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Introduction: The plant restoration and ecological restoration of lead-zinc 
mines are very important.

Methods: In this study, we  used three local plants to carry out ecological 
restoration of abandoned lead–zinc mining areas and detected the adaptive 
mechanisms of soil bacterial diversity and function during the ecological 
restoration of lead–zinc mines through 16S rRNA sequencing.

Results: The results revealed that lead-zinc mining significantly reduced the soil 
bacterial diversity, including the Shannon, Simpson, and observed species indices, 
whereas the planting of the three ecological restoration plants restored the soil 
microbial diversity to a certain extent, leading to increases in the Shannon index and 
Observed species indices. Mining activities significantly reduced the abundances of 
RB41 and Bryobacter in the bulk soil compared with those in the nonmining areas, 
whereas the three ecological restoration plants increased the abundances of RB41 
and Bryobacter in the rhizosphere soil compared with those in the bulk soil in the 
mining areas. Following the planting of the three types of ecologically restored plants, 
the soil bacterial community structure partially recovered. In addition, different plants 
have been found to have different functions in the lead-zinc ecological restoration 
process, including iron complex transport system-permitting proteins and ATP 
binding cassettes.

Discussion: This study confirms for the first time that plants adapt to the 
remediation process of abandoned lead-zinc mines by non-randomly 
assembling rhizosphere bacterial communities and functions, providing a 
reference for screening microbial remediation bacterial resources and plant 
microbe joint bioremediation strategies for lead-zinc mines.
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Introduction

Lead-zinc ore, a crucial nonferrous metal mineral, is highly important in industry worldwide. 
Lead–zinc alloys and their derivatives find extensive applications in sectors such as automobiles, 
batteries, construction, and chemicals, thereby playing a pivotal role in fostering global economic 
growth (Li D. et al., 2024). However, the mining and smelting of lead-zinc ores have led to 
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substantial environmental challenges (Chen et al., 2023; Chen T. et al., 
2022). During these processes, considerable amounts of dust and 
exhaust gases, primarily composed of sulfides and nitrogen oxides, are 
emitted (Garry et al., 2018; Kan et al., 2021). These pollutants not only 
severely impact the air quality surrounding mining areas but also pose 
a potential threat to the global atmospheric environment through 
atmospheric dissemination (Peng et al., 2023). Furthermore, mining 
and smelting generate wastewater laden with heavy metal ions and 
acidic substances, particularly lead, zinc, and cadmium (Guo et al., 
2023; Ma et al., 2023). Direct discharge of this untreated wastewater into 
water bodies such as rivers and lakes poses risks to aquatic life and 
threatens human health through the food chain (Wang et al., 2022; 
Wang et al., 2023). Solid waste, including waste rocks and residues from 
mining, can also contaminate soil (Junusbekov et al., 2023; Sun et al., 
2022). Prolonged accumulation can degrade soil structure and fertility, 
adversely affecting crop growth and yield (Qiao et al., 2022). Studies 
have indicated that lead–zinc mining can systematically affect the 
surrounding ecosystem, resulting in a decline in biodiversity (Kastury 
et al., 2023; Larsen et al., 2001). Individuals exposed to the mining 
environment for extended periods are susceptible to heavy metal 
accumulation and irreversible bodily tissue damage (Choudhari et al., 
2010). Therefore, it is imperative to undertake ecological restoration in 
lead–zinc mining areas and mitigate their ecological risk (Paluchamy 
and Mishra, 2022; Yang et al., 2023).

