Levin, 2021).

Penicillins, cephalosporins, 

cephamycins, carbapenems, and 

others.

Glycopeptides Bind to the acyl-D-Ala-D-Ala terminus of peptidoglycan in Gram-positive 

bacteria (Reynolds, 1989).

Vancomycin

Membrane Lipopeptides Depolarize the cell membrane, reducing the ability to create ATP and 

inducing cell death (Jerala, 2007).

Daptomycin, Colistin

Fatty acid synthesis Chlorophenol Inhibit fabI, an enoyl-ACP reductase, blocking the fatty acid synthesis 

(O’Rourke et al., 2020).

Triclosan

Oxirane carboxylic acids Bind to β-ketoacyl-acyl carrier protein synthase, inhibiting fatty acid 

synthesis. In sterol synthesis, inhibits HMG-CoA synthetase activity 

(PubChem, n.d.).

Cerulenin

Protein synthesis Aminoglycosides Cause mRNA misreading and production of uncompleted proteins by 

targeting the 30s ribosomal subunit of 16S RNA resulting in cell death 

(Baquero and Levin, 2021; Davis et al., 1986).

Gentamicin, tobramycin, 

kanamycin

Tetracyclines Bind to 16S rRNA of the 30S ribosomal subunit, inhibiting tRNA binding to 

30S and preventing translation (Chopra and Roberts, 2001).

Tetracycline, doxycycline, 

tigecycline and lymecycline

Macrolides Bind to the 23S rRNA of the 50S ribosomal subunit, leading to incomplete 

peptide chains (Vázquez-Laslop and Mankin, 2018).

Azithromicin, erythromycin and 

clarithromicyn

Lincosamides Bind to the 50S ribosome subunit, causing the peptidyl-tRNA molecule to 

detach from the ribosome during elongation (Tenson et al., 2003).

Clindamycin

Oxazolidinones Inhibit the correct 70S ribosome subunit formation by binding to the 23S 

rRNA of the 50S subunit (Swaney et al., 1998).

Linezolid

DNA synthesis Fluoroquinoles Target DNA gyrase and topoisomerase IV inhibiting DNA replication 

(Correia et al., 2017; Ojkic et al., 2020).

Ciprofloxacin and levofloxacin

Sulfonamides Competitive inhibitor of Dihydropteroate synthase (DHPS) involved in folate 

synthesis (Wong et al., 2012).

Sulfamethazine, sulfapyridine

RNA synthesis Rifamycins Bind to the RNA polymerase and block the RNA synthesis (Kohanski et al., 

2010).

Rifapentine, Rifampin

Examples of each antibiotic type are included.
*For more detailed classifications based on the antibiotic targets see O’Rourke et al. (2020), Wong et al. (2012), and Kohanski et al. (2010) for classifications based on chemical 
structure, see WHO (2023).
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1975; Spratt and Pardee, 1975). There are no clearly defined names 
for these cells, however, as they have been referred to in literature 
as ‘round forms’ (Curtis et al., 1979; di et al., 1994); ‘round cells’ 
(Bernabeu-Wittel et al., 2004; Jackson and Kropp, 1996; de Pedro 
et al., 2001); ‘spherical forms’; ‘spherical cells’ (Sumita et al., 1990; 
Dalhoff et  al., 2003; Horii et  al., 1998); or ‘coccoid forms’ 
(Perumalsamy et  al., 2013; Nickerson and Webb, 1956). 
Filamentation, or cell elongation, occurs when rod-shaped 
bacteria (or sometimes cocci) synthesize peptidoglycan for their 
side walls but not for their division walls, leading to abnormally 
elongated cells (Cushnie et al., 2016). This process results from the 
inhibition of septal peptidoglycan synthesis (Spratt, 1975). 
Filamentous cells can be  also induced when DNA synthesis is 
inhibited (Elliott et  al., 1987; Chen et  al., 2005) or DNA is 
damaged (Uphoff et al., 2013; Jones and Uphoff, 2021; Jaramillo-
Riveri et al., 2022) by a process known as the SOS response that 
inhibits cell division (Ojkic et al., 2020) (Figure 3).

Antibiotic treatments can drastically alter bacterial cell size, 
induce localized swelling, bulge formation, blebbing, and thicken 
peptidoglycan (Cushnie et  al., 2016). Occasionally, antibiotic-
treated cells can lose cell walls, turning bacterial cells into 
spheroplasts and protoplasts. Spheroplast are Gram-negative 
bacteria that lost their peptidoglycan layer, but kept their outer 
membrane, whereas protoplasts are formed from Gram-positive 
bacteria that lack the peptidoglycan layer (Gebicki and James, 
1960; Ojkic et al., 2014). Bacterial variants that completely lack a 
cell wall, encompassing both Gram-negative and Gram-positive 
bacteria, are also known as L-forms (Errington, 2013; Allan et al., 
2009; Mercier et al., 2014; Errington, 2017).

Phenotypical changes derived from the antibiotic-induced 
changes in bacterial subcellular architecture could confer an 
increase in fitness to bacteria in the presence of antibiotics 
(Banerjee et al., 2021). Resistance to antibiotics usually takes the 
form of reducing the concentration of intracellular antibiotic or 
by reducing the binding affinities of the cellular targets to the 
antibiotic (Ojkic et  al., 2022; Baquero et  al., 2023). By using 
available BCP data, recent studies have shown that by reducing the 
surface-to-volume ratio (S/V), bacteria can effectively reduce the 
antibiotic concentration inside a cell, thereby promoting cell 
growth by decreasing antibiotic influx (Ojkic et  al., 2022). 
Similarly, an increase in S/V can benefit the cell in alternative 
ways such as increasing the antibiotic efflux rate or the rate of 

nutrient uptake (Ojkic et al., 2022; Ojkic et al., 2019; Ojkic and 
Banerjee, 2021). These studies explain how cell shape 
transformations promote bacterial survival under antibiotic 
treatments—pointing toward potential new druggable targets that 
control cell shape and size under stress.

BCP has been successfully employed to study the MOA of 
various antibacterial agents, including azithromycin (Lin et al., 
2015), diphenylureas (Mohammad et al., 2017) and thailandamide 
(Wu and Seyedsayamdost, 2018). It has also been used to identify 
the cellular pathways targeted by anticancer metal complexes (Sun 
et al., 2018) and to study the response of bacteria to antibiotics in 
different growth conditions (Dillon et  al., 2020). Additionally, 
BCP has been used to identify the cellular pathways targeted by 
antibacterial molecules affecting different cellular pathways 
(Araújo-Bazán et  al., 2016; Andreu et  al., 2022), making it a 
valuable tool not only for determining antibacterial targets but 
also to potentially identify novel MOA, i.e., ones that target new 
proteins or new pathways (Figure 4).

BCP can also be used to determine the MOA of treatments 
beyond antibiotics, such as phage therapies, revealing how phages 
disrupt essential cellular pathways (Deep et al., 2024; Tsunemoto 
et  al., 2023; Birkholz et  al., 2024; Thammatinna et  al., 2020; 
Soonthonsrima et al., 2023; Naknaen et al., 2023; Naknaen et al., 
2024). BCP allows the visualization of bacterial chromosomal 
condensation, cell shape and overall cellular morphology changes 
within bacterial cells during phage infection. These changes not 
only reveal the pathways and cellular targets phages use to 
propagate their lifecycle but also highlight the role of bacterial 
defense mechanisms in combating phage infection (Tsunemoto 
et al., 2023; Thammatinna et al., 2020; Naknaen et al., 2024). BCP 
has demonstrated how the overexpression of phage-related 
proteins can induce specific phenotypic changes as a result of the 
activation of a bacterial defense system to suppress phage 
propagation (Deep et  al., 2024). Additionally, BCP has been 
fundamental in assessing the impact of different antibiotics on 
phage replication, revealing that certain antibiotics can synergize 
with phages to enhance bacterial cell lysis. In contrast, others 
inhibit phage propagation by disrupting essential bacterial 
processes (Tsunemoto et al., 2023). This dual capability of BCP to 
show both the direct effects of phage infection and the influence 
of external agents such as antibiotics, makes it a high-throughput 
tool in studying phage-bacteria dynamics.

BOX 1 Principal Component Analysis (PCA).

PCA is a popular statistical technique commonly used for identifying linear relationships in complex data, such as those generated in BCP, by identifying the fewest variables 
which contribute the most to variance in the data (Bailey, 2012). PCA creates a linear combination of the original variables to create a new set of principal components (Bailey, 
2012). Firstly, PCA starts by calculating a matrix showing the relation each variable has for all others. Then, it finds their eigenvectors (direction of the relationship) and 
eigenvalues (contribution of relationship to variance). In PCA, the principal components with the most contribution to variance in the data are then plotted. PCA has diverse 
applications across almost all scientific fields, including biology, medicine, computer science, and geology. In the context of biomedical research, PCA has been utilized to 
analyze the human cell atlas and prostate cancer risk prediction (van et al., 2014; Regev et al., 2017). Whilst PCA captures linear relationships between variables exclusively, it 
has been the primary method for dimensional reduction in Bacterial Cytological Profiling (Figure 3B). There are also recent popular approaches capturing non-linear 
relationships such as UMAP (McInnes et al., 2020) (primarily local differences), or PaCMAP (Wang et al., 2021) (local and global relationships) which may provide other 
insights into local differences and non-linear relationships within and between antibiotic treatments. Additionally, plots of dimensionally reduced provide insightful comparisons 
between different treatments, however, identifying distinct profiles is not equivalent to identifying novel targets; a drug could have multiple known MOAs for example and still 
display a distinct profile (Samernate et al., 2023; Martin et al., 2020). Even so, there have been possible connections found between various BCP profiles and novel targets using 
PaCMAP (Takebayashi et al., 2024).
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4 BCP of important human pathogens

Most importantly, BCP has been successfully used to study some 
of the most important human pathogens from the WHO Bacterial 
Priority Pathogens List (Table 2). In 2017, the first Bacterial Priority 
Pathogen list was created by the WHO in collaboration with 
researchers from the Division of Infectious Diseases at the University 
of Tübingen, Germany which used a multicriteria analysis technique 

to inform research and development (R&D) for future antibacterial 
compounds (World Health Organization, 2017). Now, 7 years after the 
introduction of the list there have been novel antibiotics put onto the 
market either with effectiveness in vivo or in vitro against pathogens 
deemed critical priority, but unfortunately, resistance has been found 
in almost every one (di et al., 2021; Butler et al., 2022). This year the 
WHO updated this list to tackle new developments in antimicrobial 
resistance to give an updated and directions for policy makers and 

FIGURE 1

Antibiotic targets in bacteria. Antibiotics typically kill bacteria by targeting at least one of the five major cell components: cell wall, cell membrane, 
ribosomes, DNA, and RNA. Antibiotics interfere with the synthesis of or the direct damage of cellular structures or components resulting in the 
inhibition of bacterial growth or irreversible reduction of bacterial cell integrity. Some antibiotics inhibit the synthesis of essential cell components, 
such as folate synthesis, a precursor for DNA synthesis. Additionally, bacteria have evolved mechanisms such as efflux pumps, which actively transport 
antibiotics out from the cell, reducing their efficacy and contributing to antibiotic resistance. Figure is created using BioRender.

FIGURE 2

Bacterial cytological profiling workflow. (A) Bacterial culture preparation: cells are treated with antibiotics at specific concentrations. After incubation, 
cells are stained with fluorescent dyes targeting cellular components, such as the membrane and DNA. (B) Microscopy slide preparation. 
(C) Fluorescence microscopy is used to image antibiotic-treated cells. (D) Bacterial segmentation and image analysis, the resulting micrographs are 
processed using image analysis software to extract quantitative cytological data. (E) Extracted data is traditionally analyzed using Principal Component 
Analysis (PCA), see Box 1, to identify phenotypic changes, providing insights into the antibiotics’ mechanism of action (MOA). Figure is created using 
BioRender.
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insight on future developments. The new Bacterial Priority Pathogens 
List 2024 includes 15 resistant pathogens, ordered at various levels of 
priority from medium; high; to critical (WHO Bacterial Priority 
Pathogens List, 2024) (Table 2). Out of 15 pathogen groups, bacterial 
cytological profiling is not available for 30% of them: Non-typhoidal 
Salmonella, Neisseria gonorrhoeae, Group A and B Streptococci, 
Haemophilus influenzae. Therefore, urgent BCPs regarding these 
severe pathogenic organisms are needed.

