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Acinetobacter baumannii is a Gram-negative opportunistic pathogen, responsible 
for nosocomial infections worldwide. In recent years, this microorganism has 
acquired resistance to various antibiotics, prompting the World Health Organization 
(WHO) to declare carbapenem-resistant A. baumannii (CRAB) a critical priority 
microorganism requiring urgent attention and the development of new therapeutic 
options. Here, we  screened for prophages in 158 genomes of A. baumannii, 
comprising 139 complete genomes from the Bacterial and Viral Bioinformatics 
Resource Center (BV-BRC), and 19 newly sequenced clinical isolates. Additionally, 
we conducted phylogenetic analyses of prophages, highlighting their diversity and 
local clustering. The analyzed genomes harbored at least two prophage regions, 
resulting in the identification of a total of 950 prophage regions, of which 348 were 
considered complete prophages through software analysis and manual curation, 
while the remainder may represent prophage remnants. The complete prophages 
ranged from 28.6 to 103.9 kbp, with an average GC content of 39%. Based on 
genomic similarity, only 18 complete prophages were taxonomically classified 
to the genus Vieuvirus. Among all identified complete prophages, we identified 
166 genes encoding for putative lysins, while prophage regions that were not 
considered complete could also harbor putative lysins. These findings highlight 
the abundance of prophage-encoded lysins in A. baumannii genomes, which are 
promising therapeutic agents for combating A. baumannii infections, particularly 
in the face of rising antibiotic resistance.
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1 Introduction

Bacterial infections significantly affect human health and are a leading cause of morbidity 
and mortality worldwide. The emergence of multi-drug resistant (MDR) bacterial pathogens, 
such as the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), 
exacerbates the current situation (De Oliveira et al., 2020). Among these, A. baumannii, an 
opportunistic, strictly aerobic, catalase-positive, oxidase-negative, and non-fermentative 
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Gram-negative pathogen in the Moraxellaceae family, poses a 
significant threat as a primary cause of hospital-acquired infections 
and, less frequently, community-acquired pneumonia (Dexter et al., 
2015). Common nosocomial infections include pneumonia, 
septicemia, urinary tract infections, skin and wound infections, 
endocarditis, and meningitis (Basatian-Tashkan et al., 2020), with 
ventilator-associated pneumonia (VAP), and bloodstream infections 
leading in mortality rates (Antunes et al., 2014).

In 2017 and again in the 2024 revision, the World Health 
Organization (WHO) designated carbapenem-resistant 
Acinetobacter baumannii (CRAB) as a priority pathogen for new 
antibiotic development (World Health Organization, 2017, 2024). 
Currently, A. baumannii exhibits resistance not only to carbapenems 
but also to last-resort antibiotics such as colistin (Cai et al., 2012) 
and tigecycline (Garnacho-Montero and Amaya-Villar, 2010). 
A. baumannii strains can naturally acquire exogenous DNA 
through natural transformation and plasmids via conjugation, 
contributing to the acquisition of antibiotic resistance genes 
(Domingues et al., 2019; Salgado-Camargo et al., 2020). Prophages 
harbor potential virulence factors, fitness-related genes, and 
antibiotic resistance genes. Prophages are major mediators of 
horizontal gene transfer, promoting bacterial genetic diversity 
(Costa et al., 2018).

Considering the increasing incidence of MDR bacterial infections, 
there is an urgent need to explore new alternatives to antibiotic 
administration. Given these challenges, exploring the use of 
bacteriophages, and their encoded lysins, is essential for developing 
novel antimicrobial strategies. Bacteriophages are viruses that 
specifically infect bacteria to ensure their survival and replication and 
exhibit two main types of replication cycles. The lytic cycle starts with 
viral particle attachment to the bacterial cell surface and the injection 
of viral DNA. Using the host machinery, viral DNA is amplified, and 
phage proteins are synthesized and assembled into a capsid. Finally, 
the cell lyses, releasing new virions (Ge et al., 2020). In the lysogenic 
cycle, the viral genetic material integrates into the bacterial genome, 
forming a prophage. This integration can be temporary, allowing the 
prophage to excise and reenter the lytic cycle (Ghose and Euler, 2020).