The approaches for the ecological remediation of lead-zinc mine 
pollution include physical, chemical, and biological methods (Cai et al., 
2021; Sha et al., 2023). Physical methods involve precipitation, filtration, 
and adsorption, whereas chemical methods include neutralization, 
oxidation–reduction, and precipitation, all aimed at reducing lead and 
zinc concentrations in soil and water (Jiang S. et al., 2022; Lei et al., 2018; 
Luo et  al., 2022). However, these methods are costly and prone to 
secondary pollution. Biological methods that leverage the remediation 
capabilities of plants and microorganisms are cost-effective and 
environmentally friendly (Su et al., 2023; Diallo et al., 2024; Duan et al., 
2022). Phytoremediation, an in situ technique, avoids secondary 
ecosystem pollution (Su et al., 2022). By cultivating locally adapted 
plants, vegetation cover in mining areas can be restored, increasing soil 
quality (Li et al., 2018). Recently, plant remediation technology has 
garnered extensive attention and research, with ongoing efforts to 
screen and cultivate plants with superior remediation capabilities to 
increase efficiency (Tang et al., 2019; Xiao et al., 2022). Additionally, the 
integration of plant restoration with other techniques, such as plant–
microbe combined restoration, has emerged as a research focus (Xiao 
et al., 2022; Han et al., 2020). Through symbiotic relationships, plants 
and microorganisms efficiently remove pollutants, utilizing the 
absorption and transformation abilities of plants and the degradation 
and transformation capabilities of microorganisms (Chen J. et al., 2022; 
Jiang X. et al., 2022; Singh et al., 2022). Microorganisms can adsorb 
harmful substances, removing them from the environment by binding 
to pollutants through surface viscous substances or extracellular 
polymeric substances (Li et al., 2022a; Li Q. et al., 2024). They can also 
metabolically reduce heavy metal pollutants, converting them into 
harmless forms (Dang et  al., 2021; Bao et  al., 2023). Moreover, 
microorganisms secrete growth-promoting substances, regulate plant 
tolerance and adsorption capacity for heavy metals, and improve soil 
conditions through long-term coevolution and mutual adaptation with 
plants (Jacob et  al., 2018; Noor et  al., 2022; Ojuederie and 
Babalola, 2017).

Currently, research on in situ phytoremediation of lead–zinc 
mines is limited, and plant adaptability and remediation capabilities 
vary across environments. The composition and role of different plant 
rhizosphere bacterial communities in phytoremediation processes 
remain unclear (Tang et al., 2022). In this study, we cultivated three 
lead–zinc accumulator plants—Carex nubigena, Pteris cretica L. var. 
nervosa, and Neyraudia reynaudiana—in a lead–zinc mining area and 
adjacent nonmining areas. These plants are known for their ability to 
accumulate lead and zinc, strong stress resistance, and local 
adaptability (Li et al., 2018; He et al., 2022; He et al., 2023; Liu et al., 
2020). Five years post-planting, the ecological restoration plants 
demonstrated robust growth. To understand the basis of their efficient 
environmental adaptability and remediation capabilities, we analyzed 
changes in the composition and diversity of rhizosphere bacterial 
communities in mining and nonmining areas via 16S rRNA high-
throughput sequencing. Our findings contribute to the screening of 
plant growth-promoting bacteria and bioremediation strains, 
providing valuable insights for ecological restoration in lead–zinc 
mining areas.

Materials and methods

Cultivation and management strategies for 
ecologically restored plants

The Ya’an lead–zinc mine, an abandoned mining site, necessitates 
robust ecological restoration efforts to mitigate the risks associated 
with pollutant exposure and dissemination. In 2019, we embarked on 
an initiative to ecologically restore this mining area by selecting three 
lead/zinc-tolerant plants: Carex nubigena, Pteris cretica L. var. nervosa, 
and Neyraudia reynaudiana. These plants were strategically planted 
every meter within the mining area and adjacent nonmining areas to 
ensure uniform distribution and balanced data collection. 
Postplanting, minimal watering was provided—only 2–3 times within 
the first month—to facilitate plant establishment without relying on 
exogenous inputs such as fertilizers (Deng et al., 2024). Five years later, 
rhizosphere soils from both mining and nonmining areas were 
collected for bacterial diversity sequencing.