5 BCP to identify new druggable cell 
pathways

BCP is used to scan new antibacterial components to identify 
their specific targets (Figure 4). As demonstrated, BCP effectively 
differentiates between various morphological changes induced by 
different antibiotics, thereby providing insights into the 
antibiotic’s MOA. If a novel antibiotic places bacteria in a distinct 
region of the PCA plot compared to known antibiotic targets, it 
could indicate a new pathway target or MOA previously 
uncharacterized (Figure  4). For example, if the PCA analysis 
shows that the morphology of bacteria treated with a new 
antibiotic clusters in a region associated with membrane or RNA 
targets (Arrows 2 and 3  in Figure  4), it directly indicates the 
antibiotic’s mode of action. Conversely, if the antibiotic’s effect 
causes a morphology change that places bacteria in a novel zone, 
as illustrated with Arrow 4, it may suggest the discovery of a new 
antibacterial pathway or target.

Together, BCP significantly enhances drug development by 
offering a precise, fast and systematic method for characterizing the 
effects of new antibacterial agents. Its ability to identify target-specific 
morphological changes provides a comprehensive tool for uncovering 
novel antibiotic targets and advancing our understanding of 
bacterial physiology.

6 Image analysis tools for BCP and 
data availability

Fluorescent microscopy has allowed us to visualize many cell 
components in great clarity, however, quantitative image analysis of 
both cellular and sub-cellular structures has been a continual challenge 
(Mistretta et al., 2024; Ma et al., 2024). The requirement for accurate 
tools is highlighted by the scale of the bacterial objects, with typically 
100–300 pixels per typical E. coli cell (Cutler et  al., 2022), while 
antibiotic-treated cells could have an order of magnitude larger sizes 
(Nonejuie et  al., 2013). In addition to variations in size, bacteria 
exhibit a diverse array of shapes (Young, 2006). While most studied 
bacteria in BCP (see Tables 3, 4) are rod-shaped or spheroid, there is 
growing interest in bacteria with more complex shapes that emerge 
after exposure to antibiotics, such as seen in Caulobacter crescentus 
(Banerjee et al., 2021).

To precisely define cell boundaries and to segment cellular 
components, sub-pixel segmentation methods are required (Cutler 
et  al., 2022; Bali and Singh, 2015). Classical image segmentation 
techniques have been used since the 1960s (Prewitt and Mendelsohn, 
1966; Mendelsohn et al., 1965), laying the groundwork for the more 
advanced artificial intelligence methods used nowadays. Many 
segmentation solutions are currently available as user-friendly plugins 
such as MicrobeJ (Ducret et  al., 2016) within easily accessible 
platforms such as ImageJ (Ma et al., 2024; Stringer et al., 2021; Sousa, 
2020). MicrobJ is based on the classical segmentation method, but 
since December 2024, MicrobJ has implemented the deep neural 
network segmentation algorithm Omnipose. Stand-alone image 
analysis programs are also available but these can at times be  less 
supported and less accessible (Paintdakhi et al., 2016).

In 2016 SuperSegger was created to improve upon flaws in 
segmentation through thresholding in bacterial phase-contrast images 
and it combines classical segmentation with Deep learning 
(Stylianidou et al., 2016). To correct common errors in segmentation 

FIGURE 3

Bacterial cytological profiling. (A) Antibiotics that target different bacterial cell components induce different cell morphologies. The drawings are based 
on the microscopy images from Nonejuie et al. (2013), where bacterial cells were treated with antibiotics targeting five major biosynthetic pathways 
(DNA, Ribosome, RNA, Cell Wall, Membrane), using fluorescent dyes FM4-64 (red) and DAPI (blue) to stain bacterial membranes and DNA, respectively. 
Scale bar, 1 μm. (B) Principal Component Analysis (PCA) is used to cluster different bacterial cell shapes based on the antibiotic MOA, allowing profiles 
to be distinguished qualitatively. Each point on the graph represents a single cell, with clusters forming distinct groups according to cell morphology 
induced by different antibiotic treatments. For example, green dots represent cells treated with a DNA-targeting antibiotic, but we can see that some 
green dots cluster with orange dots (untreated bacteria), this suggests no significant morphological changes, indicating potential antibiotic resistance 
or persistence (Balaban et al., 2019; Kussell et al., 2005). PCA highlights MOA differences by visualizing the morphological variability induced by 
different antibiotic treatments.
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from both the thresholding and watershed, SuperSegger uses a shallow 
neural network trained from the segmentation data (Chai et al., 2023). 
Recently, Deep neural networks (DNNs) which have now become the 
backbone of most Deep learning segmentation methods are now 
widely recognized as superior tools for cell segmentation (Jan et al., 
2024). As showcased in Table  3, Deep learning is significantly 
underutilized in original BCP studies. However, some recent BCP-like 
profiles have been created using deep learning for segmentation and 
profiling (Zagajewski et al., 2023), and object detection (Spahn et al., 
2022) for antibiotic susceptibility analysis (Table 4).

Among recent and easily available Deep learning segmentation 
algorithms, Pachitariu et al. demonstrated that Cellpose outperformed 
the popular programs Mask R-CNN and StarDist when applied to a 
varied dataset of different cell types and cell-like-objects, showcasing 
it as a powerful general solution for cell segmentation (Stringer et al., 
2021). Cutler et al. assessed the performance of (at the time) state-of-
the-art cell segmentation algorithms on a wide array of bioimages of 
bacteria with different morphologies. This led to the design of the 
algorithm, Omnipose, which outperformed all segmentation 
algorithms tested across a varied dataset of bacterial cell sizes, shapes, 
and optical characteristics and as such has been used extensively in 
research (Cutler et  al., 2022). Recent benchmarks for bacterial 
segmentation algorithms have found that transformer based 
algorithms currently outperform other deep learning models such as 
CNNs, and classical segmentation techniques on a multitude of cell 
types when well implemented on a large datasets (Ma et al., 2024). The 
major advantages these algorithms have over their competing peers 
are threefold: They have a larger model capacity, allowing them to 
train for a more complex task than a model with lower capacity; are 
able to find patterns over the whole image due to self-attention 

mechanisms when CNNs are only able to do so in smaller regions of 
the image (Vaswani et  al., 2023); less annotation is needed than 
competing algorithms for large datasets (Ma et al., 2024) as the model 
can pretrain using transfer-learning and fine tune with more limited 
annotations. The top three winning algorithms of the multimodality 
cell segmentation challenge have however not been used for BCP 
despite their recent inclusion in the widely accessible program, 
NAPARI (Sofroniew et al., 2025).

Segmented data availability (Tables 3, 4) is invaluable for scientific 
communities and accelerates new findings by increasing the 
reproducibility of datasets and enabling future meta-analyses. By 
using published BCP data and mathematical modeling, the researchers 
uncovered the robustness of scaling behavior between cell surface area 
and volume in E. coli (Ojkic et al., 2019) and B. subtilis (Ojkic and 
Banerjee, 2021), inferred cell physiological alterations upon antibiotic 
treatments (Cylke et  al., 2022), and proposed a new antibiotic 
resistance pathway mediated by cell surface-to-volume ratio (S/V) 
transformations (Ojkic et al., 2022). Therefore, the availability of BCP 
data is good practice and should be considered as a benchmark for all 
future BCP platforms, especially for pathogenic bacteria (Table 2).

7 BCP limitations

Even with all the advantages we mentioned about BCP, it has 
certain limitations. BCP can identify the general target of an antibiotic, 
but it cannot provide precise information about the exact site within 
the target that is affected. For instance, while BCP can indicate that an 
antibiotic targets the ribosome, it cannot specify which part of the 
ribosome is involved. Other high-throughput methods, such as 

FIGURE 4

Representation of Principal Component Analysis (PCA) using bacterial morphologies to determine the MOA of a novel antibiotic. Arrow 1 indicates the 
antibiotic used against bacteria studied, which can change their shape depending on the antibiotic’s MOA. For example, if the bacteria exhibit a 
morphology as indicated by arrow 2, the antibiotic likely targets the membrane. Conversely, if the bacteria display a morphology as indicated by arrow 
3, the antibiotic likely targets RNA. However, if the morphology is completely different from the known and clustered morphologies, as shown by 
arrow 4, it suggests that the antibiotic targets a novel pathway but lastly, if the bacteria do not show any change, it suggests that they are not 
susceptible to the tested antibiotic or, in the worst-case scenario, that they are resistant to said antibiotic.
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affinity chromatography and omics-based approaches, can predict 
cellular targets more accurately by providing detailed insights into 
specific molecular interactions or pathway alterations. Combining 
these techniques with BCP could help overcome BCP’s limitation in 
pinpointing the exact stage of pathway inhibition.

BCP requires staining dyes to evaluate DNA content and cell size 
and shape, with fluorescent dye intensity being essential for 
determining the antibiotic MOA. A wide variety of dyes, protein 
fusions, and reporter strains have been used in BCP, facilitating both 
fast MOA detection, and discovery of new MOAs. However, despite the 
abundance of possible dyes, strains, and assays selecting the most 
appropriate ones for specific phenotypic experiments remains 
challenging, as more information is needed to understand cellular 
functions (Table 3). This is exacerbated by the complexity of bacterial 
physiology with many processes being overlapped by mechanisms such 
as metabolic flux or co-dependent regulation (Schäfer et al., 2024; 
Serbanescu et al., 2022). While numerous cytological profiles have been 
reported, neither antibiotic concentration nor time of antibiotic 
exposure has been standardized. Additionally, scaling BCP in 
low-resource settings may be  challenging, particularly due to the 
reliance on specialized microscopes and fluorescent dyes.

8 BCP potential improvements

As shown in Tables 3, 4, a variety of fluorescent dyes have been 
used to investigate the cytological profiles of different bacterial 
organisms. However, newly developed dyes have the potential to 
provide more detailed information that could help in building a 
more comprehensive response profile. Despite the prevalence of cell 
wall targeting antibiotics in BCP experiments, direct methods for 
visualizing cell wall synthesis and remodeling during antibiotic 
exposure have been lacking. In 2012, Kuru et  al. discovered a 
groundbreaking method for bacterial cell wall staining using 
fluorescent amino acids (Kuru et al., 2012). The cell wall provides 
the shape and structural integrity of the cell. It is made of 
peptidoglycan (PG), which consists of glycan strands cross-linked 
by D-amino acid (DAA) (Vollmer et al., 2008). The team introduced 
HADA and NADA, two fluorescent D-amino acids (FDAAs) 
attached to a D-amino acid backbone (3-amino-d-alanine). This 
chemical biology approach aims to detect and visualize the exact 
location and amount of new peptidoglycan layer synthesis in 
bacteria. By using HADA or NADA as a fluorescent peptidoglycan 
label during cell wall synthesis, the technique also allows researchers 

TABLE 2 BCP analysis studies checklist from the WHO Bacterial Priority Pathogens List (2024) separated by priority from 1 to 3.