Recent studies of prophages have focused on identifying sequences 
encoding lysins that degrade the peptidoglycan layer, leading to cell 
lysis. Virion-associated lysins are involved in the injection of the phage 
genetic material into the cell. On the other hand, endolysins are 
expressed at the end of the phage replication cycle and promote the 
release of viral progeny by lysing the cell from within (Schmelcher 
et al., 2012). Phage lytic enzymes cleave the peptidoglycan layer and 
are classified as glycosidases, amidases, or endopeptidases based on 
the bonds they break (Danis-Wlodarczyk et  al., 2021). External 
application of endolysins to Gram-positive bacteria exerts a lethal 
effect, as the exposed peptidoglycan allows these enzymes to access 
their target (Schmelcher et  al., 2012). However, Gram-negative 
bacteria display an outer membrane that acts as a selective barrier 
(Masi and Pagès, 2013). The activity of lysins against Gram-negative 
bacteria can be enhanced in the presence of membrane-destabilizing 
factors, such as changes in pH or temperature, removal of Ca2+ or 
Mg2+, or the addition of ethylenediaminetetraacetic acid (EDTA) 
(Dillon, 2014). These observations have prompted the engineering of 
lysins by fusing them with peptides that destabilize the outer 
membrane for access to peptidoglycan. Nonetheless, several phage 
lysins with intrinsic antibacterial activity against various 

Gram-negative bacteria, including A. baumannii, have also been 
described (Sykilinda et al., 2018; Chu et al., 2022).

The aim of this study was to investigate endolysins encoded by 
prophages in selected A. baumannii genomes. For that, we conducted 
a comprehensive search of prophages in A. baumannii genomes, 
followed by the identification of endolysins encoded in these 
prophages, with a particular focus on complete prophages. By 
elucidating the potential mechanisms of action of these endolysins 
based on their annotation, this research aims to identify specific 
candidates for further investigation, thereby contributing to efforts to 
address the challenge of antimicrobial resistance.

2 Materials and methods

2.1 Acinetobacter baumannii genomes

A total of 139 A. baumannii genomes were selected from the 
Bacterial and Viral Bioinformatics Resource Center (BV-BRC).1 The 
selected genomes met the following criteria: host - Homo sapiens, 
genome quality - good, and genome status - complete. Some of the 
genomes of this set had previously been analyzed by Loh et al. (2020) 
and Costa et al. (2018).

Additionally, 9 genomes from A. baumannii isolates provided by 
the Faculty of Pharmacy of the University of Lisbon (FFUL) and 10 
genomes from the National Health Institute Dr. Ricardo Jorge (INSA) 
were sequenced. After genomic DNA extraction, using QIAamp DNA 
Mini kit (Qiagen, United Kingdom) according to the manufacturer’s 
instructions, DNA yield and integrity were assessed using a Qubit 
assay and agarose gel electrophoresis. High-quality samples were used 
to prepare Nextera XT Illumina paired-end libraries, which were 
sequenced (2 × 150 bp) on the Illumina MiSeq platform, following the 
manufacturer’s instructions. Bacterial genomes were de novo 
assembled using the SPAdes 3.13 algorithm (Prjibelski et al., 2020). 
The inclusion of these additional genomes was important to enhance 
the genetic diversity represented in our analysis, providing a more 
comprehensive view of the genomic landscape of A. baumannii 
prophages. We  incorporated locally sourced genomes to explore 
whether the prophages within these genomes share similarities with 
those from other regions, assessing the potential implications for 
localized versus generalized applications in phage-based therapies.

2.2 Prophage regions identification

All A. baumannii genomes were annotated by Rapid Annotation 
using Subsystem Technology (RAST) (Aziz et  al., 2008) and 
screened to identify possible prophage regions using the open-
access server PHAge Search Tool Enhanced Release (PHASTER) 
(Arndt et  al., 2016) and PhiSpy 4.1.20 (Akhter et  al., 2012). 
PHASTER, a database-based tool, classifies prophages as intact, 
questionable, or incomplete; intact prophages contained all essential 
genes for phage functionality, questionable ones had partial gene 
content, and incomplete prophages lacked many key structural and 

1 https://www.bv-brc.org/
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replication genes. PhiSpy detection is based on key genomic features 
and phage-specific patterns, but does not group them. We have 
considered as complete prophages only those that were identified 
by both programs, excluding the prophages classified as incomplete 
or questionable by PHASTER. Additionally, to pass the criteria of 
complete prophages, at least an integrase and a phage structural 
gene, namely: major capsid, minor capsid, major tail, minor tail, 
tape measure protein, baseplate protein, portal protein, among 
others that were related to the structure, should be present. Next, 
the complete prophages were manually curated to discern their 
boundaries. All prophage regions that were not considered complete 
are hereinafter referred as uncertain prophages.