Rhizosphere soil collection and DNA 
extraction

Rhizosphere soil samples were meticulously collected from Carex 
nubigena, Pteris cretica L. var. nervosa, and Neyraudia reynaudiana in 
both lead-zinc mining-affected and nonmining regions. Plants 
exhibiting consistent growth patterns were chosen, and the soil 
adhering to their roots was gently shaken into self-sealing bags. 
Approximately 200 grams of soil per plant were collected for bacterial 
diversity sequencing. Additionally, bulk soil samples from both 
mining and nonmining sites served as comparators, with each sample 
comprising three biological replicates. The rhizosphere soils from the 
mining area were designated Mine. C (Carex nubigena), Mine. P 
(Pteris cretica L. var. nervosa), Mine. N (Neyraudia reynaudiana) and 
Mine (bulk soil), while those from nonmining areas were designated 
the control. C, Control. P, Control. N, and Control, respectively. Each 
soil sample was replicated three times (n = 3), with 50 grams of each 
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sample allocated for bacterial diversity analysis and isolation. The 24 
samples were transported to the laboratory in ice bags for DNA 
extraction and 16S rRNA sequencing. Genomic DNA was extracted 
via an Omega soil DNA kit (D5625-02, CA, United States), and the 
quality of the extracted DNA was verified via 1% agarose gels.

PCR amplification and detection

The extracted genomic DNA was diluted to a concentration of 
1 ng/μL in sterile water and then amplified via primers targeting the 
16S rRNA V3–V4 regions. These primers incorporated a unique 
barcode for sample identification. The PCR mixture contained 15 μL 
of Phusion® High-Fidelity PCR Master Mix (New England Biolabs), 
2 μM forward and reverse primers, and 10 ng of template DNA. The 
PCR protocol involved an initial denaturation step at 98°C for 1 min, 
followed by 30 cycles of denaturation at 98°C for 10 s, annealing at 
50°C for 30 s, extension at 72°C for 30 s, and a final extension at 72°C 
for 5 min (Gao et al., 2024). The PCR products were mixed with an 
equal volume of SYBR green-containing loading buffer and subjected 
to electrophoresis on a 2% (w/v) agarose gel for detection. Purified 
PCR products were obtained via the Qiagen Gel Extraction Kit 
(Qiagen, Germany).

Library preparation, sequencing, and data 
processing

The sequencing libraries were constructed following the 
manufacturer’s instructions via the TruSeq® DNA PCR-Free Sample 
Preparation Kit (Illumina, United States), with index codes included 
for sample identification. The quality of the libraries was assessed via 
a Qubit@ 2.0 fluorometer (Thermo Scientific, United States) and an 
Agilent Bioanalyzer 2,100 system. Sequencing was performed on the 
Illumina NovaSeq platform, generating 250-bp paired-end reads. 
Reads were identified by their unique barcodes and processed to 
remove barcode and primer sequences. FLASH V1.2.7 (Magoc and 
Salzberg, 2011) was used to merge paired-end reads, and raw tags 
were filtered on the basis of quality control criteria via QIIME V2 
(Hall and Beiko, 2018). Chimeric sequences were identified by 
comparing tags with the reference Silva database and removed from 
the dataset (Quast et al., 2013).

Operational taxonomic units clustering and 
species annotation

Sequences with a similarity of ≥97% were grouped into 
operational taxonomic units (OTUs) via Uparse v7.0.1001 (Edgar, 
2013). A representative sequence was selected for each OTU for 
annotation. Taxonomic information was assigned to each 
representative sequence via the Silva database in conjunction with the 
Mothur algorithm (Quast et al., 2013). Multiple sequence alignments 
were performed via MUSCLE v3.8.3 to investigate the phylogenetic 
relationships between OTUs and changes in the most abundant 
species across different samples or groups (Edgar, 2004). To 
standardize the OTU abundance information, a sequence number 
benchmark was applied on the basis of the sample with the smallest 

number of sequences. The normalized data were used for further 
analysis of alpha and beta diversity.