Bacteria Resistant to Bacterial Cytological Profiling (BCP)

Priority 1. Critical group

Acinetobacter baumannii Carbapenems
Yes (Samernate et al., 2023; Lin et al., 2015; Htoo 

et al., 2019)

Enterobacteriaceae* Third generation cephalosporine

Yes (Nonejuie et al., 2013; Sun et al., 2018; Coram 

et al., 2022; Montaño et al., 2021; Nonejuie et al., 

2016)

Enterobacteriaceae** Carbapenems, ESBL-producing
Yes (Lin et al., 2015; Sun et al., 2022; Sridhar et al., 

2021)

Rifampicin-Resistant Tuberculosis (RR-TB)*** Rifampicin Yes (Smith et al., 2020; Allen et al., 2024)

Priority 2. High group

Salmonella Thypi Fluoroquinolones Yes (Sridhar et al., 2021)

Shigella spp. Fluoroquinolones Yes (López-Jiménez et al., 2024)

Enterococcus faecium Vancomycin Yes (Werth et al., 2014)

Pseudomonas aeruginosa Carbapenems
Yes (Tsunemoto et al., 2023; Lin et al., 2015; Sun et al., 

2022; Sridhar et al., 2021)

Non-typhoidal Salmonella Fluoroquinolones No

Neisseria gonorrhoeae Cephalosporin, Fluoroquinolones No

Staphylococcus aureus Methicillin and vancomycin
Yes (Quach et al., 2016; Mohammad et al., 2017; 

Kalla, 2020; Blaskovich et al., 2021)

Priority 3. Medium group

Group A Streptococci Macrolide No

Streptococcus pneumoniae Macrolide/No sensitivity to penicillin Yes (Sakoulas et al., 2015)

Haemophilus influenzae Ampicillin No

Group B Streptococci Penicillin No

First column, the category of bacteria; second column, antibiotic that bacterial group is resistant to; third column indicates whether bacteria have been studied using Bacterial Cytological 
Profiling (BCP) or not. We consider any BCP done in wild-type strains rather than AMR pathogen strains.
*The BCP column uses Escherichia coli as a reference for this group.
**The BCP column uses Klebsiella pneumoniae as a reference for this group.
***RR-TB was evaluated independently in a tailored approach so it was technically “not” included in the list but after the evaluation by specialists, it was determined as a critically dangerous 
bacteria therefore. RR-TB stands apart from the list due to the distinct nature of its evaluation process.
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to observe morphological changes in bacteria over time. This is 
relevant as HADA and NADA can be  implemented in the 
methodology of BCP to investigate the growth modes of bacteria 
under antibiotic exposure as they exhibit a diverse growth pattern—
that could confer selective advantages in their environments 
(Young, 2006; Ojkic et al., 2022).

Other fluorescent dyes are available to quantitatively probe 
bacterial physiological states: ThT and DiBAC4 for bacterial 
membrane potential (Stratford et al., 2019; Prindle et al., 2015; De 
Souza-Guerreiro et al., 2024; Wong et al., 2021), carboxy-H2DCFDA 
for reactive oxygen species (ROS) (Wong et al., 2021), and DAF-FM 

for reactive nitrogen species (RNS) (Wong et  al., 2021). By 
integrating membrane potential, ROS, and RNS into cytological 
profiles could provide additional information regarding bacterial 
physiology and bacterial stress response during antibiotic treatment. 
However, adding additional dyes could be  a challenge in low 
resource settings. With additional dyes also comes increasing 
potential problems with fluorescence crosstalk. Fortunately, there 
have been recent advances in AI image analysis which could 
circumvent this problem by predicting and generating overlays of 
fluorescent dyes onto unlabeled cells (Goldsborough et al., 2017; 
Osokin et al., 2017).

TABLE 3 Studies with bacterial profiles following the original BCP method, that being the use of segmentation, feature extraction, and dimensional 
reduction techniques to create a plot allowing the viewer to differentiate between different antibiotic treatments on the same bacterial cell strains.

Organism Dyes/Fluorophores Processed data 
available

Segmentation Feature 
extraction

Source

Acinetobacter 

baumannii and E. coli

FM4-64

DAPI

SYTOX-Green

Yes
CellProfiler (McQuin et al., 

2018)

CellProfiler (McQuin 

et al., 2018)
Htoo et al. (2019)

Acinetobacter 

baumannii

FM4-64

DAPI

SYTOX-Green

No Ilastic (Berg et al., 2019)
CellProfiler (McQuin 

et al., 2018)

Samernate et al. 

(2023)*

Pseudomonas aeruginosa
FM4-64

DAPI
Yes

Manually (FIJI/ImageJ 

(Schindelin et al., 2012))

Manually (FIJI/ImageJ 

(Schindelin et al., 2012))

Tsunemoto et al. 

(2023)*

S. aureus

FM4-64

DAPI

SYTOX-Green

Yes
Semi-Manual (FIJI/ImageJ 

(Schindelin et al., 2012))

Semi-Manual (FIJI/

ImageJ (Schindelin et al., 

2012))

Nonejuie et al. 

(2013)*

S. aureus

FM4-64

DAPI

SYTOX-Green

WGA-647

Yes
CellProfiler (McQuin et al., 

2018)

CellProfiler (McQuin 

et al., 2018)
Quach et al. (2016)*

S. aureus, S. 

typhimurium, and K. 

pneumoniae

FM4-64

DAPI

SYTOX-Green

Yes
Harmony (Korsunsky et al., 

2019)

Harmony (Korsunsky 

et al., 2019)
Sridhar et al. (2021)

B. subtilis

FM 4–64

DAPI

SYTOX Green

Yes
CellProfiler (McQuin et al., 

2018)

CellProfiler (McQuin 

et al., 2018) FIJI
Lamsa et al. (2016)*

B. subtilis

FM4-64

DAPI

SYTOX-Green

No
CellProfiler (McQuin et al., 

2018)

CellProfiler (McQuin 

et al., 2018)

Herschede et al. 

(2022)*

B. subtilis
Nile red

DAPI
No MicrobeJ (Ducret et al., 2016)

MicrobeJ (Ducret et al., 

2016)
Schäfer et al. (2024)*

Bacillus subtilis,

E. coli

FM4-64

DAPI

GFP

No Wasabi software (Hamamatsu)
Wasabi software 

(Hamamatsu)

Araújo-Bazán et al. 

(2016)

E. coli

FM4-64

Hoechst-33342

Dendra2 protein

No
FIJI/ImageJ (Schindelin et al., 

2012)

FIJI/ImageJ (Schindelin 

et al., 2012)
Sun et al. (2018)

E. coli

FM4-64

DAPI

SYTOX-Green

No
Semi-Manual (FIJI/ImageJ 

(Schindelin et al., 2012))

Semi-Manual (FIJI/

ImageJ (Schindelin et al., 

2012))

Montaño et al. 

(2021)*

M. tuberculosis Erdman
FM4-64FX

SYTO 24
Yes

MorphEUS (Hausen and 

Robertson, 2020)

MorphEUS (Hausen and 

Robertson, 2020)
Sun et al. (2022)*

This table includes the organisms studied, the dyes used to visualize cellular components, data availability, and image analysis methods used to extract data for profiling.
*Pipelines, scripts, or instructions are detailed and/or included in the paper. Programs are also widely accessible.
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9 Conclusion

Despite significant advances in research and the development of 
new tools, combating antimicrobial resistance (AMR) requires a 
multifaceted approach. Continued investment in research and 
development, global collaboration, and the effective implementation 
of surveillance and prevention strategies are crucial. Bacterial 
Cytological Profiling (BCP) stands out as a rapid and cost-effective 
technique that facilitates drug discovery by revealing the mechanism 
of action of novel antibacterial agents through detailed physiological 
and morphological analysis. Furthermore, BCP could be  used to 
identify phenotypic changes when multiple antibiotics are used, 
revealing unique or overlapping cell morphologies induced by these 
combinations (Samernate et  al., 2023). However, systematic 

explorations of cytological profiles for drug combinations are 
still missing.

Apart from bacteria, cytological profiling methods are also 
widely used for other organisms such as yeast (Chessel and Carazo 
Salas, 2019; Chong et al., 2015), fungi (McMahon et al., 2023), and 
human cells (McDiarmid et al., 2024; Ren et al., 2021; Perlman 
et al., 2004). Deep learning techniques employed for yeast and 
human cells have been used without feature extraction, however, 
this method has only recently been used for bacteria (Spahn et al., 
2022). Therefore, wider availability, applications and integration 
of machine learning tools across different scientific fields 
are needed.

Besides BCP being used to discover new antibiotics, BCP has been 
used to investigate complex interactions between bacteria and their 

TABLE 4 Studies using protocols similar to the original BCP method by merit of developing a profile or differentiating between bacterial cells which 
exhibit different phenotypes.

Organism Dyes/Fluorophores Processed data 
available

Segmentation Feature 
extraction

Source

E. coli

Caulobacter crescentus

FM4-64

DAPI
No Oufti (Paintdakhi et al., 2016)

Oufti (Paintdakhi et al., 

2016)
Santos et al. (2018)*

Achromobacter 

xylosoxidans

FM4-64

DAPI

SYTOX-Green

NBD

Azithromycin

No

FIJI/ImageJ (Schindelin et al., 

2012) and CellProfiler 

(McQuin et al., 2018)

FIJI/ImageJ (Schindelin 

et al., 2012) and 

CellProfiler (McQuin 

et al., 2018)

Ulloa et al. (2020)

M. smegmatis ParB-mCherry Yes
MicrobeJ (Ducret et al., 

2016)

MicrobeJ (Ducret et al., 

2016)
de Wet et al. (2020)*

Shewanella putrefaciens

Ffh-mVenus

FtsY-mVenus

uL1-mVenus

Yes
FIJI/ImageJ (Schindelin et al., 

2012)

FIJI/ImageJ (Schindelin 

et al., 2012)
Mayer et al. (2022)*

V. parahaemolyticus
FM4-64

DAPI
No

FIJI/ImageJ (Schindelin et al., 

2012)

FIJI/ImageJ (Schindelin 

et al., 2012)

Soonthonsrima et al. 

(2023)

Bacillus subtilis

FM4-64

DAPI

SYTOX-Green

SYTO-9

No –
Manual w/ FIJI 

(Schindelin et al., 2012)
Ouyang et al. (2022)*

M. smegmatis

M. tuberculosis

FM4-64

GFP

CellROX

Yes
Omnipose (Cutler et al., 

2022)

Manual w/ FIJI or with 

Cell Counter 

installation in FIJI

Custom python script

Mistretta et al. (2024)

E. coli

B. subtilis

FM4-64

DAPI

GFP

DiSC

No

FIJI/ImageJ (Schindelin et al., 

2012) and MicrobeJ (Ducret 

et al., 2016)

FIJI/ImageJ (Schindelin 

et al., 2012) and 

MicrobeJ (Ducret et al., 

2016)

El-sagheir et al. (2023)

E. coli

S. aureus

Bacillus subtilis

Nile Red

DAPI

mScarlet

Yes

StarDist (Weigert and 

Schmidt, 2022)

CARE (Weigert et al., 2018)

pix2pix (Isola et al., 2018)

ML-U-Net (Feng et al., 2024) 

SplineDist (Mandal and 

Uhlmann, 2021)

Classification without 

feature extraction, 

using Deep Learning

Spahn et al. (2022)

This table includes the organisms studied, the dyes used to visualize cellular components, whether the data is available online, and image analysis methods used to extract data for profiling.
*Pipelines, scripts, or instructions are detailed and/or included in the paper. Programs are also widely accessible.
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predators—bacteriophages (Deep et al., 2024; Tsunemoto et al., 2023; 
Birkholz et al., 2024). BCP enables the identification of metabolic 
pathways and cellular processes targeted by phages and antibiotics, 
both individually and in combination. Therefore, BCP reveals 
molecular mechanisms governing the phage-bacteria interaction, 
ultimately paving the way for more effective phage-based antibacterial 
therapies (Thompson et  al., 2024; Kunisch et  al., 2024). While 
bacteriophages have been used in BCP studies, intracellular pathogens 
present a future challenge as these cytological profiles may strongly 
depend on host-specific interactions.

Author contributions

JS: Conceptualization, Data curation, Methodology, 
Visualization, Writing – original draft, Writing – review & editing. 
JR: Data curation, Methodology, Writing – original draft, Writing – 
review & editing. NO: Conceptualization, Funding acquisition, 
Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. We gratefully 
acknowledge funding from BBSRC (BB/Y009002/1).

Acknowledgments

We gratefully acknowledge funding from BBSRC (BB/Y009002/1). 
We thank reviewers for insightful comments.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Generative AI was used in the creation 
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Allan, E. J., Hoischen, C., and Gumpert, J. (2009). Bacterial L-forms. Adv. Appl. 