To delimit these regions accurately, the amino acid sequences 
of the genes in the terminal prophage regions were compared using 
the Basic Local Alignment Search Tool (BLASTp), enabling the 
identification of similarities and functional relationships with 
known protein sequences. Additionally, MegaBlast was utilized to 
define the prophage sequences by identifying the bacterial genes 
flanking the prophage regions, thus refining the boundaries of the 
identified prophages.

CheckV v1.0.3 (Nayfach et  al., 2021), a fully automated 
command-line pipeline for assessing the quality of single-contig 
viral genomes, was employed to evaluate the completeness and 
quality of the identified prophage sequences. CheckV generates a 
report file and assigns query contigs to one of five quality tiers: 
complete, high-quality (>90% completeness), medium-quality 
(50–90% completeness), low-quality (<50% completeness) and 
undetermined quality.

2.3 Phylogenetic analysis of prophages

The complete prophage sequences were aligned using the standard 
option adjust direction of Multiple Alignment using Fast Fourier 
Transform (MAFFT) version 7 (Katoh and Standley, 2013), and a 
maximum likelihood phylogenetic tree was constructed based on the 
nucleotide alignment, using the FastTreeMP 2.1.11 tool (Price et al., 
2010). The visualization and annotation of the tree were improved 
using the Interactive Tree Of Life (iTOL) v4 tool (Letunic and 
Bork, 2019).

Additionally, to assess the phylogenetic relationships of the 
complete prophages within a broader viral taxonomy context, we used 
ViPTree: the Viral Proteomic Tree server version 4.0 (Nishimura et al., 
2017). ViPTree generates proteomic trees based on genome-wide 
sequence similarities computed by tBLASTx, allowing for 
comprehensive visualization of viral genome relationships.

2.4 Taxonomic classification of complete 
prophages

Each complete prophage sequence was uploaded in the 
Webversion of the program taxMyPhage (Millard et al., 2024). 
This tool provides taxonomy at the genus or species level for a 
predicted phage. The output consists of an upper right matrix of 
similarity against other phages classified by the International 
Committee on the Taxonomy of Viruses (ICTV) and the 
assigned taxonomy.

2.5 Putative lysins identification

Complete prophages were analyzed for the presence of proteins 
possibly related to lysis. For this purpose, annotations provided by 
PHASTER and RAST were analyzed using the following keywords: 
“endolysin,” “lysin,” “lysozyme,” “lysis protein,” “hydrolase,” 
“transglycosylase,” “glycosidase,” “amidase,” “peptidase,” “protease,” 
“proteinase,” “lipase,” “tail lysozyme,” “endopeptidase” and 
“hypothetical protein” (the latter considered only in the two positions 
upstream and downstream of the holin-coding gene). The identified 
proteins were analyzed for sequence similarity by BLASTp, against 
non-redundant protein sequences and specific databases: 
bacteriophages (taxid: 38018), phage sp. (taxid: 38018), Myoviridae sp. 
(taxid: 2202564), Siphoviridae sp. (taxid: 2170413) and Podoviridae sp. 
(taxid: 2202567).

The proteins whose BLASTp results showed that they were related 
to cell wall lysis remained under study and were named putative lysins. 
We used Phyre2 to predict protein structure and identify structurally 
similar proteins, aiding in the determination of the putative function 
(Kelley et al., 2015). Prophage regions detected and putative lysins 
identified were manually annotated in the respective genomes using 
the bioinformatics tool Geneious Prime 2020.1.1.2

3 Results

3.1 Acinetobacter baumannii genomes

The average size of the 139 genomes obtained from BV-BRC was 
4,003,639 bp (±127,085). De novo sequenced genomes had an average 
size of 3,948,248 bp (±103,545). Considering all the genomes analyzed, 
the average size was 3,998,437 bp (± 127,578). The average GC content 
across all genome sets was 39%.