Alpha and beta diversity analyses

To assess species diversity complexity within specific samples, six 
indices—observed species, Chao1, Shannon, Simpson, ACE, and 
Good’s coverage—were considered. These indices were calculated via 
QIIME v2 and presented via R v2.15.3 (Hall and Beiko, 2018). Two 
indices—observed species and the Chao1 estimator—were chosen to 
measure community richness. The Shannon and Simpson indices were 
used to quantify community diversity. Beta diversity analysis was 
conducted to evaluate differences in species complexity between 
samples. Nonmetric multidimensional scaling (NMDS) and principal 
coordinate analysis (PCoA) were performed via the R vegan 
software package.

Functional prediction of rhizosphere 
bacteria

Functional predictions of rhizosphere bacteria were made via 
Tax4Fun (Aßhauer et al., 2015). Projections were based on the KO 
database to gain insights into the potential functions of these bacteria.

Statistical analysis

Statistical analysis was conducted to evaluate differences between 
samples. The t test was used for comparing two sets of samples, 
whereas Tukey’s test was applied for comparisons involving more than 
two samples (Qiu et  al., 2024). A p value <0.05 was considered 
indicative of statistically significant differences among different 
groups. Benjamini Hochberg adjustment is used for multiple 
comparison correction in data analysis.

Results

Sequencing data analysis

In our investigation, we investigated the assembly mechanism 
of rhizosphere bacterial communities linked to Carex nubigena, 
Pteris cretica L. var. nervosa, and Neyraudia reynaudiana during 
the ecological restoration process in lead–zinc mining areas. 
Across all the samples, we obtained an average of 63,855 raw reads 
per sample (Supplementary Table S1). Subsequent filtering of 
chimeras, low-quality sequences, and short sequences yielded an 
average of 47,824 effective reads per sample for in-depth analysis. 
Using rarefaction curves (Figure  1), we  evaluated whether the 
observed OTUs varied with the number of sequencing reads. As 
the sequencing depth increased, the number of observed OTUs 
progressively increased. Notably, once the sequencing read count 
surpassed 23,815, the rarefaction curves flattened out, indicating 
that our sequencing depth was sufficient to capture the 
comprehensive community structure and diversity of rhizosphere 
bacteria. We  classified these reads into OTUs using a 97% 
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similarity threshold, ultimately identifying a total of 4,447 OTUs 
across all eight samples (with each sample having three 
biological replicates).

Alpha diversity indices

Compared with bulk soils from nonmining areas, lead-zinc 
mining significantly reduced the bacterial diversity index and 
community richness of bulk soils in mining areas, as evidenced by 
the Shannon, Simpson, and observed species indices (Figure  2). 
These findings underscore the substantial impact of lead-zinc mining 
on the bacterial diversity and community composition of mining 
area soils. However, there were no notable differences in the Chao1 
and ACE indices between bulk soils from mining areas and those 
from nonmining areas. Intriguingly, the planting of the three plant 
species in mining area soils somewhat mitigated this decline, 
increasing the diversity and community richness of rhizosphere 
bacteria. Specifically, Neyraudia reynaudiana and Pteris cretica 
presented significantly greater Shannon indices and observed species 
indices in mining area soils than in bulk soil from the same area. 
Furthermore, the Chao1 and ACE indices of Neyraudia reynaudiana 
were also significantly greater in mining area soils than in bulk soils. 
Compared with those of control plants from nonmining areas, the 
Shannon and Simpson indices of Carex nubigena and Neyraudia 

reynaudiana from mining areas were notably lower, whereas no 
significant changes in other plants or alpha diversity indices 
were detected.