Microbiol. 68, 1–39. doi: 10.1016/S0065-2164(09)01201-5

Allen, R., Ames, L., Baldin, V. P., Butts, A., Henry, K. J., Durst, G., et al. (2024). An 
arylsulphonamide that targets cell wall biosynthesis in Mycobacterium tuberculosis. 
Antimicrob Agents Chemother 68: e01037–24. doi: 10.1128/aac.01037-24

Andreu, J. M., Huecas, S., Araújo-Bazán, L., Vázquez-Villa, H., and 
Martín-Fontecha, M. (2022). The search for antibacterial inhibitors targeting cell 
division protein FtsZ at its nucleotide and allosteric binding sites. Biomedicines 10:1825. 
doi: 10.3390/biomedicines10081825

Araújo-Bazán, L., Ruiz-Avila, L. B., Andreu, D., Huecas, S., and Andreu, J. M. (2016). 
Cytological profile of antibacterial FtsZ inhibitors and synthetic peptide MciZ. Front. 
Microbiol. 7:1558. doi: 10.3389/fmicb.2016.01558

Ayon, N. J. (2023). High-throughput screening of natural product and synthetic molecule 
libraries for antibacterial drug discovery. Meta 13:625. doi: 10.3390/metabo13050625

Bailey, S. (2012). Principal component analysis with noisy and/or missing data. Publ. 
Astron. Soc. Pac. 124, 1015–1023. doi: 10.1086/668105

Balaban, N. Q., Helaine, S., Lewis, K., Ackermann, M., Aldridge, B., Andersson, D. I., 
et al. (2019). Definitions and guidelines for research on antibiotic persistence. Nat. Rev. 
Microbiol. 17, 441–448. doi: 10.1038/s41579-019-0196-3

Bali, A., and Singh, S. N. (2015). “A review on the strategies and techniques of image 
segmentation” in 2015 fifth international conference on advanced computing & 
communication technologies, 113–120.

Bandow, J. E., Brötz, H., Leichert, L. I. O., Labischinski, H., and Hecker, M. (2003). 
Proteomic approach to understanding antibiotic action. Antimicrob. Agents Chemother. 
47, 948–955. doi: 10.1128/AAC.47.3.948-955.2003

Bandow, J. E., and Hecker, M. (2007). Proteomic profiling of cellular stresses in 
Bacillus subtilis reveals cellular networks and assists in elucidating antibiotic mechanisms 
of action. Prog. Drug Res. Fortschritte Arzneimittelforschung Progres Rech. Pharm. 64, 
81–101. doi: 10.1007/978-3-7643-7567-6_4

Banerjee, S., Lo, K., Ojkic, N., Stephens, R., Scherer, N. F., and Dinner, A. R. (2021). 
Mechanical feedback promotes bacterial adaptation to antibiotics. Nat. Phys. 17, 
403–409. doi: 10.1038/s41567-020-01079-x

Baquero, F., and Levin, B. R. (2021). Proximate and ultimate causes of the bactericidal 
action of antibiotics. Nat. Rev. Microbiol. 19, 123–132. doi: 10.1038/s41579-020-00443-1

Baquero, F., Martínez, J. L., Sánchez, A., Fernández-de-Bobadilla, M. D., 
San-Millán, A., and Rodríguez-Beltrán, J. (2023). Bacterial subcellular architecture, 
structural epistasis, and antibiotic resistance. Biology 12:640. doi: 10.3390/
biology12050640

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., et al. (2019). 
ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 
1226–1232. doi: 10.1038/s41592-019-0582-9

Bernabeu-Wittel, M., García-Curiel, A., Pichardo, C., Pachon-Ibanez, M. E., 
Jimenez-Mejias, M. E., and Pachón, J. (2004). Morphological changes induced by 
imipenem and meropenem at sub-inhibitory concentrations in Acinetobacter baumannii. 
Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 10, 931–934. doi: 
10.1111/j.1469-0691.2004.00944.x

Birkholz, E. A., Morgan, C. J., Laughlin, T. G., Lau, R. K., Prichard, A., 
Rangarajan, S., et al. (2024). An intron endonuclease facilitates interference 
competition between coinfecting viruses. Science 385, 105–112. doi: 10.1126/
science.adl1356

Blaskovich, M. A. T., Kavanagh, A. M., Elliott, A. G., Zhang, B., Ramu, S., Amado, M., 
et al. (2021). The antimicrobial potential of cannabidiol. Commun. Biol. 4, 1–18. doi: 
10.1038/s42003-020-01530-y

Boshoff, H. I. M., Myers, T. G., Copp, B. R., McNeil, M. R., Wilson, M. A., and 
Barry, C. E. III. (2004). The transcriptional responses of Mycobacterium tuberculosis to 
inhibitors of metabolism: novel insights into drug mechanisms of action*. J. Biol. Chem. 
279, 40174–40184. doi: 10.1074/jbc.M406796200

Butler, M. S., Gigante, V., Sati, H., Paulin, S., Al-Sulaiman, L., Rex, J. H., et al. (2022). 
Analysis of the clinical pipeline of treatments for drug-resistant bacterial infections: 
despite progress, more action is needed. Antimicrob. Agents Chemother. 66:e0199121. 
doi: 10.1128/AAC.01991-21

Cacace, E., Kritikos, G., and Typas, A. (2017). Chemical genetics in drug discovery. 
Curr. Opin. Syst. Biol. 4, 35–42. doi: 10.1016/j.coisb.2017.05.020

Centers for Disease Control and Prevention (U.S.). (2019). Antibiotic Resistance 
Threats in the United States, 2019. Available at: https://stacks.cdc.gov/view/cdc/82532

Chai, B., Efstathiou, C., Yue, H., and Draviam, V. M. (2023). Opportunities and 
challenges for deep learning in cell dynamics research. Trends Cell Biol. 34, 955–967. doi: 
10.1016/j.tcb.2023.10.010

https://doi.org/10.3389/fmicb.2025.1536131
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1016/S0065-2164(09)01201-5
https://doi.org/10.1128/aac.01037-24
https://doi.org/10.3390/biomedicines10081825
https://doi.org/10.3389/fmicb.2016.01558
https://doi.org/10.3390/metabo13050625
https://doi.org/10.1086/668105
https://doi.org/10.1038/s41579-019-0196-3
https://doi.org/10.1128/AAC.47.3.948-955.2003
https://doi.org/10.1007/978-3-7643-7567-6_4
https://doi.org/10.1038/s41567-020-01079-x
https://doi.org/10.1038/s41579-020-00443-1
https://doi.org/10.3390/biology12050640
https://doi.org/10.3390/biology12050640
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.1111/j.1469-0691.2004.00944.x
https://doi.org/10.1126/science.adl1356
https://doi.org/10.1126/science.adl1356
https://doi.org/10.1038/s42003-020-01530-y
https://doi.org/10.1074/jbc.M406796200
https://doi.org/10.1128/AAC.01991-21
https://doi.org/10.1016/j.coisb.2017.05.020
https://stacks.cdc.gov/view/cdc/82532
https://doi.org/10.1016/j.tcb.2023.10.010


Salgado et al. 10.3389/fmicb.2025.1536131

Frontiers in Microbiology 12 frontiersin.org

Chen, K., Sun, G. W., Chua, K. L., and Gan, Y.-H. (2005). Modified virulence of 
antibiotic-induced Burkholderia pseudomallei filaments. Antimicrob. Agents Chemother. 
49, 1002–1009. doi: 10.1128/AAC.49.3.1002-1009.2005

Chessel, A., and Carazo Salas, R. E. (2019). From observing to predicting single-cell 
structure and function with high-throughput/high-content microscopy. Essays Biochem. 
63, 197–208. doi: 10.1042/EBC20180044

Chong, Y. T., Koh, J. L. Y., Friesen, H., Kaluarachchi Duffy, S., Cox, M. J., Moses, A., 
et al. (2015). Yeast proteome dynamics from single cell imaging and automated analysis. 
Cell 161, 1413–1424. doi: 10.1016/j.cell.2015.04.051

Chopra, I., and Roberts, M. (2001). Tetracycline antibiotics: mode of action, 
applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. 
Mol. Biol. Rev. 65, 232–260. doi: 10.1128/MMBR.65.2.232-260.2001

Coram, M. A., Wang, L., Godinez, W. J., Barkan, D. T., Armstrong, Z., Ando, D. M., 
et al. (2022). Morphological characterization of antibiotic combinations. ACS Infect. Dis. 
8, 66–77. doi: 10.1021/acsinfecdis.1c00312

Corona, F., and Martinez, J. L. (2013). Phenotypic resistance to antibiotics. Antibiotics 
2, 237–255. doi: 10.3390/antibiotics2020237

Correia, S., Poeta, P., Hébraud, M., Capelo, J. L., and Igrejas, G. (2017). Mechanisms 
of quinolone action and resistance: where do we stand? J. Med. Microbiol. 66, 551–559. 
doi: 10.1099/jmm.0.000475

Cotsonas King, A., and Wu, L. (2009). Macromolecular synthesis and membrane 
perturbation assays for mechanisms of action studies of antimicrobial agents. Curr. 
Protoc. Pharmacol. 47:13A-7. doi: 10.1002/0471141755.ph13a07s47

Curtis, N. A., Orr, D., Ross, G. W., and Boulton, M. G. (1979). Affinities of penicillins 
and cephalosporins for the penicillin-binding proteins of Escherichia coli K-12 and their 
antibacterial activity. Antimicrob. Agents Chemother. 16, 533–539. doi: 10.1128/
AAC.16.5.533

Cushnie, T. P. T., O’Driscoll, N. H., and Lamb, A. J. (2016). Morphological and 
ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of 
action. Cell. Mol. Life Sci. 73, 4471–4492. doi: 10.1007/s00018-016-2302-2

Cutler, K. J., Stringer, C., Lo, T. W., Rappez, L., Stroustrup, N., Brook Peterson, S., et al. 
(2022). Omnipose: a high-precision morphology-independent solution for bacterial cell 
segmentation. Nat. Methods 19, 1438–1448. doi: 10.1038/s41592-022-01639-4

Cylke, C., Si, F., and Banerjee, S. (2022). Effects of antibiotics on bacterial cell 
morphology and their physiological origins. Biochem. Soc. Trans. 50, 1269–1279. doi: 
10.1042/BST20210894

Da Cunha, B. R., Zoio, P., Fonseca, L. P., and Calado, C. R. C. (2021). Technologies for 
high-throughput identification of antibiotic mechanism of action. Antibiotics 10:565. 
doi: 10.3390/antibiotics10050565

Dalhoff, A., Nasu, T., and Okamoto, K. (2003). Target affinities of faropenem to and 
its impact on the morphology of gram-positive and gram-negative bacteria. 
Chemotherapy 49, 172–183. doi: 10.1159/000071141

Davies, J., and Davies, D. (2010). Origins and evolution of antibiotic resistance. 
Microbiol. Mol. Biol. Rev. 74, 417–433. doi: 10.1128/MMBR.00016-10

Davis, B. D., Chen, L. L., and Tai, P. C. (1986). Misread protein creates membrane 
channels: an essential step in the bactericidal action of aminoglycosides. Proc. Natl. 
Acad. Sci. USA 83, 6164–6168. doi: 10.1073/pnas.83.16.6164

de Pedro, M. A., Donachie, W. D., Höltje, J.-V., and Schwarz, H. (2001). Constitutive 
septal murein synthesis in Escherichia coli with impaired activity of the morphogenetic 
proteins RodA and penicillin-binding protein 2. J. Bacteriol. 183, 4115–4126. doi: 
10.1128/JB.183.14.4115-4126.2001

De Souza-Guerreiro, T. C., Huan Bacellar, L., da Costa, T. S., Edwards, C. L., Tasic, L., 
and Asally, M. (2024). Membrane potential dynamics unveil the promise of bioelectrical 
antimicrobial susceptibility testing (BeAST) for anti-fungal screening. MBio 15, e01302–
e01324. doi: 10.1128/mbio.01302-24

de Wet, T. J., Winkler, K. R., Mhlanga, M., Mizrahi, V., and Warner, D. F. (2020). 
Arrayed CRISPRi and quantitative imaging describe the morphotypic landscape of 
essential mycobacterial genes. eLife 9:e60083. doi: 10.7554/eLife.60083