3.2 Identification of prophage regions in 
Acinetobacter baumannii genomes

According to PHASTER, the 158 genomes carried prophages, 
totaling 878 prophage regions, including 406 intact (46.24%), 107 
questionable (12.19%), and 365 incomplete (41.57%) prophages. 
Concerning PhiSpy, there were 628 prophage regions in 154 genomes.

The total number of prophage regions per genome ranged from 2 
to 14, with an average of 6.01 (±2.29) prophages per genome, and most 
genomes harbored five prophage regions (n = 35) (Figures 1, 2). The 
maximum number of prophage regions found in a single strain 
genome was 14 (strains AB030, CP009257; Ab-D10a-a, CP051869).

We explored whether larger A. baumannii genomes harbored 
more prophage regions than smaller ones (Figure 2). To accomplish 
this, the number of prophage regions was analyzed in relation to the 
total genome size and the bacterial genome excluding prophages. It 
was observed that the increase in genome size was primarily due to 
the insertion of prophages, not other mobile elements, as the core 
bacterial genome remained constant. In agreement, a linear regression 

2 https://www.geneious.com
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FIGURE 1

Box plot showing the number of total, complete and uncertain prophages in A. baumannii genomes.

FIGURE 2

Distribution of prophage regions in 158 A. baumannii genomes: bar graph of genome counts and dots representing average genome size across 
prophage categories with linear regression analysis. The green line represents the average genome size (bacterial genetic material and prophage 
regions) for each category, while the orange line indicates only the bacterial core genome size.
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analysis showed an R2 of 0.114 for the relationship between the 
bacterial genome size excluding the prophage regions and the number 
of prophages, indicating that the bacterial genome size excluding 
prophages remains stable. In contrast, the regression of total genome 
size versus the number of prophage regions yielded an R2 of 0.921, 
suggesting that prophage regions significantly contribute to genome 
expansion, though not exclusively.

3.3 Acinetobacter baumannii complete 
prophages

A total of 348 complete prophages were identified in 143 bacterial 
genomes, with an average size after delimitation of 48.605 bp 
(±13.777). These prophage regions contained a significant number of 
genes coding for hypothetical proteins and several domains of 

unknown function that have not been explored. The smallest prophage 
genome was 28,620 bp and the largest 103,938 bp. The average GC 
content was 39%.

The quality assessment of the identified prophage sequences using 
CheckV revealed that 259 sequences (74.4%) were classified as high-
quality, while 89 (25.6%) were categorized as medium-quality. This 
step was crucial to ensure that subsequent taxonomic and evolutionary 
analyses were based on high-confidence sequences.

The complete prophages presented hotspots for integration 
(Figure 3; Supplementary Table S1), with the top three integrations 
occurring adjacent to the bacterial genes: ssrS (6S RNA) and a 
hypothetical protein; iron-containing redox enzyme family protein 
and Major Facilitator Superfamily (MFS) transporter; and 
aminopeptidase P family protein and aminodeoxychorismate/
anthranilate synthase component II. Additionally, numerous 
prophages integrate adjacent to tRNA genes.

FIGURE 3

Genome map highlighting complete prophages distribution and adjacent bacterial genes that are hotspots for prophage integration. The figure was 
produced using Geneious Prime, 2025.0.3 (https://www.geneious.com; Geneious Prime, 2025).
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3.4 Classification of Acinetobacter 
baumannii complete prophages

The nucleotide sequences of the 348 complete prophages were 
aligned by MAFFT and a maximum likelihood phylogenetic tree was 
constructed (Figure 4), revealing high diversity. Notably, prophages 
identified in newly sequenced genomes from Portugal, tend to cluster 
together into three distinct groups. Our analysis further revealed that, 
while prophages within these local genomes exhibit greater similarities 
with each other, similar counterparts were also found in genomes 
sequenced from strains isolated in other locations.

The proteomic analysis performed using VipTree (Figure  5) 
revealed that the prophage sequences identified in A. baumannii 
genomes clustered closely with several phages of Burkholderia and 
some of Pseudomonas genus. Notably, our group of prophages 
clustered with previously described Acinetobacter phages.