Taxonomic analyses of bacterial 
communities

In this study, a comprehensive taxonomic analysis of bacterial 
communities was conducted across various samples. A total of 101 
bacterial phyla were identified, with the abundances of the top 10 most 
prevalent phyla being compared (Figure 3A). Notably, Proteobacteria 
was the dominant phylum in all the samples, accounting for 22.15% 
of the total bacterial population. This was followed by Acidobacteriota 
(average 15.78%), Bacteroidota (average 7.12%), and Firmicutes 
(average 6.38%). Mining activities had a significant effect on the 
bacterial community structure. Specifically, they led to an increase in 
the abundance of soil Proteobacteria and a decrease in Acidobacteriota. 
However, the introduction of three ecological restoration plants in the 
mining area reversed these trends. Compared with that in the bulk soil 
from the mining area, the abundance of Proteobacteria significantly 
decreased, whereas the abundance of Acidobacteriota significantly 
increased in the rhizosphere soil of these plants. Among the different 
plants, Carex nubigena and Neyraudia reynaudiana from the mining 
area presented a significant increase in Acidobacteriota abundance 

FIGURE 1

Trends of observed OTUs in different samples changing with sequencing reads.
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compared with the rhizosphere soil of control plants from 
nonmining areas.

At the class level, a total of 203 bacterial classes were detected 
(Figure  3B). Gammaproteobacteria was the most abundant class, 
averaging 11.98% across all the samples, followed by 
Alphaproteobacteria (average 10.16%), Blastocatellia (average 8.94%), 

and Bacteroidia (average 7.04%). Compared with those in nonmining 
areas, mining activities increased the abundance of 
Gammaproteobacteria and Alphaproteobacteria in bulk soil while 
decreasing the abundance of Blastocatellia. Compared with those in 
the bulk soil from the mining area, the abundances of 
Gammaproteobacteria and Alphaproteobacteria in the rhizosphere 

FIGURE 2

Changes in the alpha diversity indicators of different samples (n = 3).

FIGURE 3

Relative abundance of soil bacteria in different samples at the phylum (A), class (B), order (C), and family (D) levels.

https://doi.org/10.3389/fmicb.2025.1533965
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Gao et al. 10.3389/fmicb.2025.1533965

Frontiers in Microbiology 06 frontiersin.org

soil and the abundance of Blastocatellia were lower in the ecological 
restoration plants. Furthermore, the rhizosphere soil of the three plant 
species from the mining area presented an increased abundance of 
Blastocatellia compared with the rhizosphere soil of the same plant 
species from nonmining areas.

Among the orders (Figure  3C), Pyrinomonadales (7.10%), 
Burkholderiales (6.52%), Rhizobiales (4.26%), and Chitinophagales 
(2.90%) were the most abundant. Mining activities reduced the 
abundance of Pyrinomonadales and Chitinophagales while increasing 
Burkholderiales in the bulk soil. However, the rhizosphere soil of the 
three ecologically restored plants presented an increased abundance 
of Pyrinomonadales and a decreased abundance of Burkholderiales 
compared with those in the bulk soil from the mining area. 
Additionally, the rhizosphere soil of the three plant species from the 
mining area had a greater abundance of Pyrinomonadales than did 
the rhizosphere soil of the corresponding control plants from 
nonmining areas.

At the family level (Figure 3D), Pyrinomonadaceae was the most 
abundant family, followed by Chitinophagaceae, Vicinamibacteraceae, 
and Sphingomonadaceae. Compared with those in nonmining areas, 
the abundances of Pyrinomonadaceae, Chitinophagaceae, and 
Vicinamibacteraceae in bulk soils from mining areas decreased. 
However, the planting of ecologically restored plants significantly 
increased their abundance in mining area soils. Specifically, the 
rhizosphere soil of the three plant species from the mining area 
presented a significant increase in Pyrinomonadaceae abundance 
compared with that of the control samples from nonmining areas.