Deep, A., Liang, Q., Enustun, E., Pogliano, J., and Corbett, K. D. (2024). Architecture 
and activation mechanism of the bacterial PARIS defence system. Nature 634, 432–439. 
doi: 10.1038/s41586-024-07772-8

di, E., Erbetti, I., Ferrari, L., Galassi, G., Hammond, S., and Xerri, L. (1994). In vitro 
activity of the tribactam GV104326 against gram-positive, gram-negative, and anaerobic 
bacteria. Antimicrob. Agents Chemother. 38, 2362–2368. doi: 10.1128/AAC.38.10.2362

di, S., Giacobbe, D., Maraolo, A., Viaggi, V., Luzzati, R., Bassetti, M., et al. (2021). 
Resistance to ceftazidime/avibactam in infections and colonisations by KPC-producing 
Enterobacterales: a systematic review of observational clinical studies. J. Glob. 
Antimicrob. Resist. 25, 268–281. doi: 10.1016/j.jgar.2021.04.001

Dillon, N. A., Tsunemoto, H., Poudel, S., Meehan, M. J., Seif, Y., Szubin, R., et al. 
(2020). Characterizing the response of Acinetobacter baumannii ATCC 17978 to 
azithromycin in multiple in  vitro growth conditions. BioRchiv [Preprint].  doi: 
10.1101/2020.05.19.079962

Donald, R. G. K., Skwish, S., Forsyth, R. A., Anderson, J. W., Zhong, T., Burns, C., et al. 
(2009). A Staphylococcus aureus fitness test platform for mechanism-based profiling of 
antibacterial compounds. Chem. Biol. 16, 826–836. doi: 10.1016/j.chembiol.2009.07.004

Dörries, K., Schlueter, R., and Lalk, M. (2014). Impact of antibiotics with various 
target sites on the metabolome of Staphylococcus aureus. Antimicrob. Agents Chemother. 
58, 7151–7163. doi: 10.1128/AAC.03104-14

Ducret, A., Quardokus, E. M., and Brun, Y. V. (2016). MicrobeJ, a tool for high 
throughput bacterial cell detection and quantitative analysis. Nat. Microbiol. 1:16077. 
doi: 10.1038/nmicrobiol.2016.77

Elliott, T. S. J., Shelton, A., and Greenwood, D. (1987). The response of Escherichia coli 
to ciprofloxacin and norfloxacin. J. Med. Microbiol. 23, 83–88. doi: 
10.1099/00222615-23-1-83

El-sagheir, A. M. K., Abdelmesseh Nekhala, I., Abd El-Gaber, M. K., Aboraia, A. S., 
Persson, J., Schäfer, A. B., et al. (2023). Rational design, synthesis, molecular modeling, 
biological activity, and mechanism of action of polypharmacological norfloxacin 
hydroxamic acid derivatives. RSC Med. Chem. 14, 2593–2610. doi: 10.1039/
D3MD00309D

Errington, J. (2013). L-form bacteria, cell walls and the origins of life. Open Biol. 
3:120143. doi: 10.1098/rsob.120143

Errington, J. (2017). Cell wall-deficient, L-form bacteria in the 21st century: a personal 
perspective. Biochem. Soc. Trans. 45, 287–295. doi: 10.1042/BST20160435

Fan, J., Fu, A., and Zhang, L. (2019). Progress in molecular docking. Quant. Biol. 7, 
83–89. doi: 10.1007/s40484-019-0172-y

Feng, L., Wu, K., Pei, Z., Weng, T., Han, Q., Meng, L., et al. (2024). MLU-Net: a multi-
level lightweight U-net for medical image segmentation integrating frequency 
representation and MLP-based methods. IEEE Access 12, 20734–20751. doi: 10.1109/
ACCESS.2024.3360889

Franken, H., Mathieson, T., Childs, D., Sweetman, G. M. A., Werner, T., Tögel, I., et al. 
(2015). Thermal proteome profiling for unbiased identification of direct and indirect 
drug targets using multiplexed quantitative mass spectrometry. Nat. Protoc. 10, 
1567–1593. doi: 10.1038/nprot.2015.101

Freiberg, C., Fischer, H. P., and Brunner, N. A. (2005). Discovering the mechanism of 
action of novel antibacterial agents through transcriptional profiling of conditional 
mutants. Antimicrob. Agents Chemother. 49, 749–759. doi: 10.1128/
AAC.49.2.749-759.2005

Gardner, A. (1945). Microscopical effect of penicillin on spores and vegetative cells of 
bacilli. Lancet 245, 658–659. doi: 10.1016/S0140-6736(45)90043-2

Gardner, A. D. (1940). Morphological effects of penicillin on bacteria. Nature 146, 
837–838. doi: 10.1038/146837b0

Gebicki, J. M., and James, A. M. (1960). The preparation and properties of spheroplasts 
of aerobacter aerogenes. J. Gen. Microbiol. 23, 9–18. doi: 10.1099/00221287-23-1-9

Goldsborough, P., Pawlowski, N., Caicedo, J. C., Singh, S., and Carpenter, A. E. (2017). 
CytoGAN: generative modeling of cell images. BioRchiv [Preprint]. doi: 10.1101/227645

Grein, F., Müller, A., Scherer, K. M., Liu, X., Ludwig, K. C., Klöckner, A., et al. (2020). 
Ca2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with 
undecaprenyl-coupled intermediates and membrane lipids. Nat. Commun. 11:1455. doi: 
10.1038/s41467-020-15257-1

Hage, D. S., Anguizola, J. A., Bi, C., Li, R., Matsuda, R., Papastavros, E., et al. (2012). 
Pharmaceutical and biomedical applications of affinity chromatography: Recent trends 
and developments. J. Pharm. Biomed. Anal. 69, 93–105. doi: 10.1016/j.jpba.2012.01.004

Hausen, R., and Robertson, B. E. (2020). Morpheus: a deep learning framework for 
the pixel-level analysis of astronomical image data. Astrophys. J. Suppl. Ser. 248:20. doi: 
10.3847/1538-4365/ab8868

Herschede, S. R., Salam, R., Gneid, H., and Busschaert, N. (2022). Bacterial 
cytological profiling identifies transmembrane anion transport as the mechanism 
of action for a urea-based antibiotic. Supramol. Chem. 34, 26–33. doi: 
10.1080/10610278.2023.2178921

Hoerr, V., Duggan, G. E., Zbytnuik, L., Poon, K. K. H., Große, C., Neugebauer, U., 
et al. (2016). Characterization and prediction of the mechanism of action of 
antibiotics through NMR metabolomics. BMC Microbiol. 16:82. doi: 10.1186/
s12866-016-0696-5

Horii, T., Kobayashi, M., Sato, K., Ichiyama, S., and Ohta, M. (1998). An in-vitro study 
of carbapenem-induced morphological changes and endotoxin release in clinical isolates 
of gram-negative bacilli. J. Antimicrob. Chemother. 41, 435–442. doi: 10.1093/
jac/41.4.435

Htoo, H. H., Brumage, L., Chaikeeratisak, V., Tsunemoto, H., Sugie, J., 
Tribuddharat, C., et al. (2019). Bacterial cytological profiling as a tool to study 
mechanisms of action of antibiotics that are active against Acinetobacter baumannii. 
Antimicrob. Agents Chemother. 63:10-1128. doi: 10.1128/aac.02310-18

Hudson, M. A., and Lockless, S. W. (2022). Elucidating the mechanisms of action of 
antimicrobial agents. MBio 13:e0224021. doi: 10.1128/mbio.02240-21

Hutchings, M. I., Truman, A. W., and Wilkinson, B. (2019). Antibiotics: past, present 
and future. Curr. Opin. Microbiol. 51, 72–80. doi: 10.1016/j.mib.2019.10.008

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2018). Image-to-image translation with 
conditional adversarial networks. arXiv [Preprint]. doi: 10.48550/arXiv.1611.07004

Jackson, J. J., and Kropp, H. (1996). Differences in mode of action of (β-lactam 
antibiotics influence morphology, LPS release and in vivo antibiotic efficacy. J. Endotoxin 
Res. 3, 201–218. doi: 10.1177/096805199600300306

https://doi.org/10.3389/fmicb.2025.1536131
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1128/AAC.49.3.1002-1009.2005
https://doi.org/10.1042/EBC20180044
https://doi.org/10.1016/j.cell.2015.04.051
https://doi.org/10.1128/MMBR.65.2.232-260.2001
https://doi.org/10.1021/acsinfecdis.1c00312
https://doi.org/10.3390/antibiotics2020237
https://doi.org/10.1099/jmm.0.000475
https://doi.org/10.1002/0471141755.ph13a07s47
https://doi.org/10.1128/AAC.16.5.533
https://doi.org/10.1128/AAC.16.5.533
https://doi.org/10.1007/s00018-016-2302-2
https://doi.org/10.1038/s41592-022-01639-4
https://doi.org/10.1042/BST20210894
https://doi.org/10.3390/antibiotics10050565
https://doi.org/10.1159/000071141
https://doi.org/10.1128/MMBR.00016-10
https://doi.org/10.1073/pnas.83.16.6164
https://doi.org/10.1128/JB.183.14.4115-4126.2001
https://doi.org/10.1128/mbio.01302-24
https://doi.org/10.7554/eLife.60083
https://doi.org/10.1038/s41586-024-07772-8
https://doi.org/10.1128/AAC.38.10.2362
https://doi.org/10.1016/j.jgar.2021.04.001
https://doi.org/10.1101/2020.05.19.079962
https://doi.org/10.1016/j.chembiol.2009.07.004
https://doi.org/10.1128/AAC.03104-14
https://doi.org/10.1038/nmicrobiol.2016.77
https://doi.org/10.1099/00222615-23-1-83
https://doi.org/10.1039/D3MD00309D
https://doi.org/10.1039/D3MD00309D
https://doi.org/10.1098/rsob.120143
https://doi.org/10.1042/BST20160435
https://doi.org/10.1007/s40484-019-0172-y
https://doi.org/10.1109/ACCESS.2024.3360889
https://doi.org/10.1109/ACCESS.2024.3360889
https://doi.org/10.1038/nprot.2015.101
https://doi.org/10.1128/AAC.49.2.749-759.2005
https://doi.org/10.1128/AAC.49.2.749-759.2005
https://doi.org/10.1016/S0140-6736(45)90043-2
https://doi.org/10.1038/146837b0
https://doi.org/10.1099/00221287-23-1-9
https://doi.org/10.1101/227645
https://doi.org/10.1038/s41467-020-15257-1
https://doi.org/10.1016/j.jpba.2012.01.004
https://doi.org/10.3847/1538-4365/ab8868
https://doi.org/10.1080/10610278.2023.2178921
https://doi.org/10.1186/s12866-016-0696-5
https://doi.org/10.1186/s12866-016-0696-5
https://doi.org/10.1093/jac/41.4.435
https://doi.org/10.1093/jac/41.4.435
https://doi.org/10.1128/aac.02310-18
https://doi.org/10.1128/mbio.02240-21
https://doi.org/10.1016/j.mib.2019.10.008
https://doi.org/10.48550/arXiv.1611.07004
https://doi.org/10.1177/096805199600300306


Salgado et al. 10.3389/fmicb.2025.1536131

Frontiers in Microbiology 13 frontiersin.org

Jago, M. J., Soley, J. K., Denisov, S., Walsh, C. J., Gifford, D. R., Howden, B. P., et al. 
(2025). High-throughput method characterizes hundreds of previously unknown 
antibiotic resistance mutations. Nat. Commun. 16:780. doi: 10.1038/s41467-025-56050-2

Jan, M., Spangaro, A., Lenartowicz, M., and Mattiazzi Usaj, M. (2024). From pixels to 
insights: machine learning and deep learning for bioimage analysis. BioEssays 
46:e2300114. doi: 10.1002/bies.202300114

Jaramillo-Riveri, S., Broughton, J., McVey, A., Pilizota, T., Scott, M., and el Karoui, M. 
(2022). Growth-dependent heterogeneity in the DNA damage response in Escherichia 
coli. Mol. Syst. Biol. 18:e10441. doi: 10.15252/msb.202110441

Jerala, R. (2007). Synthetic lipopeptides: a novel class of anti-infectives. Expert Opin. 
Investig. Drugs 16, 1159–1169. doi: 10.1517/13543784.16.8.1159

Jones, E. C., and Uphoff, S. (2021). Single-molecule imaging of LexA degradation in 
Escherichia coli elucidates regulatory mechanisms and heterogeneity of the SOS 
response. Nat. Microbiol. 6, 981–990. doi: 10.1038/s41564-021-00930-y

Kalla, G. (2020). Using bacterial cytological profiling to study the interactions of 
bacteria and the defense systems of multicellular eukaryotes. USA: University of 
California San Diego.