Moving into genomically coherent families better reflects the 
diversity and genomic relationships of these prophages, allowing for 
more accurate assessments of their evolutionary history and functional 
potential (Turner et  al., 2023). In this regard, we  utilized the 
taxMyPhage webserver (Millard et al., 2024), a new tool which was 
designed for the taxonomic classification of prophage sequences. Out 

of the 348 sequences analyzed, only 18 (5.17%) were successfully 
classified at the genus level, all of which were assigned to the genus 
Vieuvirus. One of these sequences was classified at the species level as 
Vieuvirus B1251 (Supplementary Table S1). Vieuvirus genus belongs 
to Caudoviricetes class, Uroviricota phylum, Heunggongvirae 
kingdom and Duplodnaviria realm.

3.5 Putative lysins identification

Due to the terminology diversity, keywords were searched for 
proteins related to lysis in complete prophage regions. The initial set 
of proteins was analyzed based on the homology of the sequences by 
aligning the amino acid sequences against databases, which allows us 
to acquire some information about the function of the proteins. 
BLASTp results enabled to keep 166 proteins under study that were 
indicated as having homology with proteins whose function was 
related to the lysis of the bacterial cell. To facilitate the interpretation 
of the data, 12 categories were established: cell wall hydrolase, 
lysozyme, endolysin/autolysin, peptidase, lysin, protease, hydrolase, 
tail lysozyme, hypothetical protein, transglycosylase, lipase and 
endolysin: we  could identify putative lysins in 10 out of the 12 

FIGURE 4

Prophage genome phylogenetic tree. A maximum likelihood phylogenetic tree was constructed based on the alignment of 348 nucleotide sequences 
of complete prophages, using the FastTreeMP 2.1.11 tool (Price et al., 2010). The tree was analyzed and annotated using the Interactive Tree of Life 
(iTOL) v6 (Letunic and Bork, 2019). Red circles highlight prophages identified in the newly sequenced genomes.
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categories (Figure 6). Putative lysins from all categories have been 
observed in uncertain prophage regions.

4 Discussion

Infections caused by A. baumannii, particularly in hospital 
settings, represent a significant challenge due to the increasing 
emergence of resistance to available antibiotics. Given this context, the 
study of A. baumannii prophages is vital as they represent a promising 
source of antimicrobial agents for phage therapy. Notably, proteins 
encoded by these prophages, such as lysins, have the potential to target 
and disrupt bacterial cell walls, providing alternative therapeutic 
avenues against resistant strains. Additionally, lysins have a low 
likelihood of resistance development due to their dependence on 
relatively conserved peptidoglycans, making them a reliable option for 
treatment. Furthermore, they demonstrate synergistic effects when 
combined with other lysins or antibiotics, enhancing their efficacy 
against pathogens that colonize mucosal surfaces and form biofilms 
(Oliveira et al., 2013; Czaplewski et al., 2016; Lin et al., 2017).

In our study, we  observed a widespread of prophages in 
A. baumannii, with some strains harboring multiple prophage regions. 
This finding aligns with previous research indicating that many 

A. baumannii strains are polylisogenic (Badawy et  al., 2020). The 
presence of complete prophages suggests recent integration events, 
which may enhance our understanding of A. baumannii evolution and 
adaptability. Complete prophage, found to be of medium or high-
quality completeness, have preferred integrations sites within 
A. baumannii genomes, which may be related with the specificity of 
the encoded integrase. The presence of numerous uncertain prophage 
regions, presumably prophage remnants, might be expected due to the 
strong selective pressures that lead to the degradation or excision of 
integrated prophages (Bailey et al., 2024; Vale et al., 2024).

Prophages play a significant role in bacterial genome evolution, as 
they serve as vehicles for genetic diversification and expansion (Vale 
et al., 2022). We have found that the bacterial genome size excluding 
prophage elements remains relatively constant, while the insertion of 
prophages leads to substantial genomic growth. This observation 
suggests that prophages are the primary contributors to the increase 
in genome size, thereby playing a critical role in shaping the genomic 
architecture of A. baumannii.