At the genus level, RB41 was the most abundant genus, followed 
by Bryobacter, Sphingomonas, Thiobacillus, and Bacteroides (Figure 4). 
Compared with those in nonmining areas, mining activities 
significantly decreased the abundances of RB41 and Bryobacter in 
bulk soils while increasing the abundances of Sphingomonas and 
Thiobacillus (Figure 5). Compared with those in the bulk soil, the 
abundances of RB41 and Bryobacter in the rhizosphere soil increased 

FIGURE 4

Phylogenetic analysis of the top 100 genera with relative abundances in different samples.
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in the mining area. Conversely, the abundances of Sphingomonas, 
Thiobacillus, and Bacteroides significantly decreased in the rhizosphere 
soil of the mining area. The abundances of RB41 and Thiobacillus in 
the three plant species from the mining area increased compared with 
those in the control rhizosphere soil samples from nonmining areas, 
whereas the abundance of Luteolibacter decreased. Additionally, 

different plants enriched different bacterial groups in the rhizosphere 
soil of mining areas compared with nonmining areas. For example, 
Blastocatella, Aridibacter, and Puia were significantly enriched in the 
rhizosphere soil of Carex nubigena plants from mining areas, whereas 
Pseudonocardia and Aquicella were enriched in the rhizosphere soil 
of Pteris cretica plants. Dongia and Pseudonocardia were enriched in 

FIGURE 5

Cluster heatmap of the relative abundance of soil bacteria at the genus level for different samples. Different color blocks represent changes in the 
relative abundance of bacteria, with higher relative abundance resulting in darker colors. The numbers in the color block represent the relative 
abundance (%) of bacterial genera.
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the rhizosphere soil of Neyraudia reynaudiana plants from 
mining areas.

Structural distinctiveness of microbial 
communities

In this study, we conducted an in-depth analysis of the specific 
and overlapping operational taxonomic units (OTUs) among 
diverse samples (Figure 6). Specifically, the mining area samples—
Mine. C, Mine. N, Mine. P, and Mine collectively contained 847, 
1,178, 1,299, and 1,143 unique OTUs, respectively, with a shared 
pool of 1,317 OTUs. Conversely, the nonmining area samples—
control. C, Control. N, Control. P, and Control—featured 744, 
1,196, 1,394, and 789 unique OTUs, respectively, and a shared 
complement of 1735 OTUs. Furthermore, Mine. C and Control. C 
harbored 1735 and 1,553 unique OTUs, respectively, with 2,395 
common OTUs. Similarly, Mine. N and Control. N presented 2,343 
and 2,283 unique OTUs, respectively, sharing 2,938 OTUs. Mine. 
P and Control. P had 2,424 and 1807 unique OTUs, respectively, 
with 3,029 common OTUs. Notably, compared with nonmining 
areas, lead-zinc mining introduced 1,104 unique OTUs and 
retained 2,511 common OTUs in the bulk soil. Across all the 
samples, a range of 366–810 unique OTUs and 1,008 shared OTUs 
was observed.

To quantify the variations in bacterial communities among the 
samples, we  employed principal coordinate analysis (PCoA) and 
nonmetric multidimensional scaling (NMDS) (Figure 7). The results 
revealed a striking difference in the bacterial community structure of 
the bulk soil samples from the mining area compared with that of the 
other samples, confirming that lead-zinc mining substantially altered 

the bacterial community structure of the soil. Following the planting 
of the three types of ecological restoration plants, the soil bacterial 
community structure partially recovered, resembling the community 
structure of the control sample. Moreover, the rhizosphere bacterial 
community structure of different plants within mining areas exhibited 
notable differences.

Functional prediction of bacterial 
communities

By utilizing Tax4Fun, we forecasted the bacterial functions within 
the soil samples. These functions were categorized into 44 groups, with 
carbohydrate metabolism topping the list, followed by amino acid 
metabolism, membrane transport, translation, replication and repair, 
and energy metabolism (Figure 8). When comparing bulk soil from 
mining and nonmining areas, mining area soil was enriched in 
functions such as methyl-accepting chemical protein (K03406), Cu2+-
exporting ATPase (K01533), and DNA-directed RNA polymerase 
subunit beta (K03046). Conversely, functions such as methyl-
accepting chemotaxis protein excinuclease ABC subunit A (K03701), 
3-oxoacyl-[acyl-carrier protein] reductase (K00059), and ribonuclease 
E (K08300) were significantly depleted.