Kohanski, M. A., Dwyer, D. J., and Collins, J. J. (2010). How antibiotics kill 
bacteria: from targets to networks. Nat. Rev. Microbiol. 8, 423–435. doi: 10.1038/
nrmicro2333

Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., et al. (2019). 
Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 
16, 1289–1296. doi: 10.1038/s41592-019-0619-0

Kunisch, F., Campobasso, C., Wagemans, J., Yildirim, S., Chan, B. K., Schaudinn, C., 
et al. (2024). Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained 
bacteriophage cocktail exploiting phage resistance trade-offs. Nat. Commun. 15:8572. 
doi: 10.1038/s41467-024-52595-w

Kuru, E., Hughes, H. V., Brown, P. J., Hall, E., Tekkam, S., Cava, F., et al. (2012). In situ 
probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino 
acids. Angew. Chem. Int. Ed. 51, 12519–12523. doi: 10.1002/anie.201206749

Kussell, E., Kishony, R., Balaban, N. Q., and Leibler, S. (2005). Bacterial Persistence. 
Genetics 169, 1807–1814. doi: 10.1534/genetics.104.035352

Lamsa, A., Lopez-Garrido, J., Quach, D., Riley, E. P., Pogliano, J., and Pogliano, K. 
(2016). Rapid inhibition profiling in Bacillus subtilis to identify the mechanism of action 
of new antimicrobials. ACS Chem. Biol. 11, 2222–2231. doi: 10.1021/acschembio.5b01050

Lewis, K. (2013). Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 12, 
371–387. doi: 10.1038/nrd3975

Lewis, K., Lee, R. E., Brötz-Oesterhelt, H., Hiller, S., Rodnina, M. V., Schneider, T., 
et al. (2024). Sophisticated natural products as antibiotics. Nature 632, 39–49. doi: 
10.1038/s41586-024-07530-w

Lima, L. M., Da Silva, B. N. M., Barbosa, G., and Barreiro, E. J. (2020). β-lactam 
antibiotics: an overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 
208:112829. doi: 10.1016/j.ejmech.2020.112829

Lin, L., Nonejuie, P., Munguia, J., Hollands, A., Olson, J., Dam, Q., et al. (2015). 
Azithromycin synergizes with cationic antimicrobial peptides to exert bactericidal and 
therapeutic activity against highly multidrug-resistant gram-negative bacterial 
pathogens. EBioMedicine 2, 690–698. doi: 10.1016/j.ebiom.2015.05.021

López-Jiménez, A. T., Brokatzky, D., Pillay, K., Williams, T., Güler, G. Ö., and 
Mostowy, S. (2024). High-content high-resolution microscopy and deep learning 
assisted analysis reveals host and bacterial heterogeneity during Shigella infection. eLife 
13:RP97495. doi: 10.7554/eLife.97495.1

Luepke, K. H., Suda, K. J., Boucher, H., Russo, R. L., Bonney, M. W., Hunt, T. D., et al. 
(2017). Past, present, and future of antibacterial economics: increasing bacterial 
resistance, limited antibiotic pipeline, and societal implications. Pharmacother. J. Hum. 
Pharmacol. Drug Ther. 37, 71–84. doi: 10.1002/phar.1868

Ma, J., Xie, R., Ayyadhury, S., Ge, C., Gupta, A., Gupta, R., et al. (2024). The 
multimodality cell segmentation challenge: toward universal solutions. Nat. Methods 21, 
1103–1113. doi: 10.1038/s41592-024-02233-6

Mandal, S., and Uhlmann, V. (2021). “Splinedist: automated cell segmentation with 
spline curves” in 2021 IEEE 18th international symposium on biomedical imaging 
(ISBI), 1082–1086.

Martin, J. K., Sheehan, J. P., Bratton, B. P., Moore, G. M., Mateus, A., Li, S. H., et al. 
(2020). A dual-mechanism antibiotic kills gram-negative bacteria and avoids drug 
resistance. Cell 181, 1518–1532.e14. doi: 10.1016/j.cell.2020.05.005

Mayer, B., Schwan, M., Thormann, K. M., and Graumann, P. L. (2022). Antibiotic 
Drug screening and Image Characterization Toolbox (A.D.I.C.T.): a robust imaging 
workflow to monitor antibiotic stress response in bacterial cells in vivo. F1000Research 
10:277. doi: 10.12688/f1000research.51868.3

McDiarmid, A. H., Gospodinova, K. O., Elliott, R. J. R., Dawson, J. C., Graham, R. E., 
el-Daher, M. T., et al. (2024). Morphological profiling in human neural progenitor cells 
classifies hits in a pilot drug screen for Alzheimer’s disease. Brain Commun. 6:fcae101. 
doi: 10.1093/braincomms/fcae101

McInnes, L., Healy, J., and Melville, J. (2020). UMAP: uniform manifold approximation 
and projection for dimension reduction. Available at: http://arxiv.org/abs/1802.03426

McMahon, C. L., Esqueda, M., Yu, J. J., Wall, G., Romo, J. A., Vila, T., et al. (2023). 
Development of an imaging flow cytometry method for fungal cytological profiling and 

its potential application in antifungal drug development. J. Fungi 9:722. doi: 10.3390/
jof9070722

McQuin, C., Goodman, A., Chernyshev, V., Kamentsky, L., Cimini, B. A., 
Karhohs, K. W., et al. (2018). CellProfiler 3.0: next-generation image processing for 
biology. PLoS Biol. 16:e2005970. doi: 10.1371/journal.pbio.2005970

Mendelsohn, M. L., Kolman, W. A., Perry, B., and Prewitt, J. M. S. (1965). Computer 
analysis of cell images. Postgrad. Med. 38, 567–573. doi: 10.1080/00325481.1965.11695692

Mercier, R., Kawai, Y., and Errington, J. (2014). General principles for the formation 
and proliferation of a wall-free (L-form) state in bacteria. eLife 3:e04629. doi: 10.7554/
eLife.04629

Mistretta, M., Cimino, M., Campagne, P., Volant, S., Kornobis, E., Hebert, O., et al. 
(2024). Dynamic microfluidic single-cell screening identifies pheno-tuning compounds 
to potentiate tuberculosis therapy. Nat. Commun. 15:4175. doi: 10.1038/
s41467-024-48269-2

Mohammad, H., Younis, W., Ezzat, H. G., Peters, C. E., AbdelKhalek, A., Cooper, B., 
et al. (2017). Bacteriological profiling of diphenylureas as a novel class of antibiotics 
against methicillin-resistant Staphylococcus aureus. PLoS One 12:e0182821. doi: 10.1371/
journal.pone.0182821

Montaño, E. T., Nideffer, J. F., Sugie, J., Enustun, E., Shapiro, A. B., Tsunemoto, H., 
et al. (2021). Bacterial cytological profiling identifies rhodanine-containing PAINS 
analogs as specific inhibitors of Escherichia coli thymidylate kinase in vivo. J. Bacteriol. 
203:e0010521, 10–128. doi: 10.1128/jb.00105-21

Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., 
et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic 
analysis. Lancet 399, 629–655. doi: 10.1016/S0140-6736(21)02724-0

Naknaen, A., Samernate, T., Saeju, P., Nonejuie, P., and Chaikeeratisak, V. (2024). 
Nucleus-forming jumbophage PhiKZ therapeutically outcompetes non-nucleus-forming 
jumbophage Callisto. iScience 27:109790. doi: 10.1016/j.isci.2024.109790

Naknaen, A., Samernate, T., Wannasrichan, W., Surachat, K., Nonejuie, P., and 
Chaikeeratisak, V. (2023). Combination of genetically diverse Pseudomonas phages 
enhances the cocktail efficiency against bacteria. Sci. Rep. 13:8921. doi: 10.1038/
s41598-023-36034-2

Nickerson, W. J., and Webb, M. (1956). Effect of folic acid analogues on growth and 
cell division of nonexacting microorganisms. J. Bacteriol. 71, 129–139. doi: 10.1128/
jb.71.2.129-139.1956

Nonejuie, P., Burkart, M., Pogliano, K., and Pogliano, J. (2013). Bacterial cytological 
profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. 
Proc. Natl. Acad. Sci. 110, 16169–16174. doi: 10.1073/pnas.1311066110

Nonejuie, P., Trial, R. M., Newton, G. L., Lamsa, A., Ranmali Perera, V., Aguilar, J., 
et al. (2016). Application of bacterial cytological profiling to crude natural product 
extracts reveals the antibacterial arsenal of Bacillus subtilis. J. Antibiot. (Tokyo) 69, 
353–361. doi: 10.1038/ja.2015.116

O’Neill, J. (2016). Tackling drug-resistant infections globally: final report and 
recommendations. Available at: https://scholar.google.co.uk/scholar?q=Tackling+drug-
resistant+infections+globally:+final+report+and+recommendations.&hl=es&as_
sdt=0&as_vis=1&oi=scholart

O’Rourke, A., Beyhan, S., Choi, Y., Morales, P., Chan, A. P., Espinoza, J. L., et al. (2020). 
Mechanism-of-action classification of antibiotics by global transcriptome profiling. 
Antimicrob. Agents Chemother. 64, e01207–e01219. doi: 10.1128/AAC.01207-19

Ojkic, N., and Banerjee, S. (2021). Bacterial cell shape control by nutrient-dependent 
synthesis of cell division inhibitors. Biophys. J. 120, 2079–2084. doi: 10.1016/j.
bpj.2021.04.001

Ojkic, N., Lilja, E., Direito, S., Dawson, A., Allen, R. J., and Waclaw, B. (2020). A 
roadblock-and-kill mechanism of action model for the DNA-targeting antibiotic 
ciprofloxacin. Antimicrob. Agents Chemother. 64, e02487–e02419. doi: 10.1128/
AAC.02487-19

Ojkic, N., López-Garrido, J., Pogliano, K., and Endres, R. G. (2014). Bistable forespore 
engulfment in Bacillus subtilis by a zipper mechanism in absence of the cell wall. PLoS 
Comput. Biol. 10:e1003912. doi: 10.1371/journal.pcbi.1003912

Ojkic, N., Serbanescu, D., and Banerjee, S. (2019). Surface-to-volume scaling and 
aspect ratio preservation in rod-shaped bacteria. eLife 8:e47033. doi: 10.7554/
eLife.47033

Ojkic, N., Serbanescu, D., and Banerjee, S. (2022). Antibiotic resistance via bacterial 
cell shape-shifting. MBio 13, e00659–e00622. doi: 10.1128/mbio.00659-22

Osokin, A., Chessel, A., Salas, R. E. C., and Vaggi, F. (2017). “GANs for biological 
image synthesis” in in 2017 IEEE international conference on computer vision (ICCV) 
(Venice: IEEE), 2252–2261.