Bacteriophages have high genetic diversity, which makes it 
difficult to identify homologous proteins and compare the structural 
modules that generate them (head, neck, tail). That presents a 
challenge to establish a classification of the phages (Lopes et al., 2014), 
particularly after the recent revision of the ICTV taxonomy that 

FIGURE 5

Proteomic tree generated by VipTree version 4.0 (Nishimura et al., 2017) showing the phylogenetic placement of the analyzed complete prophage 
(displayed in red) sequences within the viral taxonomy.
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abolished morphotypes. However, it is important to note that the 
current taxonomic classification of prophages remains a challenge due 
to the limitations of the new ICTV taxonomy, which often does not 
determine their exact classification, indicating that they may belong 
to novel, yet-to-be-classified families within the class Caudoviricetes. 
While a small proportion of sequences were classified at the genus 
level, the majority of prophages could not be  given a complete 
taxonomic assignment, reflecting the high genetic diversity of phages 
and the ongoing refinement of viral taxonomy.

The maximum likelihood phylogenetic tree (Figure 4) evidences 
a high genomic prophage variability. However, the clustering of the 
prophages from the newly sequenced genomes in Portugal suggests 
that they share evolutionary relationships, possibly indicating the 
presence of region-specific or locally adapted phage populations. This 
pattern may reflect similar ecological pressures, horizontal gene 
transfer events, or shared hosts within the Portuguese environment, 
highlighting how local bacterial populations may acquire and 
maintain prophages with related genetic characteristics. Importantly, 
the identification of similar prophages in genomes from strains 
isolated in other regions suggests that, while local prophage 
populations may exhibit some degree of region-specific adaptation, 
there is also potential for broader, generalized applications of these 
prophages in phage-based therapies across different geographies. 
Furthermore, while complete prophages tend to cluster together 
within their respective families, exceptions exist that point to the 
complexity of bacteriophage evolution. This emphasizes the necessity 
for genomic-based approaches in phage classification to complement 
traditional morphological methods. Within a broader viral taxonomy 
context, the proteomic tree showed that our prophages clustered 
mainly with Burkholderia and Pseudomonas phages.

Bacteriophages are currently classified into genera and species 
based on genomic similarity, requiring comparisons with all phage 

genomes defined by the ICTV (Millard et  al., 2024). Notably, the 
phage taxonomy is still under development and remains incomplete, 
as many prophage sequences lack clear taxonomic resolution. This is 
particularly evident considering the large number of sequences that 
could not be classified further than the class Caudoviricetes (94.83%), 
reflecting the gaps in the current phage databases and the need for 
further refinement of taxonomic frameworks. The ones that were 
possible to classify were of the Vieuvirus genus, which was also found 
to be the taxonomical genus of the previously described Acinetobacter 
phages that clustered with our prophages in the proteomic tree. This 
observation reinforces the classification that we obtained.

Prophages have coexisted and evolved alongside bacteria, 
developing highly effective mechanisms to lyse and destroy their 
bacterial hosts at the end of the lytic cycle, facilitating the release of 
viral progeny. Lysins are proteins involved in this lysis process and 
have been widely researched and applied in the production of new 
antibacterial treatments (Sykilinda et al., 2018; Antonova et al., 2019; 
Kim et al., 2020). Our investigation into lysins revealed a rich diversity 
within the prophages analyzed. We identified 166 proteins potentially 
involved in lysis across complete prophages. Among these, various 
types of lysins were detected, underscoring the potential of these 
proteins as therapeutic agents against A. baumannii. The high number 
of prophage regions encoding a diverse array of lysins suggests that 
these could serve as a valuable resource for developing novel 
antibacterial treatments. Future work will focus on cloning and 
producing the identified lysins, followed by evaluating their 
antimicrobial activity. Such efforts hold promise for advancing 
therapeutic options against infections caused by antibiotic-resistant 
A. baumannii, contributing to the broader fight against 
MDR pathogens.

In conclusion, the insights gained from this study emphasize the 
intricate relationship between prophages and their bacterial hosts, the 

FIGURE 6

Bars graph showing putative lysins present on the complete prophages analyzed.
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potential of lysins as antimicrobial agents, and the importance of 
refining phage taxonomy to reflect the complexities of viral diversity 
and evolution.
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