In the rhizosphere soil of plants from mining areas, Carex 
nubigena increased functions related to iron complex transport 
system permease protein (K02015), peptide/nickel transport system 
permease protein (K02033), and methyl-accepting chemotaxis 
protein (K03406) but decreased the function of cytochrome c oxidase 
subunit I (K02274) (Figure 9). Neyraudia reynaudiana plants from 
mining areas enriched the function of a hypothetical protein 
(K09800) but decreased the functions of pyruvate and orthophosphate 

FIGURE 6

Shared and unique OTU analysis among different samples.
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FIGURE 7

Beta diversity between different samples based on NMDS and PCoA.
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dikinase (K01006) compared with those in control rhizosphere soil 
samples from nonmining areas. Additionally, in the rhizosphere soil 
of Pteris cretica from mining areas, the levels of transcription-repair 
coupling factor (K03723), DNA polymerase III subunit alpha 
(K02337), and ATP-binding cassette (K06147) genes increased 
significantly, whereas the levels of 5-methyltetrahydrofolate–
homocysteine methyltransferase (K00548), ATP-dependent helicase 
Lhr and Lhr-like helicase (K03724), and excinuclease ABC subunit 
A (K03701) genes decreased compared with those in nonmining 
area samples.

To further assess the variations in bacterial functions across 
samples, we applied principal component analysis (PCA) (Figure 10). 
Compared with the control samples, the lead–zinc mining samples 
induced significant differences in soil bacterial functions. The 
introduction of ecologically restored plants somewhat restored the soil 
bacterial functions, making them closer to those of the control 
samples. Notably, the functions associated with different plants 
underwent a certain degree of differentiation.

Discussion

Abandoned lead–zinc mines can generate waste gas, wastewater, 
and solid waste (Cao et al., 2023; Fernández-Martínez et al., 2024). If left 
untreated, it may lead to the spread of ecological risks, further causing 
harmful elements such as heavy metals to harm human and other 
animal and plant health through the food chain (Xu et  al., 2024; 
Yohannes et al., 2022). The characteristics of plant ecological restoration 
include low energy consumption, low cost, and environmental 
friendliness (Hassan et al., 2024; Narayanan et al., 2021; Thomas et al., 
2022). Plants can fix or adsorb soil pollutants on their own and 
cooperate with rhizosphere bacteria, preventing soil erosion and 
pollutant diffusion in abandoned mining areas (Doku et al., 2024; Duan 
et  al., 2021; Xiong et  al., 2024). In the process of plant ecological 
restoration, rhizosphere bacteria play crucial roles, including assisting 
plants in fixing and adsorbing pollutants, enhancing plant stress 
resistance and environmental adaptability, and promoting plant growth 
(Xiao et al., 2022; Bennis et al., 2022; Xiao et al., 2024). In this study, 

FIGURE 8

Annotation of KEGG pathways of soil bacteria in different samples based on Tax4Fun prediction.
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FIGURE 9

Comparative analysis of KO functions with significant differences between different samples.
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three local plants were selected for the ecological restoration of 
abandoned lead–zinc mining areas. The results revealed that lead–zinc 
mining significantly reduced the soil bacterial diversity, whereas after 
years of plant planting, the soil bacterial diversity was restored to a 
certain extent, which is consistent with previous research findings 
(Deng et  al., 2024). Research has shown that microbial diversity is 
closely related to the health level of plants (Berg et al., 2017; Trivedi 
et al., 2020). The greater the microbial diversity is, the greater the ability 
of the plant to adapt to the environment (Banerjee and van der Heijden, 
2023; Cheng et  al., 2019). The rhizosphere bacterial diversity of 
Neyraudia reynaudiana and Pteris cretica plants was most significantly 
restored in the soil of abandoned mining areas, indicating that these two 
plants can adapt well to the environment of lead–zinc mining and 
respond to environmental stress by increasing rhizosphere bacterial 
diversity. In the subsequent ecological restoration process, the planting 
of these two plants can be increased to improve their role in ecological 
restoration (Li et al., 2018; He et al., 2022).