Ouyang, X., Hoeksma, J., Lubbers, R. J. M., Siersma, T. K., Hamoen, L. W., and den 
Hertog, J. (2022). Classification of antimicrobial mechanism of action using dynamic 
bacterial morphology imaging. Sci. Rep. 12:11162. doi: 10.1038/s41598-022-15405-1

Paintdakhi, A., Parry, B., Campos, M., Irnov, I., Elf, J., Surovtsev, I., et al. (2016). Oufti: 
An integrated software package for high-accuracy, high-throughput quantitative 
microscopy analysis. Mol. Microbiol. 99, 767–777. doi: 10.1111/mmi.13264

Perlman, Z. E., Slack, M. D., Feng, Y., Mitchison, T. J., Wu, L. F., and Altschuler, S. J. 
(2004). Multidimensional drug profiling by automated microscopy. Science 306, 
1194–1198. doi: 10.1126/science.1100709

https://doi.org/10.3389/fmicb.2025.1536131
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1038/s41467-025-56050-2
https://doi.org/10.1002/bies.202300114
https://doi.org/10.15252/msb.202110441
https://doi.org/10.1517/13543784.16.8.1159
https://doi.org/10.1038/s41564-021-00930-y
https://doi.org/10.1038/nrmicro2333
https://doi.org/10.1038/nrmicro2333
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/s41467-024-52595-w
https://doi.org/10.1002/anie.201206749
https://doi.org/10.1534/genetics.104.035352
https://doi.org/10.1021/acschembio.5b01050
https://doi.org/10.1038/nrd3975
https://doi.org/10.1038/s41586-024-07530-w
https://doi.org/10.1016/j.ejmech.2020.112829
https://doi.org/10.1016/j.ebiom.2015.05.021
https://doi.org/10.7554/eLife.97495.1
https://doi.org/10.1002/phar.1868
https://doi.org/10.1038/s41592-024-02233-6
https://doi.org/10.1016/j.cell.2020.05.005
https://doi.org/10.12688/f1000research.51868.3
https://doi.org/10.1093/braincomms/fcae101
http://arxiv.org/abs/1802.03426
https://doi.org/10.3390/jof9070722
https://doi.org/10.3390/jof9070722
https://doi.org/10.1371/journal.pbio.2005970
https://doi.org/10.1080/00325481.1965.11695692
https://doi.org/10.7554/eLife.04629
https://doi.org/10.7554/eLife.04629
https://doi.org/10.1038/s41467-024-48269-2
https://doi.org/10.1038/s41467-024-48269-2
https://doi.org/10.1371/journal.pone.0182821
https://doi.org/10.1371/journal.pone.0182821
https://doi.org/10.1128/jb.00105-21
https://doi.org/10.1016/S0140-6736(21)02724-0
https://doi.org/10.1016/j.isci.2024.109790
https://doi.org/10.1038/s41598-023-36034-2
https://doi.org/10.1038/s41598-023-36034-2
https://doi.org/10.1128/jb.71.2.129-139.1956
https://doi.org/10.1128/jb.71.2.129-139.1956
https://doi.org/10.1073/pnas.1311066110
https://doi.org/10.1038/ja.2015.116
https://scholar.google.co.uk/scholar?q=Tackling+drug-resistant+infections+globally:+final+report+and+recommendations.&hl=es&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.co.uk/scholar?q=Tackling+drug-resistant+infections+globally:+final+report+and+recommendations.&hl=es&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.co.uk/scholar?q=Tackling+drug-resistant+infections+globally:+final+report+and+recommendations.&hl=es&as_sdt=0&as_vis=1&oi=scholart
https://doi.org/10.1128/AAC.01207-19
https://doi.org/10.1016/j.bpj.2021.04.001
https://doi.org/10.1016/j.bpj.2021.04.001
https://doi.org/10.1128/AAC.02487-19
https://doi.org/10.1128/AAC.02487-19
https://doi.org/10.1371/journal.pcbi.1003912
https://doi.org/10.7554/eLife.47033
https://doi.org/10.7554/eLife.47033
https://doi.org/10.1128/mbio.00659-22
https://doi.org/10.1038/s41598-022-15405-1
https://doi.org/10.1111/mmi.13264
https://doi.org/10.1126/science.1100709


Salgado et al. 10.3389/fmicb.2025.1536131

Frontiers in Microbiology 14 frontiersin.org

Perumalsamy, H., Jung, M. Y., Hong, S. M., and Ahn, Y.-J. (2013). Growth-Inhibiting 
and morphostructural effects of constituents identified in Asarum heterotropoides root 
on human intestinal bacteria. BMC Complement. Altern. Med. 13:245. doi: 
10.1186/1472-6882-13-245

Prewitt, J. M. S., and Mendelsohn, M. L. (1966). The analysis of cell images*. Ann. 
New York Acad. Sci. 128, 1035–1053. doi: 10.1111/j.1749-6632.1965.tb11715.x

Prindle, A., Liu, J., Asally, M., Ly, S., Garcia-Ojalvo, J., and Süel, G. M. (2015). Ion 
channels enable electrical communication in bacterial communities. Nature 527, 59–63. 
doi: 10.1038/nature15709

PubChem. Cerulenin. Available at: https://pubchem.ncbi.nlm.nih.gov/
compound/5282054 (Accessed October 22, 2024).

Quach, D. T., Sakoulas, G., Nizet, V., Pogliano, J., and Pogliano, K. (2016). Bacterial 
cytological profiling (BCP) as a rapid and accurate antimicrobial susceptibility testing 
method for Staphylococcus aureus. EBioMedicine 4, 95–103. doi: 10.1016/j.
ebiom.2016.01.020

Quinn, G. A., and Dyson, P. J. (2024). Going to extremes: progress in exploring new 
environments for novel antibiotics. Npj Antimicrob. Resist. 2:8. doi: 10.1038/
s44259-024-00025-8

Regev, A., Teichmann, S., Lander, E., Amit, I., Benoist, C., Birney, E., et al. (2017). The 
human cell atlas. eLife 6:e27041. doi: 10.7554/eLife.27041

Ren, E., Kim, S., Mohamad, S., Huguet, S. F., Shi, Y., Cohen, A. R., et al. (2021). Deep 
learning-enhanced morphological profiling predicts cell fate dynamics in real-time in 
hPSCs. doi: 10.1101/2021.07.31.454574

Reynolds, P. E. (1989). Structure, biochemistry and mechanism of action of 
glycopeptide antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 8, 943–950. doi: 10.1007/
BF01967563

Ribeiro da Cunha, B., Fonseca, L. P., and Calado, C. R. C. (2020). Metabolic 
fingerprinting with Fourier-transform infrared (FTIR) spectroscopy: towards a high-
throughput screening assay for antibiotic discovery and mechanism-of-action 
elucidation. Meta 10:145. doi: 10.3390/metabo10040145

Sakoulas, G., Nonejuie, P., Kullar, R., Pogliano, J., Rybak, M. J., and Nizet, V. (2015). 
Examining the use of ceftaroline in the treatment of Streptococcus pneumoniae 
meningitis with reference to human cathelicidin LL-37. Antimicrob. Agents Chemother. 
59, 2428–2431. doi: 10.1128/AAC.04965-14

Samernate, T., Htoo, H. H., Sugie, J., Chavasiri, W., Pogliano, J., Chaikeeratisak, V., 
et al. (2023). High-resolution bacterial cytological profiling reveals intrapopulation 
morphological variations upon antibiotic exposure. Antimicrob. Agents Chemother. 67, 
e01307–e01322. doi: 10.1128/aac.01307-22

Santos, T. M. A., Lammers, M. G., Zhou, M., Sparks, I. L., Rajendran, M., 
Fang, D., et al. (2018). Small molecule chelators reveal that iron starvation inhibits 
late stages of bacterial cytokinesis. ACS Chem. Biol. 13, 235–246. doi: 10.1021/
acschembio.7b00560

Schäfer, A.-B., Sidarta, M., Abdelmesseh Nekhala, I., Marinho Righetto, G., Arshad, A., 
and Wenzel, M. (2024). Dissecting antibiotic effects on the cell envelope using bacterial 
cytological profiling: a phenotypic analysis starter kit. Microbiol. Spectr. 12, e03275–
e03223. doi: 10.1128/spectrum.03275-23

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. 
(2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 
676–682. doi: 10.1038/nmeth.2019

Serbanescu, D., Ojkic, N., and Banerjee, S. (2022). Cellular resource allocation 
strategies for cell size and shape control in bacteria. FEBS J. 289, 7891–7906. doi: 
10.1111/febs.16234

Silver, L. L. (2011). Challenges of antibacterial discovery. Clin. Microbiol. Rev. 24, 
71–109. doi: 10.1128/CMR.00030-10

Smith, T. C., Pullen, K. M., Olson, M. C., ME, M. N., Richardson, I., Hu, S., et al. 
(2020). Morphological profiling of tubercle bacilli identifies drug pathways of action. 
Proc. Natl. Acad. Sci. USA 117, 18744–18753. doi: 10.1073/pnas.2002738117

Sofroniew, N., Lambert, T., Bokota, G., Nunez-Iglesias, J., Sobolewski, P., Sweet, A., 
et al. (2025). napari: a multi-dimensional image viewer for Python. Zenodo. doi: 10.5281/
zenodo.14719463

Soonthonsrima, T., Htoo, H. H., Thiennimitr, P., Srisuknimit, V., Nonejuie, P., and 
Chaikeeratisak, V. (2023). Phage-induced bacterial morphological changes reveal a 
phage-derived antimicrobial affecting cell wall integrity. Antimicrob. Agents Chemother. 
67, e00764–e00723. doi: 10.1128/aac.00764-23

Sousa, M. (2020). StarDist: application of the deep-learning tool for phase-contrast 
cell images. arXiv [Preprint]. doi: 10.48550/arXiv.1908.03636

Spahn, C., Gómez-de-Mariscal, E., Laine, R. F., Pereira, P. M., von Chamier, L., 
Conduit, M., et al. (2022). DeepBacs for multi-task bacterial image analysis using open-
source deep learning approaches. Commun. Biol. 5, 1–18. doi: 10.1038/
s42003-022-03634-z

Spratt, B. G. (1975). Distinct penicillin binding proteins involved in the division, 
elongation, and shape of Escherichia coli K12. Proc. Natl. Acad. Sci. USA 72, 2999–3003. 
doi: 10.1073/pnas.72.8.2999

Spratt, B. G., and Pardee, A. B. (1975). Penicillin-binding proteins and cell shape in E. 
coli. Nature 254, 516–517. doi: 10.1038/254516a0

Sridhar, S., Forrest, S., Warne, B., Maes, M., Baker, S., Dougan, G., et al. (2021). High-
content imaging to phenotype antimicrobial effects on individual bacteria at scale. 
mSystems 6:e00028-21. doi: 10.1128/msystems.00028-21

Stratford, J. P., Edwards, C. L. A., Ghanshyam, M. J., Malyshev, D., Delise, M. A., 
Hayashi, Y., et al. (2019). Electrically induced bacterial membrane-potential dynamics 
correspond to cellular proliferation capacity. Proc. Natl. Acad. Sci. 116, 9552–9557. doi: 
10.1073/pnas.1901788116

Stringer, C., Wang, T., Michaelos, M., and Pachitariu, M. (2021). Cellpose: a generalist 
algorithm for cellular segmentation. Nat. Methods 18, 100–106. doi: 10.1038/
s41592-020-01018-x

Stylianidou, S., Brennan, C., Nissen, S. B., Kuwada, N. J., and Wiggins, P. A. (2016). 
SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells. 
Mol. Microbiol. 102, 690–700. doi: 10.1111/mmi.13486

Sumita, Y., Fukasawa, M., and Okuda, T. (1990). Comparison of two carbapenems, 
SM-7338 and imipenem: affinities for penicillin-binding proteins and morphological 
changes. J. Antibiot. (Tokyo) 43, 314–320. doi: 10.7164/antibiotics.43.314

Sun, Y., Heidary, D. K., Zhang, Z., Richards, C. I., and Glazer, E. C. (2018). Bacterial 
cytological profiling reveals the mechanism of action of anticancer metal complexes. 
Mol. Pharm. 15, 3404–3416. doi: 10.1021/acs.molpharmaceut.8b00407

Sun, D., Tsivkovski, R., Pogliano, J., Tsunemoto, H., Nelson, K., Rubio-Aparicio, D., 
et al. (2022). Intrinsic antibacterial activity of Xeruborbactam in  vitro: assessing 
spectrum and mode of action. Antimicrob. Agents Chemother. 66:e00879-22. doi: 
10.1128/aac.00879-22

Swaney, S. M., Aoki, H., Ganoza, M. C., and Shinabarger, D. L. (1998). The 
oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob. 
Agents Chemother. 42, 3251–3255. doi: 10.1128/AAC.42.12.3251

Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., 
et al. (2018). Discovery, research, and development of new antibiotics: the WHO priority 
list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327. doi: 
10.1016/S1473-3099(17)30753-3

Takebayashi, Y., Ramos-Soriano, J., Jiang, Y. J., Samphire, J., Belmonte-Reche, E., 
O’Hagan, M. P., et al. (2024). Small molecule G-quadruplex ligands are antibacterial 
candidates for Gram-negative bacteria. BioRchiv [Preprint]. doi: 
10.1101/2022.09.01.506212

Tenson, T., Lovmar, M., and Ehrenberg, M. (2003). The mechanism of action of 
macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in 
the ribosome. J. Mol. Biol. 330, 1005–1014. doi: 10.1016/S0022-2836(03)00662-4

Thammatinna, K., Egan, M. K. E., Htoo, H. H., Khanna, K., Sugie, J., Nideffer, J. F., 
et al. (2020). A novel vibriophage exhibits inhibitory activity against host protein 
synthesis machinery. Sci. Rep. 10:2347. doi: 10.1038/s41598-020-59396-3

Thompson, D. L., Semersky, Z., Feinn, R., Huang, P., Turner, P. E., Chan, B. K., et al. 
(2024). Particle size distribution of viable nebulized bacteriophage for the treatment of 
multi-drug resistant Pseudomonas aeruginosa. Respir. Med. Res. 86:101133. doi: 
10.1016/j.resmer.2024.101133

Tsunemoto, H., Sugie, J., Enustun, E., Pogliano, K., and Pogliano, J. (2023). Bacterial 
cytological profiling reveals interactions between jumbo phage φKZ infection and cell 
wall active antibiotics in Pseudomonas aeruginosa. PLoS One 18:e0280070. doi: 10.1371/
journal.pone.0280070

Ulloa, E. R., Kousha, A., Tsunemoto, H., Pogliano, J., Licitra, C., LiPuma, J. J., et al. 
(2020). Azithromycin exerts bactericidal activity and enhances innate immune mediated 
killing of MDR Achromobacter xylosoxidans. Infect. Microbes Dis. 2, 10–17. doi: 10.1097/
IM9.0000000000000014

Uphoff, S., Reyes-Lamothe, R., Garza de Leon, F., Sherratt, D. J., and Kapanidis, A. N. 
(2013). Single-molecule DNA repair in live bacteria. Proc. Natl. Acad. Sci. 110, 
8063–8068. doi: 10.1073/pnas.1301804110

van, T., Joniau, S., Clinckemalie, L., Helsen, C., Prekovic, S., Spans, L., et al. (2014). 
The role of single nucleotide polymorphisms in predicting prostate cancer risk and 
therapeutic decision making. Biomed. Res. Int. 2014, 1–16. doi: 10.1155/2014/627510

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. 
(2023). Attention is all you need. arXiv [Preprint]. doi: 10.48550/arXiv.1706.03762

Vázquez-Laslop, N., and Mankin, A. S. (2018). How macrolide antibiotics work. 
Trends Biochem. Sci. 43, 668–684. doi: 10.1016/j.tibs.2018.06.011

Vincent, I. M., Ehmann, D. E., Mills, S. D., Perros, M., and Barrett, M. P. (2016). 
Untargeted metabolomics to ascertain antibiotic modes of action. Antimicrob. Agents 
Chemother. 60, 2281–2291. doi: 10.1128/AAC.02109-15

Vollmer, W., Blanot, D., and de Pedro, M. A. (2008). Peptidoglycan structure and 
architecture. FEMS Microbiol. Rev. 32, 149–167. doi: 10.1111/j.1574-6976.2007.00094.x

Walsh, C. (2000). Molecular mechanisms that confer antibacterial drug resistance. 
Nature 406, 775–781. doi: 10.1038/35021219

Wang, Y., Huang, H., Rudin, C., and Shaposhnik, Y. (2021). Understanding how 
dimension reduction tools work: an empirical approach to deciphering t-SNE, UMAP, 
TriMAP, and PaCMAP for data visualization. Available at: http://arxiv.org/abs/2012.04456

Weigert, M., and Schmidt, U. (2022). Nuclei instance segmentation and 
classification in histopathology images with StarDist. arXiv [Preprint]. doi: 10.1109/
ISBIC56247.2022.9854534

https://doi.org/10.3389/fmicb.2025.1536131
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1186/1472-6882-13-245
https://doi.org/10.1111/j.1749-6632.1965.tb11715.x
https://doi.org/10.1038/nature15709
https://pubchem.ncbi.nlm.nih.gov/compound/5282054
https://pubchem.ncbi.nlm.nih.gov/compound/5282054
https://doi.org/10.1016/j.ebiom.2016.01.020
https://doi.org/10.1016/j.ebiom.2016.01.020
https://doi.org/10.1038/s44259-024-00025-8
https://doi.org/10.1038/s44259-024-00025-8
https://doi.org/10.7554/eLife.27041
https://doi.org/10.1101/2021.07.31.454574
https://doi.org/10.1007/BF01967563
https://doi.org/10.1007/BF01967563
https://doi.org/10.3390/metabo10040145
https://doi.org/10.1128/AAC.04965-14
https://doi.org/10.1128/aac.01307-22
https://doi.org/10.1021/acschembio.7b00560
https://doi.org/10.1021/acschembio.7b00560
https://doi.org/10.1128/spectrum.03275-23
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1111/febs.16234
https://doi.org/10.1128/CMR.00030-10
https://doi.org/10.1073/pnas.2002738117
https://doi.org/10.5281/zenodo.14719463
https://doi.org/10.5281/zenodo.14719463
https://doi.org/10.1128/aac.00764-23
https://doi.org/10.48550/arXiv.1908.03636
https://doi.org/10.1038/s42003-022-03634-z
https://doi.org/10.1038/s42003-022-03634-z
https://doi.org/10.1073/pnas.72.8.2999
https://doi.org/10.1038/254516a0
https://doi.org/10.1128/msystems.00028-21
https://doi.org/10.1073/pnas.1901788116
https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1111/mmi.13486
https://doi.org/10.7164/antibiotics.43.314
https://doi.org/10.1021/acs.molpharmaceut.8b00407
https://doi.org/10.1128/aac.00879-22
https://doi.org/10.1128/AAC.42.12.3251
https://doi.org/10.1016/S1473-3099(17)30753-3
https://doi.org/10.1101/2022.09.01.506212
https://doi.org/10.1016/S0022-2836(03)00662-4
https://doi.org/10.1038/s41598-020-59396-3
https://doi.org/10.1016/j.resmer.2024.101133
https://doi.org/10.1371/journal.pone.0280070
https://doi.org/10.1371/journal.pone.0280070
https://doi.org/10.1097/IM9.0000000000000014
https://doi.org/10.1097/IM9.0000000000000014
https://doi.org/10.1073/pnas.1301804110
https://doi.org/10.1155/2014/627510
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1016/j.tibs.2018.06.011
https://doi.org/10.1128/AAC.02109-15
https://doi.org/10.1111/j.1574-6976.2007.00094.x
https://doi.org/10.1038/35021219
http://arxiv.org/abs/2012.04456
https://doi.org/10.1109/ISBIC56247.2022.9854534
https://doi.org/10.1109/ISBIC56247.2022.9854534


Salgado et al. 10.3389/fmicb.2025.1536131

Frontiers in Microbiology 15 frontiersin.org

Weigert, M., Schmidt, U., Boothe, T., Müller, A., Dibrov, A., Jain, A., et al. (2018). 
Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. 
Methods 15, 1090–1097. doi: 10.1038/s41592-018-0216-7

Werth, B. J., Steed, M. E., Ireland, C. E., Tran, T. T., Nonejuie, P., Murray, B. E., et al. 
(2014). Defining daptomycin resistance prevention exposures in vancomycin-resistant 
enterococcus faecium and E. faecalis. Antimicrob. Agents Chemother. 58, 5253–5261. doi: 
10.1128/AAC.00098-14

WHO. (2023). AWaRe classification of antibiotics for evaluation and monitoring of 
use, 2023. World Health Organization.

WHO Bacterial Priority Pathogens List (2024). WHO Bacterial Priority Pathogens 
List, 2024: bacterial pathogens of public health importance to guide research, 
development and strategies to prevent and control antimicrobial resistance. Geneva: 
World Health Organization.

Wong, W. R., Oliver, A. G., and Linington, R. G. (2012). Development of antibiotic 
activity profile screening for the classification and discovery of natural product 
antibiotics. Chem. Biol. 19, 1483–1495. doi: 10.1016/j.chembiol.2012.09.014

Wong, F., Stokes, J. M., Cervantes, B., Penkov, S., Friedrichs, J., Renner, L. D., 
et al. (2021). Cytoplasmic condensation induced by membrane damage is 
associated with antibiotic lethality. Nat. Commun. 12:2321. doi: 10.1038/
s41467-021-22485-6

World Health Organization. (2017). Prioritization of pathogens to guide 
discovery, research and development of new antibiotics for drug-resistant bacterial 

infections, including tuberculosis (No. WHO/EMP/IAU/2017.12). World Health 
Organization.

Wu, F., Japaridze, A., Zheng, X., Wiktor, J., Kerssemakers, J. W. J., and Dekker, C. 
(2019). Direct imaging of the circular chromosome in a live bacterium. Nat. Commun. 
10:2194. doi: 10.1038/s41467-019-10221-0

Wu, Y., and Seyedsayamdost, M. R. (2018). The polyene natural product thailandamide 
A inhibits fatty acid biosynthesis in gram-positive and gram-negative bacteria. 
Biochemistry 57, 4247–4251. doi: 10.1021/acs.biochem.8b00678

Young, K. D. (2006). The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 
70, 660–703. doi: 10.1128/MMBR.00001-06

Zagajewski, A., Turner, P., Feehily, C., El Sayyed, H., Andersson, M., Barrett, L., et al. 
(2023). Deep learning and single-cell phenotyping for rapid antimicrobial susceptibility 
detection in Escherichia coli. Commun. Biol. 6, 1–12. doi: 10.1038/s42003-023-05524-4

Zampaloni, C., Mattei, P., Bleicher, K., Winther, L., Thäte, C., Bucher, C., et al. (2024). 
A novel antibiotic class targeting the lipopolysaccharide transporter. Nature 625, 
566–571. doi: 10.1038/s41586-023-06873-0

Zampieri, M., Szappanos, B., Buchieri, M. V., Trauner, A., Piazza, I., Picotti, P., et al. 
(2018). High-throughput metabolomic analysis predicts mode of action of uncharacterized 
antimicrobial compounds. Sci. Transl. Med. 10:eaal3973. doi: 10.1126/scitranslmed.aal3973

Zlitni, S., Ferruccio, L. F., and Brown, E. D. (2013). Metabolic suppression identifies 
new antibacterial inhibitors under nutrient limitation. Nat. Chem. Biol. 9, 796–804. doi: 
10.1038/nchembio.1361

https://doi.org/10.3389/fmicb.2025.1536131
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1038/s41592-018-0216-7
https://doi.org/10.1128/AAC.00098-14
https://doi.org/10.1016/j.chembiol.2012.09.014
https://doi.org/10.1038/s41467-021-22485-6
https://doi.org/10.1038/s41467-021-22485-6
https://doi.org/10.1038/s41467-019-10221-0
https://doi.org/10.1021/acs.biochem.8b00678
https://doi.org/10.1128/MMBR.00001-06
https://doi.org/10.1038/s42003-023-05524-4
https://doi.org/10.1038/s41586-023-06873-0
https://doi.org/10.1126/scitranslmed.aal3973
https://doi.org/10.1038/nchembio.1361

	Advancing antibiotic discovery with bacterial cytological profiling: a high-throughput solution to antimicrobial resistance
	1 Introduction
	2 Antibiotic mechanism of action and antibiotic targets
	3 BCP to identify the mechanism of action
	4 BCP of important human pathogens
	5 BCP to identify new druggable cell pathways
	6 Image analysis tools for BCP and data availability
	7 BCP limitations
	8 BCP potential improvements
	9 Conclusion

	References