This study revealed that mining activities significantly altered the 
soil community composition, reducing the abundance of soil RB41 and 
Bryobacter, whereas the planting of ecologically restored plants 
significantly increased the abundance of soil RB41 and Bryobacter. 
RB41 has been found to play an important role in regulating plant 
health and assisting plants in coping with adverse environmental stress 
(Gao et al., 2024; Li et al., 2022b). Bryobacter is an important beneficial 
bacterium for plants that plays a crucial role in regulating and 
promoting plant growth (Contreras et al., 2023; Li X. et al., 2022; Yang 
et al., 2022). This study confirms for the first time that ecologically 
restored plants can respond to the environmental stress caused by 
abandoned lead–zinc mining by enriching beneficial bacterial 
communities and increasing their environmental adaptability and 
remediation potential. In addition, mining activities have increased the 
abundance of Sphingomonas, whereas the planting of ecologically 
restored plants has reduced the abundance of Sphingomonas. 
Sphingomonas has also been found to have potential for environmental 
remediation and the promotion of plant growth (Asaf et al., 2020). 
These results indicate that plants adapt better to the environment by 

selectively selecting “matching” bacterial populations through 
nonrandom selection (Li et al., 2025). RB41 and Thiobacillus were 
significantly enriched in the rhizosphere soil of plants in mining areas 
compared with the same type of plant rhizosphere soil from nonmining 
areas. Thiobacillus has been found to have sulfur oxidation activity and 
is enriched in the rhizosphere soil of various plants (Dai et al., 2024; 
Osman et al., 2021). These results indicate that RB41 and Thiobacillus 
are adaptable to ecologically restored plants and have important 
ecological value in the process of plant ecological restoration. Research 
has shown that different plants also randomly enrich different 
microbial communities in the process of ecological restoration, 
including Blastocatella, Pseudonocardia, and Dongia. Blastocatella has 
been found to have strong heavy metal tolerance (Guo et al., 2017; Li 
et al., 2021), Pseudonocardia has extensive antibacterial and fungal 
activity (Riahi et  al., 2022), and Dongia has strong environmental 
adaptability and has been detected in various environments (Jiang 
et  al., 2024; Lu et  al., 2022). This study is the first to analyze how 
different plants adapt to the environment of lead–zinc mining by 
assembling rhizosphere bacterial communities in both common and 
specific ways. In the subsequent ecological restoration process of lead–
zinc mines, we  can specifically screen bacterial resources that are 
suitable for plants for plant bacterial joint ecological restoration.

Beta diversity analysis revealed that mining activities had a 
significant effect on the soil community structure, leading to significant 
differences. After plants were subjected to ecological restoration, the 
soil bacterial community structure recovered to a certain degree and 
was similar to the community structure of the control sample. PCA 
based on the prediction of bacterial community function also revealed 
the same phenomenon; that is, mining activities significantly affect the 
ecological function of bacterial communities, and the planting of 
ecologically restored plants has a positive effect on the restoration of 
community function, which is consistent with previous research results 
(Deng et al., 2024). In addition, we also found that different plants 
adapt to ecological restoration environments by enriching different 
functions, including iron complex transport system-permitting 
proteins and transcription pair coupling factors. The iron complex 
transport system-permitting protein is related to ion transport 
(Raymond et al., 2015), and the transcription pair coupling factor plays 
an important role in bacterial transcriptional regulation (Mistry et al., 
2023). This study reveals for the first time that ecologically restored 
plants adapt to the environment and successfully complete ecological 
restoration through nonrandom community assembly and functional 
changes. These research results provide a reference for screening 
ecological restoration bacterial resources and developing plant bacterial 
joint ecological restoration strategies.
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